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ABSTRACT 

As our society becomes increasingly dependent on digital communication (e.g., social media 

and email) and computerized storage (e.g., digitized medical records and government 

documents), tech giants such as Google, Facebook, and Apple are constructing and managing an 

increasing number of massive Internet data centers. These data centers house a network’s most 

critical systems and are vital to the continuity of daily operations. Requiring as much electricity 

as a medium size city, data centers rely on complex auxiliary power systems to prevent 

disruption to service. These backup systems consist of tens of multi-megawatt diesel-powered 

generators that release combustion byproducts, including over populated areas, and may lead to 

violations of the National Ambient Air Quality Standards (NAAQS). In this study, AERMOD 

(American Meteorological Society/ Environmental Protection Agency Regulatory Model) was 

used to model the dispersion of the criteria pollutants nitrogen dioxide (NO2) and fine 

particulate matter (PM2.5), from backup generators at the Facebook and Apple data centers in 

Prineville, Oregon. Two scenarios were considered: 1) routine readiness testing, and 2) a major 

power outage. Modeled spatial and temporal (seasonal) distribution of the pollutants are 

discussed, as well as the potential health effects on communities in the proximity of these data 

centers. Future research will include incorporating health and economic impacts, and 

consideration of adjusted emissions limits using plant site emission limits (PSEL). 
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1.0 INTRODUCTION 

Society is becoming increasingly dependent on digital communication and computer 

storage. In recent years, large investments have been made in massive data centers supporting 

cloud computing services by companies such as eBay, Facebook, Google ($7.3 Billion in 2013 

alone (Fiscal Year Results, 2013)), Microsoft, and Yahoo! (Greenberg et al, 2009). Cloud 

computing refers to both the applications delivered as services over the Internet and the 

hardware and software in the data centers that provide those services (Fox et al, 2010). Data 

centers, or “server farms”, thus house a network’s most critical systems and are vital to the 

continuity of daily operations. Many data centers have on the order of tens of thousands or more 

servers drawing tens of megawatts of power at peak operation (Greenberg et al, 2009). Data 

centers that power Internet-scale applications consume about 1.3% of the worldwide electricity 

supply and this fraction is expected to grow to 8% by 2020 (Beloglazov et al, 2011). To prevent 

disruptions to service, data centers rely on complex auxiliary power systems. These backup 

systems consist of tens of multi-megawatt diesel-powered generators (manufactured by 

companies such as Caterpillar, Cummins, Detroit Diesel, and John Deer).  

Human exposure to diesel exhaust has been shown to cause a number of adverse health 

outcomes, including pulmonary and cardiovascular diseases, and cancer (Brook et al. 

2010; Dockery et al. 1993; Krewski et al. 2009; Laden et al. 2006; Miller et al. 2007; Pope et al. 

1995, 2002, 2004; Pope and Dockery 2006; Chen et al. 2008). The exhaust from diesel 

generators is a complex mixture of gasses, including nitrogen dioxide (NO2) and nitrogen oxide 

(NO) (collectively known as “NOx”), and particulate matter (PM) (Habert, 2015). The 

Environmental Protection Agency (EPA) regulates NO2 and PM, among other pollutants, 

because of their known health effects. The National Ambient Air Quality Standards (NAAQS) 

(http://www.epa.gov/air/criteria.html), set by the EPA, for the pollutants of interest in this 

study, NO2 and PM2.5 (PM with an aerodynamic diameter of 2.5 µm or less), are listed in Table 

1; included are the route of formation (directly emitted or formed in the atmosphere), the 

concentration averaging time, the acceptable threshold, and the form of the regulation.  
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Table 1: National Ambient Air Quality Standards (NAAQS). 

Pollutant Primary/Secondary Averaging 
Time Level (µg/m3) Form 

primary 1 hour 188 

98th percentile of 1 hour 
daily maximum 

concentrations, averaged 
over 3 years NO2 

primary and 
secondary Annual 99.64 Annual mean 

primary Annual 12 Annual mean, averaged 
over 3 years 

secondary Annual 15 Annual mean, averaged 
over 3 years 

 
PM2.5 

primary and 
secondary 24 hour 35 98th percentile, averaged 

over 3 years 
 

To restrict facility emissions from stationary generators, emissions from stationary 

compression ignition internal combustion engines are regulated under Federal Regulation Title 

40 Part 52 Subpart MM. Federally approved rules are established in Air Contaminant Discharge 

Permits (ACDP) (OAR chapter 340, Division 216), which are issued by the State, and set yearly 

plant site emission limits (PSEL) (OAR chapter 340, Division 222). Nonetheless, the release of 

combustion byproducts from backup generators may lead to violations of the NAAQS (Bowman, 

2014). This is of particular concern in locations with pollutant levels approaching the NAAQS; 

and, because of the associated health risks, in locations with multiple data centers near residential 

areas. The Washington State Department of Ecology has used dispersion modeling to estimate 

the impacts of emissions from data centers near Quincy, Washington (Ecology, 2010). Similarly, 

in this work, AERMOD (American Meteorological Society/ Environmental Protection Agency 

Regulatory Model) will be utilized to model the dispersion of NO2 and PM2.5 from backup 

generators at data centers in Oregon. The study area, AERMOD and its inputs, and results and 

implications are discussed in this project report. 
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2.0 CASE STUDY: PRINEVILLE, OREGON  

Prineville is located in central Oregon, with a population of 9,253 (U.S. Census, 2010). 

Prineville is a desirable place for data centers, due to reliable power and dry climate that allows 

for an innovative evaporative cooling system. In such systems, cooling is achieved through air-

side economisation, where filtered outside air is delivered directly to the servers, and a high 

pressure misting system provides evaporative cooling and humidification (Brady et al, 2013). 

Facebook and Apple have data centers located in the town of Prineville, OR (Figure 1). 

Facebook has twenty-eight 3-MW generators on site, and Apple has fifteen 2 to 3-MW 

generators. 

Data centers may be of concern in Prineville because of already high levels of PM2.5 (see 

Table 2). The data are from the Oregon Department of Environmental Quality (DEQ) monitor in 

Prineville, OR; in two of the years between 2009 and 2012 the maximum 24-hour average 

concentration of PM2.5 is above the NAAQS threshold; in one of those years the 98th percentile is 

above the standard. It can be seen that the highest values of PM2.5 occurred during winter 

months. The town is currently holding meetings to discuss mitigation in an effort to prevent 

achieving non-attainment status for PM2.5 (Joshua Smith, personal communication, April 14, 

2015).  

 

 

 

 

 

 

 

 

Facebook 

Apple 

Figure 1: Facebook and Apple data centers in Prineville, Oregon. 
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Table 2: Average, maximum and 98th percentile PM2.5 concentrations from the DEQ 
monitor in Prineville, OR for four years. NAAQS for 24-hour PM2.5 is 35 µg/m3. 
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3.0 METHOLODGY  
 

3.1 Model Description and Inputs 

AERMOD is the recommended dispersion model from the U.S. EPA, representing the 

current state-of-science in regulatory modeling. It is a steady-state plume model that incorporates 

air dispersion based on planetary boundary layer turbulence structure and scaling concepts 

(http://www.epa.gov/scram001/dispersion_prefrec.htm). The model tracks the dispersion of a 

pollutant emitted from a source as it travels through space over a defined receptor grid.  

 
Figure 2: AERMOD model framework with preprocessors: AERMINUTE, AERMET, and 

AERMAP. 

The required inputs for AERMOD are: wind speed and direction, temperature profiles, 

mixing depth, turbulence parameters, plume characteristics, and degree of urbanization. Before 

these data are used in AERMOD, meteorological processors are used to format the data (EPA, 

2010). Figure 2 depicts AERMOD and the two minimum preprocessors, AERMET and 

AERMAP, along with an optional preprocessor, AERMINUTE.  

AERMET is a meteorological data preprocessor for AERMOD. AERMET uses 

meteorological data and surface characteristics to calculate boundary layer parameters and 

creates two output files: a surface data file and a profile data file. 

(http://www.epa.gov/scram001/metobsdata_procaccprogs.htm). Meteorological data was 

AERMOD	  

AERMET	  AERMINUTE	  

AERMAP	  
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acquired from National Weather Service (NWS) Integrated Surface Hourly Data (ISHD) format 

from Redmond’s Roberts Field airport (ftp://ftp.ncdc.noaa.gov/pub/data/noaa) and upper air data 

from National Ocean and Atmospheric Administration/Earth System Research Laboratory 

(NOAA/ESRL) Radiosonde database (RAOBS) for Salem, OR (http://esrl.noaa.gov/raobs/). 

Land use of desert scrubland was assumed as the surface characteristics for input to AERMET. 

Meteorological data from 2013 was used for all simulations.  

AERMINUTE, the wind preprocessor is needed for wind speeds that are considered 

“calm”, <1 m/s. Calms are assigned a value of 0 and AERMOD cannot simulate dispersion under 

missing wind conditions. AERMINUTE processes 1-minute wind data to generate hourly 

average winds for input to AERMET 

(http://www.epa.gov/scram001/metobsdata_procaccprogs.htm). Minute wind data was 

downloaded from NOAA Automated Surface Observing System (ASOS) 

(ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/6405-2013/) 

AERMAP is a terrain preprocessor for AERMOD. AERMAP processes gridded terrain 

data and creates a file suitable for use within an AERMOD control file. This file contains 

elevation and hill-height scaling factors for each receptor in the air dispersion study, as well as 

elevations for every source and building 

(http://www.epa.gov/scram001/7thconf/aermod/aermapugb2.pdf). The Breeze graphical user 

interface for the AERMOD dispersion model and preprocessors was used in this work 

(http://www.breeze-software.com/AERMOD/). Terrain data was incorporated using NED files 

from the National Land Cover Dataset (NLCD) from the US Geological Survey (USGS) 

(http://www.mrlc.gov/viewerjs/). 

Annual facility reports, inspection reports, air contaminant discharge permits, and a testing 

report were obtained from DEQ through an official records request. These files contained 

emission factors, hours of operation, emission limits and source parameters (Table 3). Due to 

lack of facility specific stack height, a stack height of 5 feet above the manufacturer specification 

height was assumed. This is common practice in modeling for engineering consulting (Monica 

Wright, personal communication, April 27, 2015). Coordinates of each source were obtained 

using Google Earth. 



 

 
7 

 

Table 3: Generator specifications. 

Data 
center 

Size 
kW 

# 
Generators 

Stack 
height 

(m) 

Stack 
diameter 

(m) 

Exit 
Velocity 

(m/s) 

Temperature 
(K) 

NOx 
emissions 

(g/s) 

PM 
emissions 

(g/s) 
Facebook 3490 28 4.82 0.51 43.28 722.59 4.71 0.072 

Apple 2750 12 4.91 0.51 43.28 722.59 5.71 0.015 
Apple 2000 3 4.06 0.51 43.28 722.59 4.40 0.040 

 

3.2 Model Options 

The plume volume molar ratio method (PVMRM) was used to model the conversion of 

NO to NO2. Emissions factors are given for NOx, and not the NAAQS regulated pollutant NO2. 

At the emission source, the in-stack ratio is assumed to be 80% NO and 20% NO2 (San Joaquin 

Valley Air Pollution Control District, 2010). As the plume travels downwind NO gets oxidized 

to NO2. The ultimate ambient equilibrium is assumed to be 10% NO and 90% NO2 

(http://www.epa.gov/ttn/scram/models/aermod/aermod_userguide_addendum_v11059_draft.pdf)

. In PVMRM, the conversion of NO to NO2 at a downwind distance from the source is 

determined by the ratio of the number of moles of ambient ozone that have been entrained into a 

plume segment at downwind distance to the number of moles of NOx that have been emitted 

from the source in the same segment (Hendrick et al, 2013). A background ozone concentration 

of 50 µg/m3 was used, based on information from NW AIRQUEST/Washington State University 

(http://lar.wsu.edu/nw-airquest/). 

EPA’s Building Profile Input Program (BPIP) accounts for building downwash 

(http://www.epa.gov/scram001/userg/relat/bpipd.pdf). Downwash can create higher 

concentrations near the ground surface and creates turbulence, which alters dispersion. Building 

heights were obtained from the City of Prineville’s Planning Department (Joshua Smith, personal 

communication, April 14, 2015).  For the results shown in this study, BPIP was turned off. 

Model runs with BPIP will be analyzed in future work. 
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3.3 Receptors 

Simulations were performed using discrete receptors, as well as a receptor grid. The 

following seven discrete receptors were selected to illustrate spatial variability in modeled 

concentrations: two near source, four in and around Prineville, and one on an elevated bluff 

(Figure 3). The UTM coordinates, elevation, and distance to closest generator for each of the 

seven receptors are listed in Table 4. 

 
Figure 3: Aerial image of discrete receptors, 7 receptors. 
 

Table 4: Discrete receptor description and UTM location. 

Description Eastings 
(m) 

Northings 
(m) 

Elevation 
(m) 

Distance to 
Closest 

Source (m) 
Near Source 

SW 668674.7 4905788 
933 842 

Near Source 
NE 669747 4907013 

987 972 

Prineville 
South 672218.1 4907133 

874 2172 

Prineville 671689.1 4907721 876 2300 

Near 
SW 

Near 
NE 

Prineville 
North 

Prineville 
Center 

Prineville 
South 

Prineville NE 

Bluff 
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Center 
Prineville 

North 670678.9 4908594 
870 2438 

Bluff 673328.7 4905919 996 3187 
Prineville NE 672445.4 4908711 895 3410 

 

To further illustrate more detailed spatial variability in modeled concentrations a non-

uniform Cartesian grid (Figure 4) was selected. The grid was anchored in the SW corner (668312 

m E, 4905541 m N) and expanded NE to cover the data centers and the populous of Prineville. 

Grid spacing was as follows: 25 meters for the first 2000 meters, 50 meters from 2000 meters to 

4000 meters, and 100 meters grid 4000 meters to 8000 meters based on the AERMOD modeling 

framework applied for Quincy, WA (Ecology, 2010); the grid had a total of 25920 receptors. 

 

 

Figure 4: Non-uniform Cartesian receptor grid, 25920 receptors. 

3.4 Simulations 

 Since generators are used for routine testing and to supply power when the commercial 

source is interrupted, testing and power outage scenarios were represented in the model 

simulations (Table 5). Monthly testing represents a low emitting scenario (lowest emissions 
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produced), with only one data center testing generators and only one generator running at a time 

for a duration of one hour. For the annual testing scenarios, both data centers were assumed to 

operate generators in three groups for a duration of four hours/group, so that all generators were 

run in a 24-hr period (the duration of one model run). Testing scenarios assumed generators only 

operate between the hours of 7 am and 7 pm, as testing is often limited to daylight hours 

(Bowman, 2014). The outage simulations represent a worst-case scenario, with all generators at 

both data centers operating at the same time for a duration of 20 hours, from midnight to 8 pm. 

The length of the power outage was chosen based on engine runtime reports in the annual reports 

from DEQ. Outages, reported on a monthly basis from Facebook in 2012, 2013, and 2014, 

ranged from 2.09 hours to 48.76 hours. 

Table 5: Simulations; run separately for NO2 and PM2.5. 

Scenario Data Center Total # 
Gens/day 

Duration 
(hour) 

Engines Operating 
Concurrently 

Model 
Runtime 

Monthly Testing Apple 12 1 1 365 days 

Monthly Testing Apple 12 1 1 Winter 

Monthly Testing Apple 12 1 1 Summer 

Annual Testing Facebook and Apple 43 4 13-15 Winter 

Annual Testing Facebook and Apple 43 4 13-15 Spring 

Annual Testing Facebook and Apple 43 4 13-15 Summer 

Annual Testing Facebook and Apple 43 4 13-15 Autumn 

Power Outage Facebook and Apple 43 20 43 365 days 
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4.0 RESULTS 

The results are organized as follows: 1) 1-hr NO2 annual testing (gridded receptor and 

discrete), 2) 1-hr NO2 outage (gridded receptor and discrete), 3) 24-hr PM2.5 annual testing 

(gridded receptor and discrete), 4) 24-hr PM2.5 outage (gridded receptor and discrete), and 5) 

annual PM2.5 annual testing (gridded receptor). No background concentrations are included in the 

reported predicted concentrations.  

4.1 NO2 

The 3D plots of gridded receptor results have a color bar with red corresponding to values 

over the NAAQS; and yellow, light blue and dark blue corresponding to 90%, 50%, and 25% of 

the standard, respectively. The maximum hourly NO2 concentrations for the annual testing 

simulations are presented in Figures 5 and 6, for winter and summer respectively. The results 

indicate a winter maximum of 661.28 µg/m3 and summer maximum of 641.56 µg/m3. For the 

outage scenario, the maximum hourly concentrations of NO2 across the receptor grid are 

presented in Figure 7, with a maximum value of 1389.13 µg/m3. The contour plot of the outage 

scenario, Figure 8, highlights the locations in Prineville with values over the NAAQS threshold 

for 1-hour NO2. 

The top eight concentrations (winter and summer) at each discrete receptor in the annual 

testing scenario are listed in Table 6; the results from the power outage scenario are in Table 7. 

In Tables 6 and 7 the grid cells are color coded by season: blue, green, yellow, and red to 

indicate winter, spring, summer, and autumn, respectively.  
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Figure 5: 1st highest 1-hour averaged NO2 concentrations (µg/m3) in winter for annual 
testing scenario, gridded receptors. 
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Figure 6: 1st highest 1-hour averaged NO2 concentrations (µg/m3) in summer for annual 
testing scenario, gridded receptors. 
 

Table 6: Comparison of winter and summer 8 highest 1-hour averaged NO2 concentrations 
(µg/m3) for annual testing scenario, discrete receptors. 
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Figure 7: 1st highest 1-hour averaged NO2 concentrations (µg/m3) for outage scenario, 
gridded receptors. 

 

 
Figure 8: 1st highest 1-hour averaged NO2 concentrations (µg/m3) for outage scenario, 
gridded receptors. 
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Table 7: 1-hour averaged NO2 concentrations (µg/m3) for outage scenario, gridded 
receptors. 

Receptor 
Near 
NE 

Near 
SW 

Prineville 
Center 

Prineville 
South 

Prineville 
North Bluff Prineville 

NE 
Distance  (842 m) (972 m) (2172 m) (2300 m) (2438 m) (3187 m) (3410 m) 

1 146 158 179 173 177 368 226 
2 145 156 161 166 168 358 225 
3 138 151 155 161 164 354 223 
4 132 151 139 154 162 335 213 
5 130 150 121 149 158 326 201 
6 126 150 117 146 117 322 180 
7 124 150 116 141 114 317 176 
8 120 140 105 138 110 307 173 

 
winter spring summer fall 

 

4.2 Primary PM2.5 

The 3D plots illustrating the gridded receptor results have a color bar with red 

corresponding to values greater than the computed value of the NAAQS for PM2.5 minus a 

defined model PM2.5 background concentration from NW AIRQUEST/Washington State 

University (http://lar.wsu.edu/nw-airquest/) for Prineville, OR (i.e. 35 µg/m3 -31 µg/m3); and 

yellow, light blue and dark blue corresponding with 90%, 50%, and 25% of the computed value, 

respectively. The maximum 24-hour PM2.5 concentrations for the annual testing scenarios are 

presented in Figures 9 and 10, for winter and summer respectively. The results indicate a winter 

maximum of 5.12 µg/m3 and summer maximum of 20.62 µg/m3. The maximum 24-hour PM2.5 

concentrations for the outage scenario are presented in Figure 11, with a maximum value of 

20.60 µg/m3. The contour plot of the annual testing scenario, Figure 12, shows the locations in 

Prineville with annually averaged PM2.5 concentrations greater than 0.0033 µg/m3 (further 

discussed in Section 5.0). 

The top eight concentrations (winter and summer) for each discrete receptor for the annual 

testing scenario are listed in Table 8. The results from the outage scenario with the discrete 
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receptor are presented in Table 9, with concentrations color coded by season; blue, green, 

yellow, red showing winter, spring, summer, autumn, respectively.  

 

 

Figure 9: 1st highest 24-hour averaged PM2.5 concentrations (µg/m3) for winter annual 
testing scenario, gridded receptors. 
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Figure 10: 1st highest 24-hour averaged PM2.5 concentrations (µg/m3) for summer annual 
testing scenario, gridded receptors. 
 

Table 8: Comparison of winter and summer 8 highest 24-hour averaged PM2.5 
concentrations (µg/m3) for annual testing scenario, discrete receptors. 
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Figure 11: 1st highest 24-hour averaged PM2.5 concentrations (µg/m3) for power outage 
scenario, gridded receptors. 
 

Table 9: 1st highest 24-hour averaged PM2.5 concentrations (µg/m3) for outage scenario, 
discrete receptors. 

Receptor 
Near 
NE 

Near 
SW 

Prineville 
Center 

Prineville 
South 

Prineville 
North Bluff Prineville 

NE 
Distance  (842 m) (972 m) (2172 m) (2300 m) (2438 m) (3187 m) (3410 m) 

1 0.365 1.336 0.446 0.293 0.593 0.393 2.005 
2 0.274 0.984 0.428 0.279 0.513 0.357 1.597 
3 0.252 0.878 0.299 0.256 0.429 0.321 1.038 
4 0.203 0.848 0.294 0.242 0.423 0.285 1.007 
5 0.189 0.703 0.274 0.227 0.412 0.260 0.988 
6 0.187 0.619 0.254 0.204 0.390 0.259 0.885 
7 0.179 0.538 0.223 0.201 0.379 0.245 0.832 
8 0.178 0.516 0.214 0.182 0.340 0.224 0.831 
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Figure 12: Contour plot of PM2.5 concentrations (µg/m3) for annual testing scenario, 
gridded receptor. Purple shading indicates concentrations above 0.0033 µg/m3. 
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5.0 DISCUSSION AND CONCLUSIONS 

Results show concentrations above NAAQS threshold at several time periods and locations 

for 1-hr NO2. From the gridded outage scenario, the 1st highest concentration was over the 

NAAQS threshold at 71% of the receptors, the 8th highest concentration violated the standard at 

31% of the receptors. From the gridded annual testing scenario, during summer months the 1st 

highest concentration was over the NAAQS threshold at 492 receptors (2%) and the 8th highest 

concentration violated the NAAQS for 123 receptors (0.5%); during winter months the 1st 

highest concentration was over the NAAQS threshold at 704 receptors (3%) and the 8th highest 

concentration violated the NAAQS at 57 receptors (0.2%). While the modeled PM2.5 

concentrations did not exceed the NAAQS, there may still be concern. From a study by 

Vermeulen et al (2014), which used elemental carbon (EC) as a marker for diesel engine exhaust 

(DEE); environmental exposure of average EC concentrations of 0.0033 µg/m3 resulted in an 

estimated excess lifetime risk of 1 additional lung cancer death per 1,000,000 individuals as 

compared to an unexposed population. Results from the gridded annual testing scenario indicated 

concentrations for annually averaged PM2.5 over 0.0033 µg/m3 at 93% of the receptors. 

The comparison of winter and summer concentrations for the annual testing scenario 

indicate a pattern of higher concentrations for PM2.5 in the summer (Table 8), but no observable 

seasonal pattern for NO2 (Table 6). This could be partially due to the averaging times, since 

PM2.5 is averaged over 24 hours and NO2 over 1 hour. Meteorology could also have an effect on 

seasonality of concentrations. Wind roses were made from 2013 Prineville hourly wind data 

(Figure 12) to look for differences/similarities in winter and summer wind patterns. There was a 

stronger diurnal pattern and more variability in winter winds; in summer the highest percentage 

of wind was blown toward the north and stronger winds were blown towards north/northwest. 

Therefore, during summer wind blows pollutants toward Prineville more often than during 

winter. To look for further patterns in predicted concentrations, the 8 highest 1-hr NO2 

concentrations at the discrete receptors (outage scenario) were plotted against time of day. Figure 

13 shows a u-shaped pattern of higher concentrations in the morning and evening, with no highs 

occurring between the hours of 9 am to 5 pm. The morning and evening timeframe corresponds 

with lower wind speeds and also a lower planetary boundary layer (PBL) height (Zhang et al, 

2014). Temperature, which impacts the height of the PBL, may also play an important role in 
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when the highest concentrations are occurring. Further analysis would be required to determine 

how each factor (PBL, winds, and temperature) contributes to the observed lower daytime 

concentrations. Elevation could also have an effect on concentrations; from the discrete receptor 

results, generally higher concentrations of both PM2.5 and NO2 were predicted at the bluff 

receptor (the highest elevation).  

 

 

Figure 13: Wind roses for 2013 hourly wind data for Prineville, OR; winter (left) and 
summer (right). 
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Figure 14: Hour of day for 8 highest 1-hr NO2 concentrations at discrete receptors, outage 

scenario. 

Although these scenarios may not represent actual emissions presently, for both Facebook 

and Apple they are possible within the limitations set in their Air Contaminant Discharge 

Permits. Air quality issues can be of concern even when emissions are within permit limitations. 

Given the results of these simulations, the next steps forward for regulators could include: further 

modeling, limitations on testing (such as during inversions, hours of the day, or how many 

generators can operate concurrently), updated regulations, and monitoring (especially to get 

accurate NO2 concentrations). Cloud based storage, and thus data centers, is an expanding 

industry. The energy consumption of such data centers all over the world is expected to double 

every five years, at a huge cost to both business and the environment (Shen, 2014). This growth 

in the size and number of data centers will come with increased power consumption. This 

additional power will require appropriate backup, and thus the potential for significantly 

increased emissions.  
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6.0 FUTURE WORK 

The continued work on this study involves further analysis of 1st highest concentrations 

and analysis of monthly scenarios. To address the possible source of error in the exclusion of 

BPIP, all simulations will be run again using BPIP. Monthly scenarios will also be re-run as a 

potential to emit (PTE) simulation. For the PTE cases, emission factors will be calculated from 

PSEL (tons/year of PM2.5 and NO2). EPA’s Environmental Benefits Mapping and Analysis 

Program – Community Edition (BenMAP-CE) will be used to estimate the health impacts and 

economic values associated with changes in ambient air pollution, such as the differential 

concentrations of NO2 and PM2.5 calculated with AERMOD (http://www2.epa.gov/benmap). The 

PTE scenario and the incorporation of BenMAP-CE will allow consideration of the possible 

health risks and costs if the facilities operate to the extent their permits allow.  
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