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Abstract 
The Critical Energy Infrastructure (CEI) Hub in Northwest Portland, OR spans a six-mile stretch 

of the Lower Willamette River and stores 90% of Oregon’s liquid fuel supply and 100% of the 

jet fuel for PDX. The CEI Hub is also built entirely on liquefiable soils which are likely to fail 

during a Cascadia earthquake event. The purpose of this project was to model a liquid fuel spill 

in the Lower Willamette and Columbia Rivers using the CE-QUAL-W2 model. Several 

scenarios were developed to account for different environmental conditions, (e.g., high and low 

discharge years) and varying spill durations (e.g., rapid or prolonged). Fuel concentrations were 

analyzed near Portland and the downstream towns of St. Helens and Rainier, OR to assess 

potential impacts of a liquid fuel spill on communities along the affected rivers. Further water 

quality analysis using EPA standards was performed for Rainier since the town relies on 

Columbia River surface water as a drinking water source. Model limitations and refinements 

were also discussed for future fuel spill analysis on this river system. 
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1. Introduction 
The Pacific Northwest is expected to experience a periodic, massive earthquake called the 

Cascadia Subduction Zone earthquake event. The Cascadia Subduction Zone is approximately 

100 miles off the west coast of North America in the Pacific Ocean. It spans 600 miles from 

British Columbia to northern California and is a geological fault where the Explorer, Juan De 

Fuca, and Gorda faults meet. The fault ruptures periodically resulting in the Cascadia event – a 

magnitude 8-9 earthquake – which is predicted to occur in the next 50 years with a 37% 

likelihood (Goldfinger et al., 2012). All infrastructure in the potentially affected region was 

constructed after the last Cascadia event, January 1700, and non-Native knowledge of the 

periodic occurrence has only been established over the last few decades (Wang et al., 2013).  

Most of the energy infrastructure in the region was constructed using older building codes before 

seismic resilience was required, including the Critical Energy Infrastructure (CEI) Hub in 

Portland, OR (Wang et al., 2013). A Cascadia event would likely result in catastrophic structural 

failure in most, or all, of the liquid fuel storage tanks at the CEI Hub whereupon the fuel will 

spill directly into the Lower Willamette River and flow into the Columbia River. 

The purpose of this report was to model a liquid fuel spill from the CEI Hub into the Lower 

Willamette River using the CE-QUAL-W2 model. It includes a literature review to determine 

spill characteristics, fate and transport, volatile and non-volatile constituents, and to analyze 

previous modeling results to identify parameters and inputs applicable to the CE-QUAL-W2 

model of the Willamette and Columbia Rivers. 

1.1. Critical Energy Infrastructure Hub background 

The Critical Energy Infrastructure (CEI) Hub in Northwest Portland, OR spans a six-mile stretch 

of the lower Willamette River (Figure 1). The Hub is located near three major earthquake faults 

– the Oatfield Fault, the Portland Hills Fault, and the East Bank Fault – and abuts the Portland 

Hills Fault. The entire CEI Hub was constructed on liquefiable soils which are expected to fail in 

the event of a Cascadia Subduction Zone earthquake event. There are 46 large above-ground 

liquid fuel storage tanks in the hub ranging from over 100 to 15 years old with the majority at 

least 50 years old (OSSPAC, 2019). None of the tanks were designed for seismic resiliency and 

similar facilities have been damaged or destroyed in past earthquakes. The CEI facilities and 

infrastructure are owned by twelve different companies and store 90% of Oregon’s liquid fuel 

supply and 100% of the jet fuel for the Portland International Airport (Wang et al., 2013). The 

fuel companies are not required to report types of fuel stored and few have reported voluntarily. 

Based on the findings of Oregon Public Broadcasting’s Tony Schick and referenced in the 

Oregon Seismic Safety Policy Advisory Committee report (2019) there are 118.2M gal. of 

gasoline, 59.4M gal. of diesel, 17.9M gal. of aviation fuel, 53.8M gal of unspecified liquid 

petroleum (including Alberta tar sands oil), 24.3M gal. of asphalt, and 14.9M gal. unused. When 

the Cascadia event occurs, it is likely that most, if not all, of those fuel stores will spill into the 

Willamette River which feeds into the Columbia River. 
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Figure 1: Outline of the Critical Energy Infrastructure (CEI) Hub in northwest Portland, OR along the Lower Willamette River 

(OSSPAC, 2019; Google Maps, 2019). 

1.2. CE-QUAL-W2 model 

CE-QUAL-W2 is a 2-dimensional (longitudinal-vertical) hydrodynamic and water quality model 

developed by the United States Army Corps of Engineers (Wells, 2019a). The model can predict 

water surface, velocity, temperature, multiple generic constituents (e.g., tracers, volatiles), as 

well as numerous biological, physical, and chemical parameters. CE-QUAL-W2 uses coupled 

hydrodynamic and water quality transport models and can model branched and/or looped 

systems including flow and boundary conditions (Berger and Wells, 2019). The Lower 

Willamette River models (Figure 2) used in this study were developed and calibrated by Berger 

et al. (2001) using flow rate, water level, and water quality data from 1994 and 1997 using CE-

QUAL-W2 version 3.1, and updated to version 4.1 (Berger and Wells, 2019). Based on USGS 

sensor data of averaged annual discharge for the Willamette River (see Table 1), flow rates for 

calibration years 1997 highest while 1994 was the second lowest – nearly 3 times lower than 

peak discharge years – over a 30-year period. These models were used for the simulations 

described in this paper to account for high and low predicted advection and dilution discharge 

years. 
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Figure 2: CE-QUAL-W2 Willamette and Columbia River model areas, including tributaries and boundaries (Berger et al., 2001). 

1.3. Possible impacted communities 

Most communities downstream of, and including, Portland will likely be impacted by a liquid 

fuel spill from the CEI Hub. Locations for water quality and fuel concentration analysis were 

selected along the Willamette River for Downtown and North/Northwest Portland (up- and 

downstream from the CEI Hub), and along the Columbia River for St. Helens, Rainier, and the 

Beaver Army Terminal, OR (the model terminus near Quincy). Portland and St. Helens do not 
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Table 1: Averaged annual discharge for the Willamette River (USGS 14211720) 

 

depend on the Willamette or Columbia Rivers for their water supplies. However, the Columbia 

River is a secondary source of drinking water for Rainier (DEQ, 2000). Therefore, 

Environmental Protection Agency (EPA) standards for benzene – a primary volatile constituent 

in most liquid fuels – concentration in drinking water supplies were considered at that location. 

2. Literature review 
Many models have been developed for crude oil spills in maritime and riverine systems. 

However, very few models and studies exist related to other petroleum based liquid fuel spills 

into those same systems. Though crude oils, including Alberta tar sands, are stored at the CEI 

Hub, most fuels stored are refined liquid fuels (i.e., gasoline, diesel and jet fuel). 

2.1. Literature review 

To set up the CE-QUAL-W2 model, journal articles were selected based on their relevance to 

modeling the types of fuels stored at the CEI Hub. Information about fuel characteristics, 

qualitative and quantitative descriptions of the fate and transport of those fuels in riverine 

systems, and other model parameters and results were summarized in Table 2. 

Table 2: Literature related to modeling oil and gas spills 

Reference Description of reference on modeling oil and gas spills 

Chin, J. Y., and 

Batterman, S. A. (2012) 

All fuels measured for this study were liquid and not combusted. 

A common commercial diesel, ultra-low sulfur diesel (ULSD), 

was found to have a total volatile organic compound (VOC) 

fraction of 10% by weight. Similarly, biodiesel blends, which 

blend ULSD and soy-based derivatives, were found to have a 

VOC fraction of 6% by weight. The authors note that very few 

studies have been published concerning VOC content in diesel 

fuels. 

Clark et al. (1990) Following the 800,000 gal diesel fuel spill into Monongahela 

River, a major tributary of the Ohio River, due to a catastrophic 

failure of a storage tank, several models were used to determine 

fate and transport and lasting effects of the spill. Some of the 

findings based on lab testing of samples taken along the 

downstream span of river over multiple days showed higher 
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concentrations of volatiles closer to spill origin with a quick 

reduction as the plume traveled downstream. The empirical 

equation developed for peak concentration using QUAL-II from 

296 runs was: 

𝑃𝑒𝑎𝑘 = 0.74 + 0.04236 ∗ 𝐶0 ∗ 𝑒𝐾∗𝑇𝑂𝑇  (𝑅2 = 0.93) 

𝑃𝑒𝑎𝑘 = 𝑝𝑒𝑎𝑘 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝜇𝑔 𝐿)⁄  

𝐶0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝜇𝑔 𝐿)⁄  

𝐾 = 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 (𝐿 𝑑⁄ ) 

𝑇𝑂𝑇 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 (𝑑) 

There were many challenges encountered when collecting data 

from the spill due to major fluctuations in flow rate (25,000-

200,000 ft3/s) as well as a freeze/thaw event. The plume passed 

through several locks and dams mixing vertically into the water 

column as it traveled downstream, a specific challenge that will 

not be faced by a potential CEI Hub catastrophic failure.  

Dew et al. (2015) Alberta tar sands oils are high viscosity bitumen and must be 

diluted with a variety of products to transport it via pipelines. The 

three most common diluted products are dilbit (diluted bitumen 

{70-80%} with natural gas condensate added {20-30%}), synbit 

(synthetic bitumen {50%} with synthetic crude oil compounds 

added {50%}), and dilsynbit (a blend of the two common forms). 

The primary volatile organic compounds of each product are 

benzene, toluene, ethylbenzene, and xylene (BTEX) with ranges 

of 0.8-1.2% in dilbit and 0.4-1.1% in synbit by volume and 

approximately 21% more BTEX in dilbit than synbit on average. 

The densities of both dilbit (945 kg/m3) and synbit are less than 

freshwater and will likely float initially. However, as “light ends” 

(volatiles) and BTEX evaporate the heavier bitumen fraction 

remains and has been shown to form droplets which disperse in 

the water column in controlled, sediment-free lab tests in 15˚C 

water and after 11 days of UV exposure. Another study introduced 

suspended particles – including kaolin, diatomaceous earth, and 

sand – and found that while sand did not bind with the dilbit, the 

kaolin and diatomaceous earth did, leading to droplets forming and 

an increase in density by four orders of magnitude. These droplets 

sank to the bottom of the water column. Similar effects were also 

observed in the Enbridge Line 6B dilbit spill into the Kalamazoo 

River in 2010 where as much as 10-20% of oil mixed with 

sediment immediately and 20-30% of the oil was still bound to the 

sediment after 3 years. There have not been any studies on the fate 

of synbit or dilsybit in freshwater systems. Though this paper did 

not provide models it did provide valuable insights into the fate 

and transport of Alberta tar sands oil products in freshwater. 

Engineering ToolBox 

(2003) 
Fuel type and density (ρ) range at 15˚C: 

• Diesel (1D, 2D, & 4D) – 875-959 kg/m3 

• Gasoline – 715-780 kg/m3 
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• Heavy fuel oil – 800-1010 kg/m3 

• Jet fuel (Jet A & Jet A-1) – 775-840 kg/m3 

• Gas oil – 829-900 kg/m3 

Hayter et al. (2015) Following the Enbridge Line 6B pipeline spill into the Kalamazoo 

River in 2010, surface water hydrodynamic models using EFDC 

and SEDZLJ were developed to simulate sediment transport and 

submerged oil by ERDC, along with EPA and LimnoTech, Inc. 

The model is based on samples and data collected one year after 

the event and thus can only be considered for modelling long term 

effects and transport. Upon visual examinations of the oil globs 

recovered from the sediment beds, the globs were classified as oil-

particle aggregates (OPAs) due to the presence of organic and 

inorganic particles mixed with the oil. In developing the transport 

models, it was assumed that neither formation nor disaggregation 

of OPAs occurred and the mass and types of OPAs remained 

unchanged. It was also assumed that OPAs were only transported 

in suspension, not as a bedload. Three classes of OPAs were 

classified based on lab studies:  

• large 2 mm oil globules with 10 μm silt coating  

• more complex OPAs with multiple small globules  

• OPAs with diameters of 31 μm and 100 μm.  

These classes were defined as initial conditions in the EFDC and 

the multi-layer sediment bed model (SEDZLJ). The densities of 

the OPA classes range from slightly greater than freshwater (1.034 

g/cm3) to closer to densities of organic particles (1.511 g/cm3). 

 

The SEDZLJ sediment transport model (within EFDC) uses a 3D 

advective-dispersive transport equation for each OPA class with 

the general form: 

 
o Ci = concentration of ith size class of suspended 

particle 

o (u,v,w) = velocities in (x,y,z) 

o WSi = settling velocity of ith size class sediment 

o KH = horizontal turbulent eddy diffusivity 

coefficient 

o KV = vertical turbulent eddy diffusivity coefficient 

o Si = sources/sinks for ith sediment size class 

 

• The settling velocities were calculated using  

𝑊𝑆 =
𝜇

𝑑
(√25 + 1.2𝑑∗

2 − 5)
3/2

 (Cheng, 1997) 

o Non-dimensional particle diameter  

𝑑∗ = 𝑑 [(
𝜌𝑠

𝜌𝑤
− 1) 𝑔/𝑣2]

1/3
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o μ = dynamic viscosity of water 

o d = particle diameter 

o ρs = sediment particle density 

o ρw = density of water 

o g = acceleration due to gravity 

o v = kinematic fluid viscosity 

Hibbs et al. (1999) A 1D model of a hypothetical 10,000 kg jet fuel (JP-4) spill into a 

riverine system utilized the composition of a slick for computing 

aqueous concentrations in the water column. This model 

incorporated the volatilization of constituents with the transport of 

aqueous concentrations of contaminants. The river modelled was 

comprised of completely mixed cells ranging from lengths of 10-

1000 m. The surface movement of the slicks were considered a 

function of velocity and modeled by: 

• 𝑈𝑠𝑙𝑖𝑐𝑘 = 𝛼𝑣𝑒𝑙𝑈𝑣𝑒𝑙 + 𝛼𝑑𝑟𝑖𝑓𝑡𝑈𝑑𝑟𝑖𝑓𝑡  

o velocity correction factor 𝛼𝑣𝑒𝑙 ≅ 1.1 

o wind drift correction factor 𝛼𝑑𝑟𝑖𝑓𝑡 = 0.03 − 0.04 

o Ui are velocities 

Each compound decreased, either through dissolving into the 

water or evaporation, and were modeled using the mass balance: 

•  
o Definitions of terms and parameter characteristics 

and values are shown in Appendix (Error! 

Reference source not found.). 

The transport equation used for each compound was a one-

dimensional advection-diffusion equation: 

 

•  
 

The above equations were used to model a single slick from a 

rapid spill and were also determined by the authors to yield the 

least numerical errors. The aqueous concentrations were found to 

be greatest within 10 hours of the spill. 

 

The authors determined that the dissolution rate coefficients 

created the most sensitivity in the model followed by evaporation 

coefficient rate, longitudinal dispersion coefficient, spreading rate 

of slick, and volatilization rate coefficient (in descending order of 

importance). They also note that the dissolution rate coefficient 

had a high rate of uncertainty due to conflicting studies using 

different models. 
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Njobuenwu et al. (2008) Benzene, toluene, ethyl benzene, and xylene (BTEX) are four 

major constituents in fresh gasoline. BTEX are the most soluble 

and mobile components in most crude oil and refined petroleum 

products when added to freshwater. They are represented by 

percent weight in fresh gasoline in the table below: 

 
Table 3: Composition of BTEX in fresh gasoline and site observation (Wiedemeir et al., 
1995) 

Composition 

% Weight in fresh 

gasoline 

Average % weight 

in 3 site samples 

Benzene 0.34-5.62 0.87 

Toluene 1.32-21.0 3.2 

Ethyl benzene 0.36-3.53 1.1 

Xylene 2.10-18.20 2.8 

 

The model developed in this paper utilized the dissolution rate – 

assumed to be a completely mixed, batch reactor where dilution 

and advection were negligible – was 𝑁 = 𝐾𝐴𝑠𝑆 (Cohen et al., 

1980).  

• The dissolution mass transfer coefficient K = (D/πt)1/2 

(Coulson and Richardson, 1998). D is molecular 

dissolution in water, and t is time.  

• The slick area As = πQR/4 (Al-Rabeh et al., 1989). 

o Length of minor axis, R = 1.7(ρw – ρp)
1/3Vp

1/3t1/4 

where ρ is density, V is volume, w is water, and p is 

pollutant. 

o Length of major axis, 𝑄 = [10.111 −

0.9538 (
𝜇𝑝𝜌𝑝

𝜇𝑤𝜌𝑤
) + 0.032𝑉𝑝] 𝑡0.87 (Njobuenwu and 

Abowei, 2004), where 0.032 is constant with 

dimensions [L-3], and μ is viscosity. 

• The contaminant solubility in water S = S0λet (Huang and 

Monastero, 1982), where S0 is solubility for fresh 

contaminant, and λ is the decay rate (first order of BTEX) 

with a half-life λ = ln(2)/t1/2. 

The model results showed that benzene had a dissolution rate of 

about 2.6, nearly 20.6 times that of toluene, ethylbenzene, and 

varying proportions of xylene. The dissolution rate, K, and 

corresponding first order decay rate constants, λ, at 25˚C in water 

were determined to be: 

• Benzene – 10.30x10-6 cm2/s; 0.6931 year-1 

• Toluene – 9.10x10-6 cm2/s; 0.9901 year-1 
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• Ethylbenzene – 8.23x10-6 cm2/s; 0.5781 year-1 

• Xylene – 8.23x10-6 cm2/s; 0.5781 year-1 

OSSPAC (2019) This report gives a high-level overview of the CEI Hub mitigation 

strategies. It contains secondary source (attributed to Schick, T. 

2015 data for OPB with no reference) reported values of fuel 

volumes and distribution by number of tanks. Volumes (gal) were:  

• 118.2M (gasoline)  

• 59.4M (diesel)  

• 53.8M (other petroleum, including Alberta bitumen 

[confirmed by Dr. Dusicka by email 2 Feb 2021])  

• 17.9M (jet fuel)  

• 24.3M (asphalt)  

• 14.9M (not used)  

More recent data on tank contents is unavailable. 

Trusek-Holwnia, A. and 

Noworyta, A. (2015) 

The average percent weight of BTEX in petrol (gasoline) is 18%. 

The average percent of the individual volatile constituents are as 

follows: 

• Benzene – 1.98% 

• Toluene – 4.68% 

• Ethylbenzene – 1.98% 

• Xylene (total) – 9.36% 

o o-xylene – 2.16% 

o m-xylene – 5.58% 

o p-xylene – 1.62% 

 

2.2. Literature review summary 

Liquid fuel or oil spills into riverine systems have complex behavior and vary greatly depending 

on fuel type and river conditions (e.g., flow rate, seasonal variability, dams, and turbidity). 

Similarly, previously modeled results varied greatly depending on the model and its sensitivity to 

different parameters (Hibbs et al., 1999). There is also very little experimental data of oil spills in 

freshwater systems as oil companies are not required to perform such experiments (Dew et al., 

2015). Thus, most data were historically collected in the field when an actual spill occurred. 

Though these data provide important information about oil-freshwater interaction (e.g., fate and 

transport), they are also limited by how quickly field testing begins after a spill, number of points 

sampled along the flow path, and long-term sampling (Clark et al. 1990). Sediment transport 

models have been developed to predict long-term oil-sediment interactions and oil-particle 

aggregate formations and transport. However, these do not provide insight into oil-sediment 

interaction immediately following a spill (Hayter et al. 2015). 

Liquid fuels are typically less dense than water and thus float at the surface when a spill occurs 

unless dispersed through the water column by turbulent eddies (Engineering ToolBox, 2003; 

Dew et al. 2015; Shen and Yapa, 1988). A fraction of the fuels are volatile organic compounds 

(VOCs) which diminish the mass of the fuel slick within hours through evaporation into the 

atmosphere and dissolution into the water column (Figure 3). For the heavier oils, the 
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evaporation and dissolution of VOCs can increase the oil density to just greater than water 

causing a portion of the slick to sink below the surface. However, this can take over 10 days to 

occur and is greatly affected by weathering and suspended solids interactions (Dew et al., 2015). 

Benzene, toluene, ethylbenzene, and xylene (BTEX) are the primary VOCs in gasoline and tar 

sands oil (Njobuenwu et al., 2004; Trusek-Holwnia and Noworyta, 2015; and Dew et al., 2015). 

Benzenes, tetralin, napthenes, methylcyclohexane, and aliphatics are the VOCs found in JP-4 jet 

fuel (Hibbs et al., 1999). The VOC fraction for USLC diesel, a common type used in the US, is 

approximately 10% (Chin and Batterman, 2012). 

 

 

Figure 3: Liquid fuel slick transformation in rivers (modified from Shen and Yapa, 1988). 

3 CE-QUAL-W2 model 

3.1. CE-QUAL-W2 model inputs from literature 

The models reviewed for this report varied from 1D, 2D, and 3D hydrodynamic and sediment 

transport models based on governing equations, assumptions, and parameters that frequently 

differ from those required for the CE-QUAL-W2 model. The parameters selected from the 

literature were based on the inputs required for the volatile generic constituent equation for the 

CE-QUAL-W2 model: 

𝑆𝑣𝑜𝑙 =
𝐴𝑠𝑢𝑟

𝑉𝑐𝑒𝑙𝑙
𝐾𝐿𝑔(Φ𝑠𝑔 − Φ𝑔) =

1

ℎ𝐾𝑇
𝐾𝐿𝑔(Φ𝑠𝑔 − Φ𝑔) 

⇒ 𝐾𝐿𝑔 = 𝐾𝐿02 (
𝑀𝑊02

𝑀𝑊
)

0.25

= 𝐾𝐿02 × 𝐶𝐺𝐾𝐿𝐹 
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where: 

KLg = the surface gas transfer coefficient for a generic constituent (m/s) 

Asur = the surface area of the surface layer computational cell (m2) 

Vcell = the volume of the surface layer computational cell (m3) 

hKT = depth of the surface layer (K=KT) computational cell (m) 

φg = the liquid phase generic constituent concentration (g/m3) 

φsg = the hypothetical saturation liquid phase if in equilibrium with the gas concentration (g/m3) 

based on the gas phase concentration and the Henry’s Law constant (Wells, 2019a). 

The gas transfer coefficients (CGKLF) for each constituent were calculated from their molecular 

weights. The first order decay rates were only found for BTEX constituents ([Insert table 

citation]). Fuel types stored at the CEI Hub were only reported as volumes and generically (e.g, 

gasoline, jet fuel, etc.) opposed to specific fuel type (OSSPAC, 2019). Thus, densities were 

averaged based on the ranges provided (Engineering ToolBox, 2003 and Dew et al, 2015). 

3.2. Simplifying assumptions for CE-QUAL-W2 model inputs 

To simplify the input parameters for the CE-QUAL-W2 model, the following assumptions were 

made: 

• All fuels stored at the CEI Hub were generalized into four generic types: gasoline, diesel, 

other petroleum (dilbit or Alberta tar sands oil), and jet fuel (JP-4) (Table 3).  

• The 1st-order decay rates (CG1DK) and gas transfer coefficients (CGKLF) were 

averaged and applied to the volatile fraction (VOC) (Table 4). 

• Each fuel was separated into its volatile (VOC) and non-volatile (NON-VOC) constituent 

mass fractions (%) and summed (Table 5).  

• The non-volatile fraction was assumed conservative. 

• The Arrhenius rate multipliers, 0-order decay rates, settling rates, photodegradation 

parameters, and gas transfer saturations for Generic Constituents in the model were 

neglected. 

• 100% of liquid fuel stored at the CEI Hub were spilled into the Willamette River to 

model the worst-case scenario. 

• Modeled spills occurred over 1 hour, 1 day, and 1 week time periods to account for 

possible containment berms and containment failures. 

• Spill discharge rates assumed constant over spill duration. 

• Temperature of fuel assumed as a constant 20 ˚C. 

 

 

 



16 

 

Table 4: Volatile constituents and corresponding properties 

Volatile 

constituents 

Molecular 

weighta 

(g/mol) 

Gas transfer 

factorb 

[CGKLF] (-) 

1st-order decay 

constantc 

[CG1DK] (day-1) 

Benzene 78 0.800 0.00190 

Toluene 92 0.768 0.00271 

Ethyl-benzene 106 0.741 0.00158 

Xylene 106 0.741 0.00158 

n-Butyl-

benzene 
134.2 0.699 - 

Tetralin 132.2 0.701 - 

1-Methyl-

napthalene 
142.2 0.689 - 

1,4,-Dimethyl-

naphthalene 
156.2 0.673 - 

Methylcyclo-

hexane 
98.2 0.756 - 

Aliphatics 145.7 0.685 - 

Average 
 

0.725 0.00194 

aHibbs et al. (1999) 
  

bWells (2019b) 
  

cNjobuenwu et al. (2005) 
  

3.3. Model set up and initialization 

The CE-QUAL-W2 calibration model years were compared against USGS average annual flow 

rates for the Willamette River (Table 1). Models for 1997 and 1994 were selected for highest and 

lowest annual discharge rates, respectively, of the years modeled. The spills were chosen to 

occur on 2 May (Julian day 122), 1997 and 15 July (Julian day 197), 1994 – the highest (1209 

m3/s) and lowest (182 m3/s) discharge days of those years – to capture the possible extreme 

scenarios of a spill. Three spill scenarios were created for each of the years for intervals of 1 

hour, 1 day, and 1 week. A tributary for the spill was added at segment 93 (Figure 4) at the 

approximate midpoint of the CEI Hub on the Lower Willamette River. The corresponding 

concentration (C), discharge rate (Q), and temperature (T) files were added to the file directories 

and control files. C and Q were calculated from the fuel mass-fraction (Table 5) using m = 



17 

 

CQΔt, where m is mass fraction in kg, and Δt is time interval for spill (1-hour, 1-day, and 1-

week) in seconds.  

 

Figure 4: Model segment numbers in the Lower Willamette River near the CEI Hub and downtown Portland (Berger et al., 
2001). 

The spill flow rates, assumed constant for each of the modeled durations, were calculated as 

274.39 m3/s for the 1-hour spill, 11.43 m3/s for the 1-day spill, and 1.63 m3/s for the 1-week spill 

duration. Constant fuel spill concentrations were calculated for each constituent fraction based 
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on the total mass-fraction and total fuel volume as 743,071 g/m3 for the conservative fraction, 

and 92,368 g/m3 for the volatile fraction. 

Table 5: Simplified total volumes and masses of fuels at CEI Hub 

 

The generic constituent sections of the CE-QUAL-W2 control files were updated from version 

4.1 to version 4.2 to include the additional parameters in the newer version. The “TRACER” and 

“EColi” generic constituents were changed to “NON-VOC” and “VOC,” respectively, and the 

constituent concentration control sections updated to reflect the changes. The tracer and coliform 

(E. coli) columns in all tributary and branch concentration input files were zeroed out to ensure 

that the NON-VOC and VOC concentrations from the spill were the sole input parameters that 

the model read. An average 1st-order decay rate (CG1DK) of 0.00194 day-1 and gas transfer 

factor (CGKLF) of 0.725 were applied to the VOC constituent. CG1DK and CGKLF were 

assumed to be zero (conservative) for the NON-VOC constituent. 

4. Model results 
Three scenarios – 1-hour, 1-day, and 1-week spill durations – for the liquid fuel spill CE-QUAL-

W2 model years 1994 and 1997 were run for a total of six simulations. River velocities and flow 

rates in the longitudinal direction, and total surface concentrations of the fuel spills were 

analyzed at five locations: the Fremont Bridge upstream of the spill (segment 85) and the St. 

Johns Bridge immediately downstream of the spill (segment 94) in the Willamette River at 

Portland (Figure 4), as well as St. Helens (segment 276), Rainier (segment 322) and the Beaver 

Army Terminal (the model terminus; segment 356) in the Columbia River on the Oregon side 

(Berger et al. 2001). 

4.1. Velocity and flow rate plots 

The velocities and flow rates for a 10-day period, beginning when the spills occur, were 

compared at one location on each river: the Fremont Bridge in Portland on the Willamette River 

and at Rainier on the Columbia River. 

4.1.1. Willamette River 

The daily fluctuations in the velocity at the surface and flow rate in the Willamette River are 

shown in Figure 5 and Figure 6, respectively, analyzed at the Fremont Bridge, or segment 85 

(see Figure 4), are due to tidal fluctuations. The Columbia River terminates at the Pacific Ocean 

which transmits tidal head fluctuations upstream to the Bonneville Dam. The Willamette River is 

a tributary of the Columbia River and is thus influenced by its tidal fluctuations. The velocity 

and flow rate decreases as the tidal energy is transmitted upstream from the confluence of the 
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two rivers. Similarly, the velocity and flow rate increase as the transmitted tidal head ebbs. These 

fluctuations have a much greater amplitudes during low flow years, as opposed to high flow 

years where the amplitudes of the tidal fluctuations are relatively small, approaching a constant 

velocity. Because the flow rate is function of velocity and area, and they are each calculated at a 

single segment in the longitudinal direction, the flow rate (Figure 6) has a nearly identical pattern 

to the velocity at the surface (Figure 5). Additionally, negative velocity and flow rate values 

indicate flow is traveling in the upstream direction. 

 

Figure 5: Surface velocity at the Fremont Bridge (seg. 85). 

 

Figure 6: Flow rate at the Fremont Bridge (seg. 85). 
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4.1.2. Columbia River 

The fluctuations in the velocity at the surface and flow for the Columbia River (Figure 7 and 

Figure 8) are, as explained in section 4.4.1, due to tidal head at the Pacific Ocean boundary of the 

river. The flow rates, however, are approximately an order of magnitude greater than those in the 

Willamette River (Figure 6) and the velocities nearly five-times greater (Figure 5). Moreover, the 

fluctuations and rates are much more uniform for the Columbia River and are in the upstream 

longitudinal direction far less frequently and for shorter durations. The same initial pattern 

variations at the beginning of the 1997 model are visible, and more pronounced, as in the 

Willamette River model branch. 

It should be noted that the unusual patterns at the beginning of the profiles from the 1997 model 

are likely errors due to closeness of the initialization date of the model (Julian date 121) and the 

spill start date (Julian date 122). The spill dates were selected of actual sensor data, as mentioned 

in section 3.3, which happened to occur immediately after the model initialization. 

 

Figure 7: Surface velocity at Rainier, OR (seg. 322). 
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Figure 8: Flow rate at Rainier, OR (seg. 322). 

4.2. Total fuel spill concentrations at the water surface 

The conservative (nonvolatile) and volatile (VOC) fractions were summed using the principle of 

superposition to create plots of the total fuel spill concentrations at the surface. They were 

compared at each chosen location based on spill scenarios 1-hour, 1-day, and 1-week modeled. 

4.2.1. Fremont Bridge, Portland, OR (seg. 85) 

Model segment 85 is located upstream of the model spill tributary in the Willamette River 

approximately at the Fremont Bridge, Portland, OR. 

 

Figure 9: 1-hour spill duration at the Fremont Bridge (upstream; seg. 85) in the Willamette River. 
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Figure 10: 1-day spill duration at the Fremont Bridge (upstream; seg. 85) in the Willamette River. 

 

Figure 11: 1-week spill duration at the Fremont Bridge (upstream; seg. 85) in the Willamette River. 

For all three spill scenarios, the plume did not travel upstream at all during high flow model year 

(1997). However, the plume traveled upstream during the low flow model year (1994), taking 

between two and three days to arrive and fluctuating for as long as seven days in the 1-day spill 

scenario. The maximum spill concentrations occurred between the third and fifth day after the 

spill and were 123 g/m3, 146 g/m3, and 939 g/m3
 for the 1-hour (Figure 9), 1-day (Figure 10), and 

1-week (Figure 11) spill durations, respectively. 
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4.2.2. St. Johns Bridge, Portland, OR (seg. 94) 

Model segment 94 is located immediately downstream of the model spill tributary (segment 93) 

in the Willamette River at the St. Johns Bridge, Portland, OR. 

 

Figure 12: 1-hour spill duration at the St. Johns Bridge (immediately downstream; seg. 94) in the Willamette River. 

 

Figure 13: 1-day spill duration at the St. Johns Bridge (immediately downstream; seg. 94) in the Willamette River. 
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Figure 14: 1-week spill duration at the St. Johns Bridge (immediately downstream; seg. 94) in the Willamette River. 

For the 1-hour spill duration (Figure 12), the high flow model year fuel concentration was a 

highly concentrated front that arrived and dissipated within a few hours, whereas the low flow 

model year had a much lower fuel concentration that gradually decreased over several days. 

Moreover, The tidal influence was apparent for the low flow year by the fluctuations in the fuel 

concentration level. The maximum concentrations for the high and low flow years were 246,000 

g/m3 and 44,200 g/m3, respectively. 

The high flow year fuel concentrations for the 1-day spill duration (Figure 13) were significantly 

less than the 1-hour spill, with a maximum of 31,100 g/m3, and lasted for only the duration of the 

spill. The general behavior for the low flow model year, however, were nearly identical to the 1-

hour spill, but with a higher maximum concentration of 72,100 g/m3 and a longer residence time 

by almost a day. 

The high flow year fuel concentrations over the 1-week spill duration (Figure 14) had a 

maximum concentration of 8,240 g/m3, nearly 1/30 of the maximum concentration for a 1-hour 

spill. The maximum fuel concentration for the low flow year was 38,600 g/m3, within the same 

order of magnitude as the other two scenarios. As with the 1-hour and 1-day scenarios, the 

concentration for the high flow year reduces to nearly zero almost immediately after the end of 

the spill, whereas the residence time for the low flow year lasted for more than a day after the 

end of the spill. 

4.2.3. St. Helens, OR (seg. 276) 

Model segment 276 is located just before the town of St. Helens, OR in the Columbia River. 

The first segment analyzed in the Columbia River, the behaviors of the plumes for the high flow 

model year are very similar to those in the Willamette River for all scenarios, only shifted by 

approximately one day and a fraction of the concentration. The maximum concentration for the 
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high flow year were 1,880 g/m3, 683 g/m3, and 120 g/m3 for the 1-hour (Figure 15), 1-day 

(Figure 16), and 1-week (Figure 17) spill duration scenarios, respectively. 

 

 

Figure 15: 1-hour spill duration at St. Helens, OR (seg. 276) in the Columbia River. 

 

Figure 16: 1-day spill duration at St. Helens, OR (seg. 276) in the Columbia River. 
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Figure 17: 1-week spill duration at St. Helens, OR (seg. 276) in the Columbia River. 

The fuel concentrations for the low flow model year exhibited very prominent fluctuations due to 

tidal influence. For all scenarios, the plume arrived approximately two days after the spill began. 

The 1-hour spill reached a maximum concentration of 1,430 g/m3 within 12 hours of first 

arriving and then slowly decreased over nearly five days. The 1-day plume increased more 

slowly after arriving reaching a maximum concentration of 1,210 g/m3 after approximately one 

day, then decreasing similarly to the 1-hour spill but at a slower rate. The concentration for the 1-

week spill had similar behavior to the plume in the Willamette River reaching a maximum of 500 

g/m3 after 8 days. 

4.2.4. Rainier, OR (seg. 322) 

Model segment 322 is located just prior to the town of Rainier, OR in the Columbia River.  

 

Figure 18: 1-hour spill duration at Rainier, OR (seg. 322) in the Columbia River. 
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Figure 19: 1-day spill duration at Rainier, OR (seg. 322) in the Columbia River. 

 

Figure 20: 1-week spill duration at Rainier, OR (seg. 322) in the Columbia River. 

The 1-hour (Figure 18) and 1-day (Figure 19) plume behaviors were nearly identical to those at 

St. Helens for both model years. Similarly, the high flow year behavior for the 1-week (Figure 

20) was nearly the same. The low flow year for the 1-week spill appeared to be much more 

sensitive to tidal fluctuations. The low flow year plumes arrived almost three days after the spills 

began, and the high flow year plumes arrived in just over 1 day. The high flow year maximum 

concentrations were 1600 g/m3, 615 g/m3, and 115 g/m3 for modeled spill durations of 1-hour, 1-

day, and 1-week, respectively. The corresponding low flow year maximum concentrations were 

1,330 g/m3, 1,050 g/m3, and 450 g/m3. 
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4.2.5. Beaver Army Terminal (model terminus; seg. 356) 

Model segment 356 is the terminus for the Lower Willamette River models located at Beaver 

Army Terminal near Quincy, OR. 

 

Figure 21: 1-hour spill duration at Beaver Army Terminal (seg. 356), near Quincy, OR, in the Columbia River. 

 

Figure 22: 1-day spill duration at Beaver Army Terminal (seg. 356), near Quincy, OR, in the Columbia River. 
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Figure 23: 1-week spill duration at Beaver Army Terminal (seg. 356), near Quincy, OR, in the Columbia River. 

The plume behaviors for the high flow model year are nearly identical to the upstream Columbia 

River segments. The general trends for the low flow model year are consistent with upstream 

segments, however there are significant differences. Concentration levels drop to zero at what 

corresponded to tidal fluctuations in upstream segments. This is likely due to how the model 

handles boundary conditions, such as concentrations flowing out of the system which are 

removed. Thus, when upstream flows might occur as a result of tidal head fluctuations, water 

with no fuel concentration flows back into the model. 

5. Discussion 
Model sensitivities were analyzed to determine possible experimental errors and refinements as 

well as implications of spill behavior. Additionally, water quality results were analyzed as 

Rainier, OR to determine how long the town would be unable to access a major drinking water 

source, the Columbia River. 

5.1. Model sensitivity 

For both model years 1997 and 1994 as well as each of the spill scenarios, nearly all of the fuel 

spill plume traveled down the Multnomah Channel (Figure 24). Comparing results for the 1-day 

spill durations, the maximum concentrations at the confluence of the Willamette and Columbia 

Rivers was less than 1 g/m3 for the low flow model year and 135 g/m3 for high flow model year. 

Interestingly, the maximum concentrations after the inflow to the Multnomah Channel and 

before the confluence (seg. 105; Figure 4) were 0.523 and 4210 g/m3 for the low and high flow 

years, respectively. This indicates that the flow in that span of the Willamette River might 

recirculate and have very low discharge rates into the Columbia River. Annual discharge rate 

data was not available for the Multnomah Channel for the model years so the spill behavior 

could not be verified. Further investigation into why this modeled spill behavior occurred could 

yield more conclusive predictive information. 
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Figure 24: Plan view of the modeled system for the 1-day spill duration, Julian day 202.0 (5 days after spill begins), model year 
1994. 

5.2. Vertical mixing 

Liquid fuels are less dense than water before environmental exposure, and thus float at the 

surface as a slick initially after a spill (Dew et al., 2015; Shen and Yapa, 1988). Fuel slick do 

degrade over time due to evaporation/dissolution of volatiles, UV exposure, sedimentation and 

sediment mixing (Figure 3). These processes typically occur hours-to-months after a spill. 

Though vertical mixing in the water column does occur when fuel slicks pass through locks, 

waterfalls, and other structures that create turbulent eddies (Clark et al., 1990) no such structures 

exist on the water bodies over the domain of the modeled spill.  

A profile of the model Willamette River branch taken from the 1-day spill duration, Julian day 

203 (6 days after the spill initialized), model year 1994 (Figure 25), shows that the fuel spill is 

vertically well mixed in the water column in many areas. This trend was consistent for each of 

spill scenario and model year, and vertical mixing occurred immediately after the spill 

initialized. This was a result of neglecting the buoyancy of the fuel concentrations in the CE-

QUAL-W2 control files. This can be modified by providing a negative settling velocity for the 

conservative (NON-VOC) and volatile (VOC) fractions in the Generic Constituent section of the 

W2 control file. Because these fractions were generalized and simplified, trial and error might be 

necessary to replicate realistic settling characteristics. 
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Figure 25: Profile view of Willamette River model (branch 2) for the 1-day spill duration on Julian Day 202 (5 days after spill 
begins), model year 1994. 

Furthermore, when examining the fuel concentrations for each downstream segment, which were 

measured at the water surface (see Results), one noticeable trait is the area under the curves 

diminish substantially for progressive segments. Though volatilization accounts for some of this, 

it does not explain the degree of loss of mass observed. This apparent loss of mass is directly 

linked to the vertical mixing and the volume of each segment. As the model segment volumes 

increase dramatically from the Willamette to the Columbia River, the vertical mixing of the fuel 

concentration fractions into the water column decreased the concentration at the water surface. 

As the plume progress downstream, in addition to volume fluctuations, riverbed shear, 

Manning’s coefficients, and other drag forces likely contribute to the apparent loss of mass. This 

issue would be largely fixed with the adjustments of the generic constituent settling rates.  

5.3. Water quality at Rainier, OR (seg. 322) 

Unlike the other cities in proximity to the model segments analyzed, the town of Rainier, OR 

sources its drinking water, secondarily, from the surface water of the Columbia River (DEQ, 

2000). Thus, modeled water quality data were analyzed in addition to the fuel concentrations. 

EPA recommends that benzene limits for drinking water are 0 mg/l, with a maximum allowable 

limit of 0.005 mg/l (or 0.005 g/m3) (2021). Because Rainier, OR sources its drinking water from 

the Columbia River surface water, water quality analysis was performed in addition to fuel 

concentration comparisons. As stated in section 3.2, a simplifying assumption that all VOCs 

were generalized as a single mass was made since the actual quantities of constituents were 

unknown. Per EPA guidelines (2021),  benzene is the limiting constituent of those determined in 

the literature review. Thus, time intervals for total VOC concentrations above the 0.005 g/m3 
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threshold were determined to estimate how long access to Rainier’s water supply would be 

disrupted.  

The low discharge model year VOC levels exceeded the limit after approximately 2.5 days and 

remained above the limit for 12.4 days, 12.8 days, and 18.1 days for the 1-hour, 1-day, and 1-

week spills, respectively. The high discharge year VOC levels exceeded the limit approximately 

one day after the spill and remained above the limit for 1.8 days, 7.3 days, and 12.3 days for the 

corresponding spills. However, the vertical mixing of the plume into the water column – as 

discussed in section 5.4 – likely impacted these results. Therefore, the limit exceedance intervals 

may change with future model refinements. 

6. Conclusions 
The low flow model year 1994 had high sensitivity to tidal fluctuations, frequently resulting in 

upstream (negative velocity/flow rate) flows. Overall, this greatly impacted the fuel 

concentrations for the three spill duration scenarios leading to prolonged residence times. These 

residence times extended for several days after the end of the spill for each of the scenarios and 

analyzed segment. Moreover, the fuel concentrations remained relatively high during the peak 

concentration intervals. These factors led to negative water quality impacts for downstream 

communities that rely on the Columbia River for drinking water for between 12-18 days. 

The high flow model year 1997 had nominal sensitivity to tidal fluctuations overall resulting in 

solely positive, unidirectional flows. The fuel concentrations were transient, rapidly decreasing 

in each analyzed segment shortly after each spill duration terminated. The spills had much lower 

concentrations than the low flow counterparts, with the exception of the 1-hour spill which 

behaved as a high concentration front. This was due to significantly larger flow rates and 

volumes for the 1997 model year and the vertical mixing of the fuel plume into the water 

column. With an adjusted settling velocity, the areas under the curves for both modeled years 

would likely be comparable. The overall water quality impacts for the high flow year model 

scenarios were typically much shorter in duration than the low flow year but still impacted 

drinking water for downstream communities for between 2-12 day. 

This study was a preliminary attempt at modeling a catastrophic fuel spill from the CEI Hub 

following a Cascadia earthquake event. Though the results were useful in creating a framework 

for modeling and predicting the fuel concentrations and water quality implications for such a 

spill, many refinements should be made to the models developed herein. Future 

recommendations for refining the models used in this study are as follows: 

• Buoyancy – adjust the settling velocities (negative values) for the conservative (NON-

VOC) and volatile (VOC) fractions in the generic constituent section of the CE-QUAL-

W2 control file. This will likely require some trial and error, however, a settling velocity 

of -0.1 m/s may be a reasonable starting place. 

• Variable spill rates and volumes – more realistic scenarios would include variable spill 

rates and volumes instead of the constant spill rates assumed for the models used in this 

study. 
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• Sedimentation/sediment transport – literature reviewed for this study indicated that 

sediment interaction with fuel droplets and particle greatly influence long term spill 

behavior – including the formation of OPAs – and environmental impacts. CE-QUAL-

W2 does not currently have sediment transport modeling capabilities. It may be possible 

to link existing sediment transport models with CE-QUAL-W2 to investigate the impacts 

of OPA sedimentation and transport. 

• Dissolution versus evaporation – the current source/sink terms included in the Generic 

Constituent card of the CE-QUAL-W2 model does not include dissolution rates, thus loss 

of mass tends to occur from 0th and 1st-order decay rates and evaporation. The literature 

reviewed for this study frequently focused on the dissolution of volatile constituents into 

the water column. This would likely have significant implications for water quality 

analysis after fuel spills. 

• Varying ratios of liquid fuels – as more information related to the types and quantities of 

fuels stored at the CEI Hub becomes available, model spill scenarios can be refined using 

specific fuel types and ratios. Varying these ratios based on proximities to containment 

berms and the river, as well as different spill rates might create a more refined prediction. 

Further investigations into model flow behavior in the Multnomah Channel, the confluence of 

the Willamette and Columbia Rivers, and the section of the Lower Willamette River between 

them is also recommended. Determining whether there is an error in the model or unusual flows 

in that section of the Willamette River will be beneficial for future analysis. 
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