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Chapter 1  

Introduction 

1.1 Executive Summary 

 

As the seasons change, sea ice in the polar regions undergoes a freeze-thaw cycle producing 

anisotropic sea ice in terms of physical properties and structures [1] [2]. Deformation of these 

variable structures from the freeze-thaw cycle and flux of energy within the polar regions causes 

the ice to fracture radiating noise into the water [3] [4] [5] [6].  Simulating the noise from sea ice 

is difficult due to the variability in the physical properties of sea ice, dynamic environment of the 

polar regions, complex physics governing sound propagation and numerous methods by which 

the emission of noise can be generated from sea ice [7] [8] [9]. The radiated ambient noise 

generated from deforming sea ice can influence the habits of oceanic life, targeting abilities of 

vessels equipped with sonar, and add to the background acoustic noise in the polar regions. 

This work addresses the noise generated by opening (Mode I) fractures in sea ice. OASN 

[10] was used to simulate acoustic waves propagating though the complex arctic environment. 

For this problem, a significant understanding of mathematics was required to overcome a 

mathematical aberration, within the computational tool, which was reduced and compared 

against simulations computed by an alternate propagation tool, RAM [11]. Simulations of Model 

I fractures were compared against observed data. The methods developed for the simulation of 

Mode I fractures was proven successful. 
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1.2 Background  

 

 The Arctic and Antarctic regions of the Earth are known for vast areas of fluctuating sea 

ice. It has been known for some time that noise, or the release of energy, is present around 

melting icebergs [1] [2]. As the seasons change, sea ice undergoes a cycle of freezing and 

thawing which is further complicated by electromagnetic and gravitational forces. The melting 

and deformation of sea ice causes the ice to fracture, producing a fluctuating range of noise that 

radiates into the surrounding water. The acoustic emissions from sea ice radiate into the water 

and contribute to the ambient noise of the polar regions [5] [4] [9]. This radiative noise can 

influence the habits of oceanic life, affect abilities of vessels equipped with sonar, and add to the 

background acoustic noise in the polar regions.  

The ice fractures that emit sea ice noise are produced by the dynamic environments of the 

polar regions. As sea ice ages, its physical properties, and thus its interaction with the 

environment, also change accordingly [7] [8] [6]. The sea ice becomes more dense due to the 

prolonged exposure to the Earth’s gravitation field, causing the interstitial spaces between crystal 

structures to shrink in magnitude. As the sea ice deforms, fractures can irrupt due to the 

heterogeneity, but more consistently fractures result from the deformation [3]. Fractures resulting 

from deformation are common in the formation of pressure ridges and the movement of sea ice 

along and against each other. Three types of fractures exist: Mode I (opening), Mode II 

(shearing) and Mode III (tearing). Each of these fractures propagate in a jumping fashion causing 

variations in the velocity of a propagating crack [12] [13] [14]. This study address the acoustic 

emissions from Mode I fractures in sea ice. 
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Figure 1.1 – Red stars represent discrete point sources whereas the yellow circle represents the hydrophone. 

The wavefront from the point sources are shown as red arcs. 

 

It has been shown that propagating fractures in sea ice can be discretized into a moving 

monopole point source [15]. Expanding upon the monopole source, discrete point sources were 

used to simulate a propagating Mode I fracture through the sea ice. Figure 1.1 shows a Mode I 

fracture, at an instant in time, in sea ice as discretized point sources. The sea ice sandwiched 
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between the air and water forms a leaky waveguide, allowing acoustic waves to propagate along 

two main paths, either through the leaky waveguide or through the water. The decrease in sound 

pressure level as the wavefront propagates is depicted as a thinner arc. In this study, the sea ice is 

modeled as a homogenous, laminar, perfectly smooth structure with uniform thickness and 

constant sound speed. 

 

1.3 Thesis Work 

 

This thesis addressed the problem of acoustic emissions from sea ice by investigating 

ambient noise emitted by Mode I fractures caused by the deformation of sea ice. Mode I 

fractures were simulated by discretizing the acoustic wave of the fracture into point sources 

within the sea ice. The inherent jumping characteristic during propagation of Mode I fractures 

was taken into account by the incorporation of pause increments based on the range of fracture 

propagation. The acoustic propagation was simulated as a waveguide structure formed by the air, 

sea ice and water column. 

In Summation: 

 Addressed the major causes of ambient noise from sea ice in the polar regions. 

 Developed a model to simulate the ambient noise from Mode I fractures of sea ice in the 

polar regions. 

 Reduced aberration in OASN allowing modeling of Mode I fractures in sea ice. 

 Verified OASN implementation by comparison with simulations computed with an 

alternative modeling tool, RAM. 
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 Compared OASN simulations to observed ambient noise data from the arctic regions. 

 Found several analogous characteristics between simulated and observed data, which 

suggest that the methods developed are favorable in further investigations of ambient 

noise from sea ice deformation. 
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Chapter 2  

Theory 

2.1 Mode I Fractures   

 

Mode I fractures, Figure 2.1, or more commonly referred to as opening fractures, tensile-

mode cracks or tensile cracks, are the source of ambient noise considered in this thesis. To 

understand what is technically defined as a tensile, crack the concept of principle stresses (σ) 

must first be explained. In fracture mechanics, the forces present upon a body are separated into 

three orthogonal axes, similar to Cartesian coordinates, called the principal stresses. 

 

Figure 2.1 – Initial formation of a Tensile Crack. The arrow into the page denotes the direction of crack 

propagation whereas the arrows pointing in separate directions perpendicular to crack propagation denote 

block displacement. Reprinted from B. A. Van Der Pluijm and S. Marshak, Earth Structure Second Edition 

p.122, New York, New York: W.W. Norton & Company, Inc., 2004. 

Each of these principal stresses represents the stress or force per unit area (units of pressure) on a 

given body. If the principal stresses are each of varying magnitude, then the principal stress with 

the largest magnitude is denoted by σ1.  The second and third principle stresses, ordered by 
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magnitude, are represented by σ2 and σ3, respectively. Figure 2.2 shows the principal stresses on 

an arbitrary body.   

 

Figure 2.2 – The principle stresses on a body. The third principle stress σ2 is not shown but is taken as being 

orthogonal to σ1 and σ3 and thus into the page. Reprinted from B. A. Van Der Pluijm and S. Marshak, Earth 

Structure Second Edition p.119, New York, New York: W.W. Norton & Company, Inc., 2004. 

A tensile crack is a type of fracture with the propagation of the crack perpendicular to the applied 

maximum principle stress σ1.  Figure 2.3 shows an example of an opening crack with principal 

stresses σ2 and σ2 being of equal magnitude. There are many methods of creating opening cracks. 

The method that is chosen, however, is not critical in this study, as the opening cracks within the 

sea ice are taken as a wavefront from the energy released by the breaking of bonds within the sea 

ice. Some of the energy released in breaking the bonds is subsequently emitted in the form of 

acoustic energy.  
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Figure 2.3 – Formation of a tensile crack induced by the maximum principle stress. Smaller arrows inside 

block denote movement or opening of tensile crack. The third principle stress σ2 is not shown but is taken as 

being orthogonal to σ1 and σ3 and thus into the page.  Adapted from B. A. Van Der Pluijm and S. Marshak, 

Earth Structure Second Edition p.119, New York, New York: W.W. Norton & Company, Inc., 2004. 

As a tensile crack propagates, the leading edge produces a wavefront that propagates into the 

environment.  

During the propagation of a tensile crack, its velocity varies according to two methods of 

propagation. The first method, which was applied in this study, is a start and stop pattern, with 

brief moments of complete rest, show in Figure 2.4. The second method consists of periods of 

positive and negative acceleration similar to the first method, without coming to a complete stop. 

Instead of propagating with a linear velocity – and thus a null acceleration – tensile cracks 

propagate in a jumping fashion, accelerating to a high velocity  



 
 

9 
 

 

Figure 2.4 – Method of fracture start and stop jumping applied to simulations. Arrows depict direction of 

fracture propagation at velocity Vjump. Red bar shows a pause between fracture jumps. 

within a short period of time to arrest or slowdown for a brief duration before accelerating again 

[13]. The propagating crack velocity or the fracture velocity of jumps (Vjump) varies from 0-550 

m/s [13] [14] [12]; the average velocity of a tensile crack during periods of slowing down ranges 

from 0-300 m/s [13] [14]. To simulate pauses, a jump distance (units of meters) and a fracture 

pause (units of seconds) was specified. Fracture pauses were placed at intervals of the jump 

distance along the fracture length. As the propagating fracture reached a fracture pause, it was 

held at that distance for the duration of the fracture pause before continuing to propagate. 

In order to simulate a propagating wavefront, discretized point sources were used to 

recreate the wavefront produced by a propagating tensile crack. The point source,  

           (2.1) 

, is an omnidirectional propagating wave. 
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The displacement of the propagating spherical sound wave (ψ) is a function of the radial distance 

from its center (r) for a functional dependent wavenumber (k) with specified amplitude (A) of 

the spherical wave. Point sources were placed in a grid with the dimensions of the fracture length 

and depth. Each point source was separated at a distance smaller than the spatial Nyquist. To 

decrease simulation time, each point source within the grid was simulated individually and thus 

there was no interference between point sources. A wavefront was compiled by adding the 

simulated outputs for an entire array of point sources – a linear arrangement of sources through 

the depth of the fracture. To simulate a propagating tensile crack, each array of point sources was 

added with a time delay that corresponded to the arrays distance away from the fracture start 

divided by the fracture velocity (Vjump) with the addition of any fracture pauses. 

 

2.2.1 Propagation - Munk Profile 

 

Ambient noise can be detected kilometers away from the source due to the 

thermodynamics of the underwater environment. The water column below the sea ice or half-

space is not homogenous in terms of physical properties. The bulk modulus (K), density (ρ) and 

therefore, compressional sound speed (C),  

      (2.2) 

, change throughout the half-space. Bulk modulus, along with density, is influenced by 

temperature, salinity and pressure. The salinity and pressure of the half-space increase with depth 

due to gravitational forces, whereas the temperature of the half-space decreases due to the 

penetration depth of the heat intensity throughout the half-space dropping off with the square of 
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the heat energy. The rate at which the salinity, pressure and temperature change as a function of 

depth within the half-space varies respectively. The rate variation causes the compressional 

sound speed to decrease initially with depth into the half-space, eventually increasing as the 

varying rates of salinity, pressure and temperature affect the bulk modulus and density 

accordingly. This decreasing to increasing sound speed profile, called a Munk profile (Figure 

2.5), causes an upward refracting index of the compressional waves.  

 

 

 

Figure 2.5 – Munk sound speed profile in deep water. 
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Figure 2.6 – Transmission loss in dB of a 100 Hz impulse at 100 meters depth with a Munk profile. 

As compressional waves are emitted from a source near the surface, the waves refract downward 

toward the layer with a higher index of refraction until the compressional sound speed increases, 

thus causing the compressional waves to refract upward back toward the surface (Figure 2.6). 

These oscillatory compressional sound waves can propagate for hundreds of kilometers in deep 

water. Complex sound speed profiles of the polar regions only contribute to ambient noise, as 

sources hundreds of kilometers away can be heard as a cacophony.  

 

2.2.2 Propagation - Model 

 

 The propagation of sound originating from ice fractures is bounded by the sea ice and 

leaks into the water forming a Pekeris waveguide or leaky waveguide [16] [3] [15]. The sound 

leaking from the sea ice and being transmitted to the water is shown in Figure 2.7. 
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Figure 2.7 –The red line perpendicular to the layers is the plane of incidence. The incident ray is denoted with  

angle (ΘI) to the plane of incidence whereas the reflected ray and transmitted ray are represented by angle 

(ΘR) and angle (ΘT) respectively to the plane of incidence.  

 

Figure 2.7 is a ray representation of the physics of refraction where each ray represents a 

spherical wave.  The angle between the incident wave and the reflected wave is always the same, 

whereas the angle of the transmitted wave depends on the wavenumber of the medium, a 

relationship shown by Snell’s Law, 

.    (2.3) 

 

The amounts of energy transmitted and reflected depend on the acoustic impedance and angle of 

incidence. The acoustic impedance (Z) is the ratio of acoustic pressure to the volume velocity, 

but can also be written in the form, 
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                       (2.4)                            

 

,with impedance (Z) being the multiplicative of the density (ρ) and the phase velocity (C) of the 

wave. The portions reflected and transmitted are then,  

 ,    (2.5) 

      (2.6) 

, where R is the reflected and T is the transmitted.  

The omnidirectional nature of a spherical wave, allows for many paths of propagation to 

take place within a specified geometry. The thickness of the sea ice and sea floor can vary along 

with the depth of the ocean sandwiched between them, but the main paths of propagation for 

each ray are still present. As the spherical waves propagate from the sea ice, there are two main 

path-groupings that the spherically propagating acoustic waves can take. The first path-grouping, 

comprised of high frequency content, due to the cutoff frequency, propagates through the sea ice 

and leaks from the Pekeris waveguide before reaching the hydrophone, shown in Figure 2.8. The 

second path-grouping is waterborne, shown in Figure 2.9, which immediately leaks out of the 

waveguide or is transmitted through the sea ice to the water, and propagating through the half-

space, for the majority of the duration from emission to being received at the hydrophone. The 

cutoff frequency (fcutoff), 

      (2.7) 
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, for the leaky waveguide, where (m) is the mode – a integer from 1 to infinity – and B is the  

thickness of the sea ice, is an inherence characteristic of all waveguides limiting the wavelength 

allowed to propagate within the dimensions of the waveguide.  

 

Figure 2.8 – Leaky waveguide or Pekeris waveguide acoustic paths between source (red star) and hydrophone 

(yellow circle). Ray (1) is the shortest path having two boundary interactions. Ray (2) is the second shortest 

path having only three boundary interactions. The red ray (3) either leaked out of the waveguide or was 

transmitted through the ice to eventually become incident upon the ice again due to the Munk profile. 
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Figure 2.9 –Waterborne acoustic paths between source (red star) and hydrophone (yellow circle). Ray (1) is 

the shortest path with one boundary interaction. Ray (2) is the second shortest path with two boundary 

interactions. Ray (3) is the longest path with three boundary interactions. 

 

Waterborne paths are comprised of the lower frequencies that leak out of the waveguide along 

with any remaining frequencies that are transmitted, thus the waterborne paths can be 

compressed of all frequencies. 
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Chapter 3  

OASN: NOISE, COVARIANCE MATRICES AND SIGNAL REPLICAS  

3.1 Implementation 

 

To simulate the wavefront produced by a tensile crack in OASN: Noise, Covariance 

Matrices and Signal Replicas [10], discrete point sources were placed within 4 meter thick sea 

ice. The geometry for all simulations is shown in Figure 3.1.  

 

Figure 3.1 – Geometry for all simulations conducted in this study. Red stars represent discrete point sources 

whereas the yellow circle represents the hydrophone. The wavefront from the point sources are shown as red 

arcs. 
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The sources were separated by a spatial Nyquist of 0.1 meters while the frequency range for 

simulations was computed over 2
-52

 to 5000 Hz. A crack length of 10 meters was used. In order 

to efficiently simulate a variety of tensile crack propagations, a grid of points with a spatial 

Nyquist of 0.1 meters in the range and depth directions was simulated. For the 4 meter thick sea 

ice and a 10 meter long crack, 4,141 discrete sources were placed into a grid and simulated 

individually. The compressional sound speed for sea ice was 3500 m/s [8]. Propagation crack 

velocity (Vjump) ranged from 50 m/s to 550 m/s. Jumps ranged from every 2 meters to 4 meters of 

crack propagation, whereas the pauses between jumps ranged from 0.1 ms to 2.0 ms.  The depth 

of the hydrophone was 300 meters for all simulations. The maximum range of a discrete source 

away from the hydrophone was 1 kilometer and a sea floor was not present. The range of 1 

kilometer was chosen to decrease simulation time. By choosing a range of 1 kilometer the 

complete oscillatory habit of acoustics, due to the Munk profile Figure 2.6, propagating in the 

deep ocean did not need to be considered, The Munk sound speed profile was truncated to the 

hydrophone depth and thus a sea floor was not needed. The shear velocity of the sea ice was 

zeroed to simplify the model and eliminate the possibility of mode conversion. Any signal loss in 

the simulations was due to spreading loss which is inherently built into OASN. Attenuation was 

not considered within the model for simplification and due to the fact that OASN only allows 

attenuation to be entered as a function of distance away from the source, when in reality 

attenuation is a function of distance away from the source and frequency. 

3.2 Wavenumber Integration Induced Aberrations 

 

During the initial phases of this thesis, simulations from OASN had an aberration in the form of 

an acoustic arrival before the first expected arrival through the leaky waveguide. In this section 
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the goal is to demonstrate with concise mathematics why OASN has an aberration. Figure 3.2 

and Figure 3.3 demonstrate the aberration which was comprised of the full bandwidth of 

frequencies simulated at the exact time interval corresponding to the difference between the 

depth of the source and the depth of the hydrophone, with appropriate compressional sounds 

speeds between subsequent layers from the source to the hydrophone.  It is not the goal to give a 

step-by-step derivation of the mathematics governing the aberration, however if such is required 

by the reader, they are referred to reference [16].  

Starting from the nonhomogeneous Helmholtz equation in cylindrical coordinates for a 

range independent environment, 

               (3.1)  

, with the wavenumber (k), the displacement of the propagating spherical wave (ψ) and the 

source (f).  To solve for the nonhomogeneous solution to (3.1) it first must be recognized that 

(3.1) is in the general from of equation, 

.       (3.2) 
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Figure 3.2 – Simulated time series with an aberration located around 0.2s. 

 

Figure 3.3 – Spectrum of the simulated time series in Figure 3.2 with an aberration located around 0.2 

seconds comprised of the full bandwidth of frequency for the simulation. 
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The nonhomogeneous solution to (3.1) can be solved with a Green’s function as (3.1) is in the 

form (3.2). The solution to the nonhomogeneous Helmholtz equation, 

     (3.3) 

, is a Green’s function of a spherical wave with r0 being the impulse at a radial coordinate. The 

modified specified amplitude, A’(r), of (3.3) is an arbitrary constant that would satisfy the 

boundary condition between the source and the medium, while also containing any other 

constants, such as π and 4, that appear readily in the mathematics. Since (3.3) is a Green’s 

function, the solution to the nonhomogeneous Helmholtz equation can be written as,  

     (3.4) 

,with the Dirac delta (δ) being the associated impulse response to (3.1). 

The depth-separated wave equation, 

    (3.5) 

, is a rearrangement of the nonhomogeneous Helmholtz equation via a variable integration with 

respect to the azimuthal coordinate (φ) and an application of the forward and reverse zeroeth-

order Hankel transforms, 

  &    (3.6) 

 

     (3.7) 

, allowing for the radial or range dependency to be dropped as a variable in favor of depth (z) 

dependency along with wavenumber (k), radial wavenumber (kr) and source impulse (zs). The 

radial wavenumber is defined as, kr  kcos(θ). Equation (3.5) can be said to be in the k-domain 



 
 

22 
 

or wavenumber domain, as the radial dependency is technically still there but has been 

transformed into wavenumber space via a Hankel transform. To solve the depth-separated wave 

equation, a boundary value problem approach must be taken, thus the homogenous solution to 

the depth-separated wave equation must be found. The homogenous solution to (3.5) should be 

in the form of, (2.1), a spherical wave. The homogenous solution, 

   (3.8) 

, of the depth-separated wave equation can be found by directly solving the Helmholtz equation 

using a characteristic equation, obtaining complex roots with a real number of zero and 

eliminating the sine function, as it is zero at the origin, and finally rewriting the remaining cosine 

function in terms of its complex identity. Notice that the square root expression in (3.8) could 

have been written in terms of the wavenumber kz as by definition kz  . The depth-

separated wave equation can be solved by a Green’s function as it is in the form of, 

       (3.9) 

, thus implying that a Green’s function exists. The particular solution is, 

     (3.10) 

, with A’(kr) being the arbitrary constant used to satiate the boundary conditions and remaining 

constants and zs being the impulse at the depth coordinate. The complete solution, 

    (3.11) 

, and Green’s function, to the depth-separated wave equation, (3.5), is the addition of the 

homogenous solution and the particular solution. Finally, applying (3.7) to (3.10)  yields 
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.   (3.12) 

 

For the simulations run in this study, OASN evaluates the integral of (3.12) via a numerical 

method called wavenumber integration [16]. The vital component to understanding how the 

aberration manifests itself is to understand the radial wavenumber and its influences on the 

zeroth-order J
th

 Bessel function. OASN requires the input of a minimum and maximum phase 

speed used to steer the direction of the impulse received at the response in wavenumber space, 

360 degrees, effectively allowing for a point source to be placed at a specified depth but arbitrary 

radial component dictated by the radial wavenumber kr. The specified phase speeds do not, 

however, correlate to the phase velocities of the spherically propagating wave directly.  In 

wavenumber space kr = k cos(θ) and kz = k sin(θ). The direct path from immediately above the 

hydrophone corresponds to an angle near perpendicular to the horizontally stratified layers, 

around 90 degrees when the impulse is above the response spatially. However, OASN also uses 

the wavenumber space to truncate and sample the definite integral of (3.12) from zero to infinity. 

For example, if a minimum phase speed of 1450 m/s is entered with a maximum phase speed of 

1x10
9
 m/s, the calculation of steering angles 0 degrees and 90 degrees would correspond to 

    &     (3.13) 

                   (3.14) 

, respectively. As OASN samples between the minimum and maximum wavenumbers in 

wavenumber space it also samples between a truncated range between zero and infinity. 

Accordingly, the maximum phase speed or minimum wavenumber in wavenumber space 

corresponds to zero in the wavenumber integral of equation (3.12) whereas and the minimum 
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phase speed or maximum wavenumber in wavenumber space corresponding to infinity in the 

wavenumber integral. When OASN is sampling near the maximum phase speed, the steering 

angle is near perpendicular to the horizontally stratified layers and the wavenumber in 

wavenumber space is at a minimum. As a result, the truncated interval between 0 and infinity is 

being sampled at zero. With the wavenumber being evaluated at zero in wavenumber space, the 

zeroth-order J
th

 Bessel function is at the origin. The zeroth-order J
th

 Bessel function is bounded at 

the origin and oscillatory going toward a value of unity as it approaches the origin. As values 

near J0(0) are calculated and integrated within the wavenumber integral, the values toward the 

origin of the zeroth-order J
th

 Bessel function have a larger influence than those proceeding them. 

If the wavenumber integral in not zeroed and the discontinuity is not smoothed outside of an 

interval where the zeroth-order  

 

Figure 3.4 – Simulated time series with the aberration removed. The geometry of the simulation is identical to 

that in Figure 3.2. 
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Figure 3.5  –  Spectrogram of the simulated time series in Figure 3.4. The geometry of the simulation is 

identical to that of Figure 3.2. 

J
th

 Bessel function has values that are similar in magnitude, aberrations will appear at the 

steering angle corresponding to such wavenumber in wavenumber space. To reduce the 

aberration, the sampling between the minimum and maximum phase speeds is truncated so that 

sampling toward the minimum phase speed is minimized, effectively bring the minimum phase 

speed closer to that of the maximum phase speed. The reduced aberration is shown in Figure 3.4 

and Figure 3.5.   

 Zeroing and smoothing the discontinuity between an interval in wavenumber space for 

the zeroth-order J
th

 Bessel function can, however, cause a secondary issue. By truncating the 

sampling space between the minimum and maximum phase speed intervals, the minimum phase 

speed is brought closer to the maximum phase speed. As the difference between the minimum 

and maximum phase speeds becomes smaller, the evaluation of (3.14) moves away from 90 
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degrees and toward zero degrees as the ratio between the numerator and dominator or minimum 

and maximum phase speed approaches unity. As this happens, the waterborne propagating waves 

become weighted more over those of the leaky waveguide.  

3.3 OASN Comparison with RAM 

 

 To validate the reduction of the aberration and the output of OASN, a comparison was 

made with simulations computed using the Range-dependent Acoustic Model (RAM) [11]. The 

geometry for the simulations was a range of 300 meters, a depth of 112 meters, sea ice thickness 

of 16 meters, and a single source placed 2 meters below the sea ice. The hydrophone was 200 

meters in range away from the source. Identical geometry with frequencies ranging from 25 Hz 

to 4000 Hz was run in both OASN and RAM. The goal of this exercise was to see if OASN was 

producing appropriate arrival times of the propagating spherical waves along with validating the  

 

Figure 3.6 –  Simulated Sound Pressure Level (SPL) comparison of identical geometry between OASN with 

aberration (Red) and OASN without aberration (blue).  
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Figure 3.7 –  Simulated time series comparison between OASN with aberration reduced (blue) and RAM 

(red) for a single source within sea ice. 

 

Figure 3.8 – Simulated Sound Pressure Level (SPL) comparison between OASN with aberration reduced 

(Blue) and RAM (red). The geometry of the simulation is identical to that of Figure 3.7. 
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methods used to reduce the aberration. RAM was chosen as the software for comparison for two 

reasons: first, RAM solves a forward propagating wave equation as opposed to the depth-

separated wave equation solved with OASN, and second, RAM was extensively used by one of 

the NEAR-Lab personnel at Portland State University for a project involving point source 

discretization to simulation the acoustic waves generated from driving piles into river sediments. 

Therefore, the previous extensive use of RAM allowed for a greater degree of confidence to be 

placed on its outputs, as opposed to OASN which demonstrates a clear aberration when 

attempting to model the geometry presented within this study. By comparing the outputs of two 

similar software packages that use two different approaches for solving the wave equation, this 

study explores the idea that if a correlation in the data between OASN and RAM could be drawn, 

then the reduction of the aberration and the implementation of OASN for modeling tensile cracks 

within sea ice would be validated. Figure 3.6 is a Sound Pressure Level comparison between 

OASN with and without the aberration reduced. Figure 3.7 and Figure 3.8 are a comparison of 

the simulated time series and Sound Pressure Level (SPL) from OASN, with the aberration 

reduced, and RAM, respectively. In the comparison, the arrival times for the primary arrival of 

the propagating spherical wave was almost identical between OASN and RAM. Thus, the 

reduction of the aberration can be considered successful as the presence of the aberration had 

been reduced whereas the arrival times and SPL of the spherical waves were similar between 

OASN and RAM. 
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Chapter 4  

Simulation Data and Comparison to Observed Ambient Noise 

4.1 Simulation Data 

 

To cover a range of tensile crack propagations, four simulations are presented to 

demonstrate the variance in simulated time series and, therefore, spectrograms from similarly 

propagating tensile cracks. For all simulations, the cracks are propagating toward the 

hydrophone. In all time series, multiple arrivals occur. The first peak or arrival is that of the path-

groupings corresponding to propagation through the leaky waveguide. The second peak is the 

waterborne path-groupings that propagate briefly through the sea ice, leak out of the waveguide 

and propagate primarily through the water. 

Two tensile cracks are shown in Figures 4.1 through Figure 4.4. Each fracture penetrated 

completely though the 4 meter thick sea ice and had a fracture length of 10 meters. Jump 

distance was 2 meters and the fracture pause was 0.3 ms. The simulations were identical, with 

the exception of the jump velocity (Vjump). The jump velocity was 550 m/s for Figure 4.1 and 

Figure 4.2, whereas the jump velocity was 400 m/s for Figure 4.3 and Figure 4.4.  The 

differences between the cracks are more apparent in the time series, Figure 4.1 and Figure 4.3. 

Fractures with the higher velocity had a smaller pressure magnitude for leaky waveguide 

arrivals, but larger pressure magnitude of waterborne arrivals, when compared to an identical 

fracture with slower velocity.  
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Figure 4.1 – Simulated time series of a tensile crack propagating toward the hydrophone at 550 m/s. 

 

 

Figure 4.2 – Spectrogram of the simulated time series shown in Figure 4.1. 
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Figure 4.3 – Simulated time series of a tensile crack propagating toward the hydrophone at 400 m/s. 

 

 

Figure 4.4 – Spectrogram of the simulated time series shown in Figure 4.3. 
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Figure 4.5 – Simulated time series of a shallow tensile crack propagating toward the hydrophone at 285 m/s. 

 

 

Figure 4.6 – Spectrogram of the simulated time series shown in Figure 4.5. 
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Figure 4.7 – Simulated time series of a deep tensile crack propagating toward the hydrophone at 285 m/s. 

 

 

Figure 4.8 – Spectrogram of the simulated time series shown in Figure 4.7. 
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The spectrograms of the higher velocity and slower velocity fractures, Figure 4.2 and Figure 4.4, 

showed similar behavior. Leaky waveguide arrivals were primarily of higher a frequency sound, 

while the waterborne arrivals had significant energy across the entire simulated frequency range. 

The cutoff frequency for the leaky waveguide is 437.5 Hz.  For both fractures, the lowest 

frequency for leaky waveguide arrivals is well above the cutoff frequency. However, the 

distribution of frequencies for the waveguide and waterborne arrivals was in agreement with 

waveguide characteristics. 

Simulated shallow and deep tensile cracks are compared in Figures 4.5 through Figure 

4.8. Jump distance was 2.5 meters and the fracture pauses was 0.4 ms. Fracture lengths were 10 

meters with fracture velocity (Vjump) at 285 m/s. Each fracture was at a depth of 1.7 meters into 

the ice. The difference between the two tensile cracks was the location of depth within the sea 

ice. The shallow fracture, Figure 4.5 and Figure 4.6, was within the upper 1.7 meters of the 4 

meter thick sea ice – 1.7 meters down from the air sea ice interface – whereas the deep fracture, 

Figure 4.7 and Figure 4.8, was in the bottom 1.7 meters of the sea ice – 1.7 meters up from the 

sea ice water interface. The time series are compared in Figure 4.5 and Figure 4.7. The overall 

pressure magnitude of the leaky waveguide arrivals was the same between the shallow and deep 

paths. The waterborne arrivals, however, differred in pressure magnitude between the shallow 

and the deep fractures. The deep fracture had larger pressure for waterborne arrivals than the 

shallow fracture. Examaning the respective spectrograms for the shallow and deep fractures, 

Figure 4.6 and Figure 4.8, the leaky waveguide arrivals had similar frequency bandwidths 

situated in the higher frequencies. The leaky waveguide arrivals, comprised of the higher 

frequencies, were in agreement with waveguide characteristics. However, the lowest frequency 

of both leaky waveguide arrivals was well above the cutoff frequency of 437.5 Hz.  There was 
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variance between the waterborne arrivals of the two fractures as the shallow fracture had a much 

narrower and lower frequency bandwidth, whereas deep fracture spanned the entire frequency 

range of the simulations. 

4.2 Comparison to Observed Ambient Noise 

 

The data used for comparison is uncalibrated single hydrophone data of sea ice 

deformation events that led to the emission of ambient noise into the water.  The two events 

selected for comparison where chosen for their easily heard and visually spotted deformation 

events within the audio files, time series and spectrograms. The actual method of deformation, 

geometry and type of fracture are unknown. The significance of this comparison is to draw a 

correlation between the simulations and the observed deformation events present within sea ice. 

The first deformation event, Figure 4.9 and Figure 4.10,  is broadband in frequency. The 

time series, Figure 4.9, displays a single event similar to broadband waterborne arrivals for 

fractures that penetrated completely through the sea ice and fractures that were deep within the 

sea ice. The spectrogram, Figure 4.10, shows a range of frequencies comparable to the simulated 

frequencies range in this study for waterborne arrivals of tensile cracks that penetrated 

completely through the sea ice and fractures that were deep within the sea ice. 
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Figure 4.9 – Observed time series of sea ice deformation event one. 

 

 

Figure 4.10 – Observed spectrogram of time series for sea ice deformation event one in Figure 4.9. 
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Figure 4.11 – Observed time series of sea ice deformation event two. 

 

 

Figure 4.12 – Observed spectrogram of time series for sea ice deformation event one in Figure 4.11. 
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The second deformation event exhibits a rapid duration event in the time series, Figure 

4.11, along with leaky waveguide and waterborne characteristics in the spectrogram, Figure 4.12. 

The dominate characteristic of leaky waveguide arrivals being concentrated at the upper end of 

the frequency range is seen within the observed ambient noise data. A broadband frequency 

arrival quickly following the leaky waveguide arrivals was indicative of waterborne arrivals of 

the same event. These spectrogram characteristics were seen in the fractures that penetrated 

completely through the sea ice and fractures that were deep within the sea ice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

39 
 

Chapter 5  

Conclusion 
 

Fractures with higher velocity had smaller magnitudes for leaky waveguide arrivals and 

larger magnitudes for waterborne arrivals when compared to fractures with slower velocities. 

Tensile cracks that were deep within the sea ice had a more broadband frequency range for the 

waterborne arrivals, as more energy was transmitted through the sea ice to the water. However, 

waterborne arrivals for tensile cracks that were shallower within the sea ice had a lower 

frequency range that was less broadband when compared to the deeper tensile cracks as less 

energy was transmitted from the sea ice to the water. The waterborne arrivals for deeper fractures 

that had a more broadband range of frequencies in the spectrogram were accompanied by larger 

pressure magnitudes in the time series, when compared to the lower frequency less broadband 

shallower fractures, due to the increase in transmitted sound. The lowest frequency for leaky 

waveguide arrivals in all the simulations was above the calculated cutoff frequency of the leaky 

waveguide. This discrepancy is attributed to more interference taking place at lower frequencies.  

In contrast, the waterborne arrivals ranged from lower frequency bandwidths to more broadband 

frequency ranges –  that encompassed the entire simulated range of frequencies –  as the leaky 

waveguide formed by the sea ice water interface allowed the transmission of sound between the 

two media to take place at all frequencies.  

The methods used to model Mode I fractures within sea ice appear to simulate observed 

ambient noise appropriately. Waveguide dynamics were readily seen in the simulated and 

observed data. Nevertheless, additions such as interference between sources, attenuation, shear 

within the ice and larger scale geometries need to be added to the methods for the model. These 

additions would increase the practicality of this model for simulating longer duration fracture 
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events, and would even potentially extend the model’s scope of application to additional types of 

fractures, structures and deformation.  
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