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ESTIMATION OF A MONOTONE MEAN RESIDUAL LIFE

By Subhash C. Kochar, Hari Mukerjee and Francisco J. Samaniego

Indian Statistical Institute, Wichita State University
and University of California, Davis

In survival analysis and in the analysis of life tables an important
biometric function of interest is the life expectancy at age x� M�x�, defined
by

M�x� = E�X− x�X > x��
where X is a lifetime. M is called the mean residual life function. In many
applications it is reasonable to assume that M is decreasing (DMRL) or in-
creasing (IMRL); we write decreasing (increasing) for nonincreasing (non-
decreasing). There is some literature on empirical estimators of M and
their properties. Although tests for a monotone M are discussed in the
literature, we are not aware of any estimators of M under these order
restrictions. In this paper we initiate a study of such estimation. Our pro-
jection type estimators are shown to be strongly uniformly consistent on
compact intervals, and they are shown to be asymptotically “root-n” equiv-
alent in probability to the (unrestricted) empirical estimator when M is
strictly monotone. Thus the monotonicity is obtained “free of charge”, at
least in the aymptotic sense. We also consider the nonparametric maxi-
mum likelihood estimators. They do not exist for the IMRL case. They do
exist for the DMRL case, but we have found the solutions to be too complex
to be evaluated efficiently.

1. Introduction. The mean residual life (MRL) of a unit or a subject at
age x is the average remaining life among those population members who
have survived until time x. If the lifelength of the population is described by
a random variable X with survival function (s.f.) S, defined by S�x� = P�X >
x�, then the mean residual life function is defined by

M�x� = E�X− x�X > x� = I�S�x� > 0�
∫ ∞

x
S�u�du/S�x�(1.1)

A distribution is characterized by its MRL by the relation [Guess and Proschan
(1988)]

S�x� = M�0�
M�x� exp

{
−
∫ x

0

1
M�u� du

}
I�M�x� > 0�(1.2)

Note thatM�0� is just the mean ofX whose existence is assumed throughout.
Like the failure rate function, the MRL describes a conditional concept of
aging; however, the MRL is more intuitive, especially in the health sciences.
The review article by Guess and Proschan (1988) gives a nice summary of the
theory of MRL and an extensive bibliography.
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Let 0 ≡ X0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn be the order statistics from a random
sample from S with support �0�T� for some finite T, or �0�∞�. Let Sn denote
the empirical s.f. Yang (1978) considered an empirical estimate of M using

M̂n�x� = I�x < Xn�
∫ ∞

x
Sn�u�du/Sn�x�(1.3)

Assuming S to be (absolutely) continuous, she showed that M̂n is strongly
uniformly consistent on �0� b� for any b < T and that

√
n�M̂n −M� converges

weakly to a Gaussian process. Hall and Wellner (1979) and Csörgő and Zitikis
(1996) have strengthened some of Yang’s results.

In many applications it is reasonable to assume that the life system is mono-
tonically degenerating or improving with age. This concept has been modeled
several ways, of which increasing (IFR) and decreasing (DFR) failure rates are
probably the most studied; we write increasing (decreasing) for nondecreas-
ing (nonincreasing) throughout. The somewhat weaker version of decreasing
(increasing) MRL, DMRL (IMRL), which is implied by IFR (DFR), is perhaps
more clear conceptually and is easier to explain to the user. New better (worse)
than used in expectation, NBUE (NWUE), is an even weaker concept. NBUE
and NWUE correspond to M�x� ≤ M�0� and M�x� ≥ M�0� ∀x, respectively.
There are other modified concepts like DIMRL (IDMRL) where the MRL is
initially decreasing (increasing) and then increasing (decreasing). Gertsbach
and Kordonskiy (1969) have shown that the lognormal distribution is DIMRL.
However, there are no well known parametric families that are DMRL (IMRL)
(for some values of a parameter) but not IFR (DFR). Hollander and Proschan
(1975), Guess, Hollander and Proschan (1986), Aly (1990), Hawkins, Kochar
and Loader (1992) and Lim and Park (1998) have considered tests for MRL’s
under various monotonicity restrictions. However, estimation of a MRL under
order restrictions does not appear to have been considered in the literature. In
this paper we initiate a study of such estimation procedures. Although several
modifications may be considered, our basic estimators are projection type es-
timators that proved to have nice properties in several restricted estimation
problems, improving on the nonparametric maximum likelihood estimators
(NPMLE’s) [see, e.g., Rojo and Samaniego (1991, 1993), Mukerjee (1996), Rojo
and Ma (1996) and Rojo (1995)]. In Section 2 we describe our estimators and
prove their strong uniform consistency. In Section 3 we illustrate our procedure
for some data from Bjerkedal (1960). In Section 4 we consider the asymptotic
distributions of our estimators. It is shown that

sup
x≤b

√
n�M̂n�x� −M∗

n�x��
p→ 0

as n→ ∞ for any b < T ifM is strictly monotone on �0� b�; here M̂n is the em-
pirical estimator and M∗

n is our monotone estimator, both based on a sample
of size n. Thus all of the asymptotic distributional results for M̂n hold for M∗

n,
and we get the monotonicity “free of charge”. The results and the method of
proofs are similar to those for the estimation of an IFR distribution function
(d.f.) in Wang (1986), which in turn are similar to those in the estimation of a
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concave or a convex d.f. in Kiefer and Wolfowitz (1976). It may be possible to
extend our results from �0� b� to �0�∞� using weighted empiricals [Hall and
Wellner (1979) and Csörgő and Zitikis (1996)]. However, we have not consid-
ered those extensions here. In Section 5 we present some modest simulation
results for the DMRL case, which is of primary interest to us. Since we do
not know of any suitable parametric family of d.f.’s that are DMRL but not
IFR, we have considered the uniform and an IFR Weibull distribution. The
MSE of M∗

n is uniformly smaller than that of M̂n, but not by much, as is to be
expected from their asymptotic “root-n” equivalence in probability as proven
in Section 4. We have also considered the exponential distribution where M
is a constant. Since M is not strictly decreasing the results of Section 4 do
not hold, but it is interesting to note that the MSE of M∗

n is still uniformly
smaller than that of M̂n although the bias is considerably larger, especially
in the right tail, where M∗

n achieves its greatest gains in terms of MSE! In
Section 6 we consider the NPMLE’s. The NPMLE does not exist for the IMRL
case. It does exist for the DMRL case, but the computation appears to be in-
tractible. In Section 7 we present some concluding remarks and directions of
future research.

2. Estimators and consistency. One property of a MRL, M, is that
M�x� + x is increasing for all x so that M′ ≥ −1 whenever it exists, where
M′�x� = dM�x�/dx [see, e.g., Guess and Proschan (1988)]. Thus, in the DMRL
case M must be continuous, and from the definition (1.1) of a MRL, the corre-
sponding s.f., S, cannot have a jump except possibly at T, the right end point
of its support. This need not be true in the IMRL case. Using the inversion for-
mula (1.2) it can be seen that S is flat in any interval whereM′ = −1 and that
S corresponds to a segment of a shifted exponential s.f. where M′ = 0 with a
mean equal to the local value of M. We note that the empirical estimator M̂n

in (1.3) consists of line segments with slope equal to −1 with a jump up at each
order statistic (which gives rise to a rather ragged estimator). Our estimators
simply utilize the fact that M is a DMRL (IMRL) iff M�x� = infy≤xM�y�
(M�x� = supy≤xM�y�). These estimators are given by

M∗
n�x� = I�x < Xn� inf

y≤x M̂n�y�� DMRL(2.1)

and

M∗∗
n �x� = I�x < Xn� sup

y≤x
M̂n�y�� IMRL(2.2)

Note thatM∗
n (M∗∗

n ) is the largest (smallest) decreasing (increasing) function
that lies below (above) the empirical M̂n (see Figure 1). M∗

n is a continuous
function formed of line segments that are flat (corresponding to an exponen-
tial s.f.) or with a slope of −1 (corresponding to a flat s.f.). M∗∗

n consists of an
increasing step function. Other ad hoc estimators could be defined using the
same principle, for example, M̃n�x� = M̂n�0� ∧ supy≥x M̂n�y�, or some convex
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Fig. 1. Illustration of M̂n� M
∗
n and M∗∗

n .

combination of this and M∗
n for the DMRL case. Since the number of obser-

vations remaining in the right tail is small, this produces large variabilities
which is borne out by our simulations. Computations of the estimators are
quite simple. For example, for M∗

n, we first find

Y0 = 0 < Y1 =X1 < Y2 < Y3 < · · · < Yk =Xn�

where M̂n�Y−
j � > M̂n�Y−

j+1� with M̂n�Y−
j � ≤ M̂n�X−

i � for all Yj < Xi < Yj+1.

Then, M∗
n�0� = M̂n�0�, and, for Yj < x ≤ Yj+1� 0 ≤ j ≤ k− 1�

M∗
n�x� = min�M̂n�Y−

j �� M̂n�Y−
j+1� +Yj+1 − x�

To illustrate, in Figure 1, k = 3�Y0 = 0�Y1 = X1�Y2 = X3 and Y3 = X4.
It can be seen that as x moves to the left from Y2 to Y1, M∗

n�x� increases
from M̂n�Y−

2 � by Y2 −x until it attains its maximum value of M̂n�Y−
1 � in the

interval.

2.1. Consistency. Yang (1978) has shown that M̂n is strongly uniformly
consistent on �0� b� for any b < T, where T is the right endpoint of the support
of S, using only the consistency of Sn. The same holds true for M∗

n and M∗∗
n

from this result and the triangle inequality of the sup-norm [see Lemmas 1
and 2, Rojo and Samaniego (1993).] under the monotonicity assumptions

� inf
y≤x M̂n�y� − inf

y≤xM�y�� ≤ sup
y≤x

�M̂n�y� −M�y���(2.3)

which proves consistency for M∗
n. The proof for M∗∗

n is similar.

3. An example. Bjerkedal (1960) reports on two studies of survival times
(in days) of guinea pigs infected with different dosages of tubercle bacilli. Al-
though at lower dosages the distributions seem to be DMRL, at higher dosages
they appear to be DIMRL (or, perhaps, DIDMRL) due to developed resistance
to infection. However, this is not always easy to detect from the empirical
MRL. Since intuitively we would expect the distribution to be DMRL, the
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Table 1
Estimates of mean residual life

Xi M̂n�X−
i � M*

n �Xi� Xi M̂n�X−
i � M*

n �Xi� Xi M̂n�X−
i � M*

n �Xi�
0 175.3 175.3 120 101.1 94.7 202 94.6 90.0
22 153.3 153.3 121 102.3 94.7 213 89.9 89.9
33 144.4 144.4 122 106.3 94.7 215 90.0 89.9
44 135.5 135.5 124 109.3 94.7 216 93.6 89.9
56 125.4 125.4 130 105.9 94.7 222 92.5 89.9
59 124.3 124.3 134 109.3 94.7 230 89.6 89.6
72 113.1 113.1 136 105.5 94.7 231 93.9 89.6
74 112.9 112.9 139 104.7 94.7 240 90.8 89.6
77 111.6 111.6 144 102.5 94.7 245 91.8 89.6
92 98.4 98.4 146 103.2 94.7 251 92.4 89.6
93 98.9 98.4 153 99.1 94.7 253 97.5 89.6
94 99.5 98.4 159 96.0 94.7 254 104.6 89.6
100 95.1 95.1 160 95.0 94.7 278 101.5 89.6
102 96.4 95.1 163 97.8 94.7 293 97.8 89.6
105 95.0 95.0 168 99.1 94.7 327 76.0 76.0
107 94.7 94.7 171 99.4 94.7 342 71.9 71.9
108 97.1 94.7 172 101.8 94.7 347 78.8 71.9
109 101.7 94.7 176 101.4 94.7 361 80.6 71.9
112 100.7 94.7 183 98.2 94.7 402 59.8 59.8
113 101.7 94.7 195 90.0 90.0 432 49.7 49.7
115 101.8 94.7 196 92.6 90.0 458 48.5 48.5
116 102.9 94.7 197 95.4 90.0 555 0.0 0.0

constrained estimator could be used as a data analytic tool for detecting devi-
ations from it. Thus we consider regimen 4.3 in Study M under the assump-
tion that the MRL is decreasing, both for the purposes of illustration and to
demonstrate this data analytic value. The observations are discrete with 2
deaths on days 100, 107, 122, 163 and 254, and 3 deaths on day 108. There
were 72 subjects with no censoring. The results obtained for the empirical
and the constrained estimates of the MRL are given in Table 1. The estimate
M̂n�Xi� = �n− i+ i�/�n− i�M̂n�X−

i �� n = 72�1 ≤ i ≤ 71
The data seem to indicate that initially the distribution is DMRL, but some

resistance might have developed among those who survived the first 100 days
or so, indicating a slightly increasing MRL, and then displaying DMRL be-
havior after 150 days or so. It should be noted that our DMRL and IMRL
estimators could be employed on some given intervals only, if the order re-
striction applied only to these intervals, and the consistency results will still
hold if the assumptions are correct.

4. Asymptotic results. Let b < T be fixed, and let �� · ��b0 denote the sup-
norm on �0� b�. To simplify the notation we write �� · �� for �� · ��b0 throughout this
section. We prove the following theorem of asymptotic equivalence of M̂n and
M∗

n. An exactly parallel result holds for the equivalence of M̂n and M∗∗
n when

M is increasing; however, the assumption of a density, that always exists for
the DMRL case, needs to be added for this IMRL case.
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Theorem 4.1. Assume that

M′�x� exists and M′�x� ≤ −c1 ∀x ∈ �0� b� for some c1 > 0�(4.1)

M′′�x� exists and ��M′′�� ≤ c2 <∞(4.2)

and

EXr <∞ for some r > 2(4.3)

Then
√
n��M∗

n − M̂n��
p−→ 0

Assumption (4.2) is similar to the assumption of uniform convexity of the
cumulative hazard function in Wang (1986).

The idea of the proof is to first construct a continuous piecewise linear
version of M̂n on �0� b�, then show that it is eventually decreasing as, and
that bothM∗

n and M̂n are close to it on �0� b� in an appropriate sense. For each
n let kn be an integer, kn ↑ ∞, and let $n = b/kn. If kn = �nδ� is chosen, then
it will be shown that we need 1/4 < δ < 1/2. Let

anj = jb/kn = j$n� j = 0�1�    � kn

Define the linear interpolation of any function h on �0� b� by

Lnh�anj� = h�anj�� j = 0�1�    � kn

and

Lnh�x� = h�anj� + �h�anj+1� − h�anj���x− anj�/$n
for anj < x < anj+1� j = 0�1�    � kn − 1

We now prove the following propositions leading to the proof of Theorem 4.1.

Proposition 4.1. LetAn = �LnM̂n is strictly decreasing on �0� b�� Then,
under assumption (4.3), if log log n = o�n$2

n� then
P�lim n An� = 1(4.4)

Proof. Hall and Wellner (1979) show that under the assumption EXr <
∞ for some r > 2,

sup
x≤bn

√
n�M̂n�x� −M�x��Sn�x�/�log log n�1/2 = Oas�1��

where bn is any increasing sequence with Sn�bn� → 0 and nS�bn�/�log log n�1/2
→ 0 Since S�b� > 0 and Sn

unif−→ S as, we have
√
n��M̂n −M��/�log log n�1/2 = Oas�1�
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Since LnM̂n�anj� = M̂n�anj� ∀j and n,
√
n�M̂n�anj� −M�anj��/�log log n�1/2 = Oas�1�

uniformly in j ≤ kn from above, and

M�anj� −M�anj+1� ≥ c1$n ∀j ≤ kn − 1

by assumption (4.8), we have

M̂n�anj� − M̂n�anj+1� ≥ c1$n +Oas��log log n/n�1/2� ≥ c3$n as

for all large n and j ≤ kn − 1 for some c3 > 0 if �log log n/n�1/2 = o�$n�. This
completes the proof of (4.4) using the piecewise linearity of LnM̂. ✷

Proposition 4.2. Let Bn = ���M∗
n−LnM̂n�� ≤ ��M̂n−LnM̂n���. Then, under

the assumptions of Proposition 4.1,

P�lim n Bn� = 1(4.5)

Proof. Since LnM̂n is decreasing on �0� b� as for all n sufficiently large
under the assumptions of Proposition 4.1, the result is immediate from the
triangular inequality (2.3) of the sup-norm. ✷

Now Proposition 4.2 impies that

��M∗
n − M̂n�� ≤ ��M∗

n −LnM̂n�� + ��M̂n −LnM̂n�� ≤ 2��M̂n −LnM̂n�� as(4.6)

for all large n under the assumptions of Proposition 4.1. In order to bound the
last expression, we first establish an analytic bound for ��M−LnM��.

Proposition 4.3. Under assumption (4.2),

��M−LnM�� ≤ c2$
2
n ∀n(4.7)

Proof. For any fixed n and 0 ≤ j ≤ kn − 1 define

g�x� =M�x+ anj� −LnM�x+ anj� for x ∈ �0� $n��
and note that g′′�x� = M′′�x+ anj� for x ∈ �0� $n�. Now g�0� = g�$n� = 0 By
Taylor expansion and using our assumptions,

g�x� = g′�0+�x+ g′′�ξx�x2/2

for some 0 < ξx < x Using g�$n� = 0, we get

g′�0+�$n + g′′�ξ$n�$2
n/2

= 0 �⇒ g′�0+�
= −g′′�ξ$n�$n/2 �⇒ �g�x��
= � − g′′�ξ$n�$nx/2+ g′′�ξx�x2/2� ≤ c2$

2
n ∀x�

which proves (4.7). ✷
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Proposition 4.4. Under the assumptions of Theorem 4.1, if n1/4 = o�kn�,
then

√
n��M̂n −LnM̂n��

p−→ 0(4.8)

Proof. LetZn = √
n�M̂n−M� on �0�∞� andZ�x� = �σ�0�/S�x��B�U�x���

where

σ2�x� = Var�X− x�X > x� = I�x < T�
[∫

�x�∞�
�t− x�2f�t�dt/S�x� −M2�x�

]
�

U�x� = S�x�σ2�x�/σ2�0�� and B is a standard Brownian motion. Hall and
Wellner (1979) have shown that, under assumption (4.3):

(i) U is a s.f.;
(ii) Z is a mean-zero gaussian processs on �0�T� with covariance function

Cov�Z�x��Z�y�� = σ2�y�/S�x� for 0 ≤ x ≤ y < T, when EX2 <∞; and
(iii) Zn �⇒ Z weakly on �0�T� in D��0�T�� in the Skorohod J1 topology.

Since S is continuous on �0�T�, Z has as continuous paths.

We now proceed as in the proofs of Lemma 6 and Proposition 2 in Wang
(1986). From the tightness conditions on the Skorohod topology we have that
for every ε > 0� ∃ δ > 0 and n0 ∈ � such that

P�sup��Zn�t� −Zn�s�� � �t− s� < δ� t� s ∈ �0� b�� > ε� < ε ∀n ≥ n0(4.9)

Let ε > 0 be arbitrary. Choose δ to satisfy (4.9). Since kn ↑ ∞� ∃n1 ∈ �
such that $n < δ ∀n ≥ n1 Assume that n ≥ n0 ∨ n1

Define the piecewise shift transformationVn byVnM�t�=M�t�+�M̂n�anj�−
M�anj�� for anj ≤ t < anj+1� j ≤ kn − 1� and VnM�b� = M̂n�b� (see Figure 2).

Note that VnM�anj� = M̂n�anj�� j ≤ kn Consider

√
n�M̂n�t�−VnM�t�� =√

n��M̂n�t�−M�t��−�M̂n�anj�−M�anj���=Zn�t�−Zn�anj�

Fig. 2. The operators Ln and Vn.
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for anj ≤ t < anj+1 Then
√
n��M̂n −VnM�� = max

0≤j≤kn−1
sup

anj≤t<anj+1

�Zn�t� −Zn�anj��
(4.10)

≤ sup
�t−s�<δ

�Zn�t� −Zn�s�� �⇒
√
n��M̂n −VnM�� p−→ 0

by (4.9). Note that LnM̂n�anj� = M̂n�anj� = VnM�anj� ∀j ≤ kn Since Ln is

piecewise linear and VnM�anj� = M̂n�anj� ∀j�LnM̂n�t� = LnVnM�t� ∀t ≤ b
Hence,

M̂n�t� −LnM̂n�t� = �M̂n�t� −VnM�t�� + �VnM�t� −LnVnM�t��
+�LnVnM�t� −LnM̂�t��

= �M̂n�t� −VnM�t�� + �VnM�t� −LnVnM�t��
= �M̂n�t� −VnM�t�� + �M�t� −LnM�t���

the last equality following from the fact that VnM is piecewise shifted M. If
n1/4 = o�kn� then

√
n��M−LnM�� → 0 by (4.7). The proof of (4.8) then follows

from (4.7), (4.10) and the above string of equalities. ✷

Proof of Theorem 4. The proof of the theorem is now immediate from
(4.6) and (4.8) if we choose kn such that n1/4 = o�kn� and kn =
o��n/log log n�1/2�� ✷

The key to the proof of the theorem is the observation that the linearized
version of M̂n� LnM̂n� is eventually decreasing as under our assumptions,
so that if M̂n is sufficiently close to it, so will be our restricted estimator, M∗

n
The choice of kn in the proof is important. If kn = �nδ� is chosen, then we
required 1/4 < δ < 1/2 Our restriction is simply monotonicity of M. It is
interesting to note that for concavity or convexity restrictions, on d.f.’s, as in
Kiefer and Wolfowitz (1976), or on cumulative hazard functions, as in Wang
(1986), a similar result by linearization of the empirical estimates required a
kn of the order of n1/3.

Using Theorem 4.1 we could use the same asymptotic inferences about
M using M∗

n or M̂n. In particular, Hall and Wellner (1979) have derived a
conservative asymptotic confidence band for M. We state their result as a
theorem below. Let B be a standard Brownian motion, let σ̂n�0� denote the
sample standard deviation of the entire sample, and for any β ∈ �0�1� let
a = a�β� be such that P���B��10� ≤ a� = β. Let dn�·� = σ̂n�0�/

√
nŜn�·�.

Theorem 4.2 [Hall and Wellner (1979)]. Under assumption (4.3),

lim
n→∞P��M̂n�x� −M�x�� ≤ adn�x� ∀x ≥ 0� ≥ β�(4.11)

with equality for continuous s.f.’s.
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Table 2
Approximate values of P(a) for some values of a

a 2.807 2.241 1.960 1.534 1.149 0.871

P(a) .99 .95 .90 .75 .50 .25

Using Theorem 4.1, we could replace M̂n by M∗
n in Theorem 4.2. The prob-

abilty P�a� ≡ P���B��10� ≤ a� has an infinite series expansion in the stan-
dard normal c.d.f. [Billingsley (1968)]. Hall and Wellner (1979) show that for
a > 14, the approximation P�a� = 45�a� − 3 gives a 3-place accuracy. They
also provide a short table of values (Table 2).

5. Simulations. In this section we present some simulation results com-
paring the empirical estimator, M̂, with our restricted estimator, M∗, for the
DMRL case. Lacking any convenient parametric family of distributions that
are DMRL but not IFR, we have carried out the simulations for two IFR
distributions,− the U�0�1� distribution and a Weibull distribution with s.f.
S�x� = exp�−x2� Note that these two distributions are strictly DMRL. We
have also considered the Exp�1� distribution that is at the boundary of the
DMRL and IMRL distributions. The results, based on 5,000 replications for
a sample of size 30, are tabulated below, comparing the bias and the MSE of
M̂n andM∗

n at five quantiles. It may be noted that the Bias2�M̂n� is negligible
compared to MSE(M̂n) throughout.

It may be seen that M∗
n has a uniformly more negative bias than M̂n, as

is to be expected, but it has a uniformly smaller MSE in all cases, especially
in the right tails. This appears to be true also in the exponential case even
though the bias of M∗

n is very large there while that of M̂n is rather small.
A plausible explanation is that M̂n has an asymptotic variance of σ2�x�/S�x�
at x, which becomes large at the right tail, while M∗

n, although it has a large
negative bias, avoids the contribution to the MSE when M̂n has large positive
values.

6. Nonparametric maximum likelihood estimation. Following Kiefer
and Wolfowitz (1956), if a s.f. S belongs to a class � , we define a sequence

Table 3

Comparison of M̂n and M∗
n at quantile ξQ of U�0�1� distribution

Q M(�Q) Bias(M̂n) Bias(M*n) Mse(M̂n) Mse(M̂n)/Mse(M*n)

.1 .45 −2.17E−04 −.00789 .00259 1.01318

.2 .40 5.17E−05 −.00794 .00228 1.00566

.5 .25 −.00044 −.00807 .00143 1.02207

.8 .10 −.00077 −.00841 .00068 1.04218

.9 .05 −.00266 −.00857 .00046 1.12036
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Table 4

Comparison of M̂nM and M∗
n at quantile ξQ of the survival function S�x� = exp�−x2�

Q M(�Q) Bias(M̂n) Bias(M*n) Mse(M̂n) Mse(M̂n)/Mse(M*n)

.1 .6363 −.00100 −.00821 .00670 1.01433

.2 .5584 −.00134 −.01253 .00649 1.02021

.5 .4237 −.00133 −.02441 .00744 1.09670

.8 .3226 .00033 −.05213 .01597 1.47369

.9 .2825 −.00956 −.08144 .02949 1.68432

S̃n ∈ � to be a NPMLE of S if, for every U ∈ � ,

n∏
i=1

dPn

d�P+Pn�
�Xi� ≥

n∏
i=1

dP

d�P+Pn�
�Xi��(6.1)

where P and Pn are the probability measures corresponding to U and S̃n,
respectively.

We first consider the DMRL case. Assume w.l.o.g. that 0 ≡X0 < X1 < · · · <
XN =XN+1 = · · · =Xn are the ordered observations, where N is the number
of distinct observations and mN ≡ n−N+1 is the number of repeated largest
observations that may be more than one for the DMRL case. Since every
DMRL s.f. is absolutely continuous with a possible jump at the endpoint of its
support, it should be clear from (6.1) that Pn must be absolutely continuous
w.r.t. the measure �λ+ δ0�, where λ is the Lebesgue measure on the line and
δ0 is the point mass at XN The Radon-Nikodym derivative dP/d�λ + δ0� is
given by

g�x� =

f�x�� if x < XN,
S�X−

N�� if x =XN,
0� if x > XN.

Thus the NPMLE, if it exists, will be obtained by maximizing the likelihood
function

L�S� =
{
N−1∏
i=1

g�Xi�
}
�g�XN��mN�

Table 5

Comparison of M̂n and M∗
n at quantile ξQ of the survival function S�x� = e−x

Q M(�Q) Bias(M̂n) Bias(M*n) Mse(M̂n) Mse(M̂n)/Mse(M*n)

.1 1 −.00237 −.04416 .03662 1.06165

.2 1 −.00306 −.06762 .04058 1.07985

.5 1 −.00337 −.13332 .06498 1.17958

.8 1 .00235 −.25789 .20653 1.64466

.9 1 −.03235 −.38283 .45915 1.91315
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over all S ∈ �  It seems reasonable to restrict our candidate s.f.’s to have the
same mean, M�0�, for comparison purposes (Also, it can be shown that the
NPMLE does not exist if the mean is allowed to vary.) Thus we will define �

to be the DMRL s.f.’s with mean=M̂n�0�
Using the inversion formula (1.2), the density f is given by

f�x�= M�0�
�M�x��2 �M

′�x�+1� exp
{
−
∫ x

0

1

M̂�u�
du

}
= S�x�
M�x� �M

′�x�+1��(6.2)

where M′�x� exists. Note that f�x� = 0 if M′�x� = −1 and, if M′�x� = 0 in an
interval, then f�x� = S�x�/M�x� and S�x� correspond to a shifted exponential
distribution with mean M�x� in that interval. Now there are some inherent
ambiguities in defining a NPMLE when it has a density that is discontinuous
at some order statistics. This is the case, for example, in the IFR case [Marshall
and Proschan (1965)] where the NPMLE of the s.f. corresponds to a density
that consists of segments of exponential densities that jump up at some order
statistics, and it is customary to choose the right-hand limits of the density
because they are larger. Since the one-sided derivatives ofM exist everywhere,
we adopt the convention of using the maximum of these when M′ does not
exist.

Suppose that the NPMLE, S̃n, exists with the MRL M̃n and density f̃n.
The following proposition will show that M̃n must have the same shape as
our estimator, M∗

n

Proposition 6.1. Suppose that M̃n exists, and we are given only the values
M̃n�Xk� for 1 ≤ k ≤N. Then M̃n is completely determined on �0�XN�.

Proof. Let 1 ≤ k ≤ N − 1 be fixed. From the inversion formula (1.2) it
can be seen that

S̃n�Xk� = S̃n�Xk−1�
M̃n�Xk−1�
M̃n�Xk�

exp

{
−
∫ Xk

Xk−1

1

M̃n�u�
du

}
(6.3)

Suppose that M̃n has been determined on �0�Xk−1�. Then S̃n�Xk−1� is fixed
from the inversion formula (1.2). If M̃n�Xk−1� = M̃n�Xk�, then M̃n�u� =
M̃n�Xk−1� on �Xk−1�Xk�. If M̃n�Xk−1� = a + b and M̃n�Xk� = a for some
a� b > 0, then, from (6.3), S̃n�Xk� is maximized by choosing the largest possible
M̃n on �Xk−1�Xk� subject to the constraint that M̃n�Xk−1� = a+b� M̃n�Xk� =
a, and M̃n is nonincreasing on �Xk−1�Xk�. From Figure 3 it is clear that
the maximizing M̃n has the graph shown by the solid line, that is, M̃n�u� =
M̃n�Xk−1� on �Xk−1�Xk−b� and M̃n�u� = M̃n�Xk�+Xk−u on �Xk−b�Xk�;
the dotted line shows a competitor. The same argument applies to the interval
�XN−1�XN� using S̃n�X−

N� instead of S̃n�XN� above. From (6.2) and (6.3), and
using an induction argument on k, it is clear that, given the values of M̃n on
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Fig. 3.

�Xk� alone the likelihood is maximized by successively maximizing �S̃n�Xk��
as done above. ✷

Remark. The proof shows that M̃n�X−
k � = 0 or −1, while M̃n�X+

k � = 0.
Thus we must choose the right-hand derivative for f̃n�Xk�.

We now consider the case of n = 2 with two distinct observations,X1 < X2.
Here we have to maximize f�X+

1 �S�X−
2 �. Since the problem is scale invariant,

we assume that the sample mean M̂n�0� = 1 w.l.o.g. Then

X2 = 2−X1� M̂n�X−
1 � = 1−X1� M̂n�X1� = 2�1−X1�� and M̂n�X2� = 0

Suppose that M̃n exits. If M̃n�X−
1 � = t, then, since M̃′

n�0� = 1 and M̃′
n�X2� =

0� M̃n is determined completely by Proposition 6.1. Note that M̂n�X−
1 � ≤

t ≤ M̂n�X1� ∧ 1 by the restriction M̃′
n ≥ −1 and M̃n is nonincreasing. For a

X1 ≤ t < 1, corresponding to X1 > 1/2, an explicit expression of M̃n is given
by [see Figure 4]

M̃n�x� =


1� if 0 ≤ x < X1 + t− 1,
X1 + t− x� if X1 + t− 1 ≤ x < X1,
t� if X1 ≤ x < X2 − t,
X2 − x� if X2 − t ≤ x < X2,
0� if x ≥X2

Fig. 4.
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For t = 1, or X1 ≤ 1/2� M̃n�x� = 1 for 0 ≤ x ≤ X2 − 1 and M̃n = M̂n. on
�X2 − 1�X2�

Now

f̃n�X+
1 � =

S̃n�X1�
M̃n�X1�

= S̃n�X1 + t− 1�
t

= exp�−�X1 + t− 1��
t

and

S̃n�X−
2 � = S̃n�X2 − t� = S̃n�X1 + t− 1� exp

{−�X2 − t� −X1

t

}
= exp

{
2−X1 − t− X2 −X1

t

}


The likelihood function then becomes a function of the single parameter t, and
we have to maximize

L�t� = 1
t

exp
{
3− 2X1 − 2t− X2 −X1

t

}
= 1
t

exp
{
3− 2X1 − 2t− 2�1−X1�

t

}
�

subject to 1−X1 ≤ t ≤X2−X1 = 2�1−X1�, since M̃′
n ≥ −1. Setting L′�t� = 0

yields the equation

− 1
t2

+ 1
t

[
−2+ 2�1−X1�

t2

]
= 0�

whose positive solution is given by

t0 = −1+√
1+ 16�1−X1�

4


Since −1 + √
1+ 2a < a and −1 + √

1+ a2 < a for all a > 0� we note that
t0 < 2�1−X1� ∧ 1 always. It can also be seen that

t0 ≥ 1−X1 ⇔ 1−X1 ≤ 1/2⇔ 2�1−X1�=X2−X1 ≤ 1= M̂n�0�⇔X1 ≥X2/3

For X1 ≤ X2/3� M̃n = M∗
n. However, M̃n ≥ M∗

n in general, and it may be
possible to improve on the negative bias of M∗

n using the NPMLE.
For n ≥ 3, the NPMLE could be obtained by setting the values of M̃n�X−

i � =
ti� i = 1�2�    �N − 1� and then maximizing L�t1�    � tN−1� w.r.t. the N − 1
parameters subject to constraints that restrict each ti to lie in a compact in-
terval. It is clear that a solution exists, and it is also likely that it is asymptot-
ically root-n equivalent to M̂n in probability, the same as M∗

n. Unfortunately,
even for the case n = 3, we get two coupled quadratic equations whose solu-
tion requires solving a quartic equation for which we have found no efficient
solution.
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Looking at the form of the density in (6.2), it can be seen that the NPMLE
does not exist for the IMRL case since M̃′

n�Xi� could be made arbitrarily large
over an arbitrarily small interval.

7. Concluding remarks. In this paper we have introduced some esti-
mators for a MRL when it is restricted to be decreasing or increasing. They
have been shown to be uniformly consistent on compact intervals bounded
away from the endpoint of the support. Under the assumption of strict mono-
tonicity, the estimators are asymptotically root-n equivalent in probability to
the empirical estimator of Yang (1978) for which many asymptotic properties
are known. Thus we get a monotone estimator that enjoys the same asymp-
totic properties as the unrestricted estimator. Simulations seem to indicate
that, under the assumptions, the restricted estimator is uniformly superior
to the empirical in terms of MSE, although it has a higher negative bias.
This result is similar to those obtained for stochastic ordering [Rojo and Ma
(1996)] and uniform stochastic ordering [Rojo and Samaniego (1993), Muk-
erjee (1996)] with similar projection type estimators. It has also been shown
that the NPMLE does not exist for the IMRL case. It does exist for the DMRL
case, and an explicit solution has been found for a sample of size 2. The solu-
tions for larger sample sizes require solutions of coupled quadratic equations
in many variables, and we have been unable to solve them effectively even for
a sample of size 3. It does appear, however, that the NPMLE reduces some
of the bias of our estimator. We conjecture that the NPMLE also is asymp-
totically root-n equivalent in probability to the empirical. It will be useful to
verify this conjecture, and to come up with an effective computational scheme
for evaluating the NPMLE.

One way to extend our results will be to consider the censored case. Yang
(1977) has also considered an empirical estimate in this case using an estima-
tor of the s.f. used by Aalen (1976) and Breslow and Crowley (1974) that has
been shown to be asymptotically equivalent to the Kaplan-Meier (1958) esti-
mator. She shows weak convergence of this estimator to a Gaussian process,
but under the assumption that X is bounded. Our result for the uncensored
case could be directly extended to the censored case, replacing the empirical
s.f. by the Kaplan-Meier or the Aalen-Breslow-Crowley estimator. However,
the assumption of boundedness on X appears to be unduly restrictive, and it
will be worthwhile to remove this restriction.

We have not considered any testing problems in this paper. Hollander and
Proschan (1975) have considered tests for exponentiality against NBUE,
DMRL and IFR alternatives using integrals of empirical versions of func-
tionals of the s.f.’s that vanish if and only if the distribution is exponential.
Their test for the NBUE alternative turns out to be equivalent to a standard
test for the IFR alternative even though we have IFR�⇒ DMRL�⇒ NBUE. It
might be better to consider restricted estimators for each of the alternatives
and base the test on the distribution of an exponential under the same order
restriction. Work is presently under progress along these directions.
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