Spatial and Temporal Patterns in the Influence of Land Use on Water Quality in Five Portland Area Creeks Representing Differing Levels of Urbanization

Heejun Chang
Portland State University

Madeline Steele
Zoe Bonak

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/geog_fac

Part of the [Environmental Sciences Commons](https://pdxscholar.library.pdx.edu/geog_fac)

Citation Details

Zoe and I are master’s students in geog at PSU
Started this project in hydrology class, expanded it in the spatial quantitative analysis class.
We’re hoping to refine and enhance the project and would love to get your feedback.
Mention that we’d love to get feedback!
Introduction

We are interested in:
• Land use and water quality
• Precipitation and water quality
• Variation among spatial and temporal scales

Talk a little about water quality land use relationship

Citations:
BES Westside Streams Report
Paul and Meyer 2001 (urbanization’s damaging effects on waterways, especially by increasing stream temperatures)
Dunne and Leopold 1978 – hydrology “bible”
Wear, et al 1998 – importance of water quality for humans
Research Questions:

• Are there water quality trends in Portland area streams?
 – Do they relate to land use?
 – Do Green Streets improve water quality?
• How are land use classes correlated with impaired water quality?
 – How do these effects vary with scale/distance?
• Are antecedent moisture conditions correlated to water quality?
 – Which length of time has the strongest effect?

Have these questions been approached before?
Site Selection

- Wanted watersheds with variety of land cover
- Water quality data requirements:
 - 10 years for temporal
 - 5 years for spatial
- Selected 13 sites for temporal analysis
 - 4 analytes each
- 15 sites for spatial analysis
 - 6 analytes each
Land Use

- Developed, High Intensity
- Developed, Med. Intensity
- Developed, Low Intensity
- Developed, Open Space
- Wetlands
- Cultivated Crops
- Herbaceous/Shrub
- Mixed Forest
- Deciduous Forest
- Evergreen Forest
Data Sources

- Monthly Water quality grab samples
 - City of Portland Bureau of Environmental Services (BES)
- GIS
 - USGS 2006 Land Cover
 - Portland Metro RUIS
 - Portland BES Green Streets 2011
- Precipitation
 - Portland HYDRA network (USGS)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>MRL</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond Conductivity, Specific</td>
<td>SM 2510 B</td>
<td>1.00</td>
<td>μmhos/cm</td>
</tr>
<tr>
<td>DO Dissolved Oxygen</td>
<td>SM 4500–O G</td>
<td>0.10</td>
<td>mg/L</td>
</tr>
<tr>
<td>Temp Temperature</td>
<td>SM 2550 B</td>
<td>0.10</td>
<td>deg C</td>
</tr>
<tr>
<td>TP Phosphorus, Total</td>
<td>EPA 365.4</td>
<td>0.03</td>
<td>mg/L</td>
</tr>
<tr>
<td>TSS Solids, Total Suspended</td>
<td>SM 2540 D</td>
<td>1.00</td>
<td>mg/L</td>
</tr>
<tr>
<td>N Nitrate</td>
<td>EPA 300.0</td>
<td>0.10</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

Add abbreviations column to this slide
Quickly explain logic for selecting these parameters
Say that we delineated these with a 10-m DEM (USGS) REDO without hillshade, and including subwatershed boundaries.
Land Use / Land Cover Metrics

- Population Density (persons / km²)
- Street Density (km / km²)
- Percent Forested
- Percent Agriculture
- Percent Low-Density Development
- Percent Medium/High Density Development
- Green Street Feature Density

Fanno Creek (Tualatin River Keepers, 2009)
Green Streets

According to BES GIS data:
- 3 before 2000
- 85 before Jul. 2005
- 903 before Oct. 2010
Precipitation Data

- Geocode HYDRA station addresses
- Found HYDRA station closest to water quality sampling site
- For each measurement date, calculated same day precipitation (mm), as well as 3-, 5-, and 7-day cumulative precipitation values

*Hamilton and Luffman 2009
Statistical Analyses

- Methods used:
 - Descriptives/visuals (box-whisker plots, histograms)
 - Spearman’s Rank Correlation Coefficient (p)
 - Seasonal Kendall Test

- Software:
 - ArcGIS v. 10
 - SPSS v. 19
 - Excel v. 2010
 - MATLAB

Burkey 2009; found that much of the data was non-normal. Decided to adopt a non-parametric approach.
Results Overview

- Seasonal Kendall trend analysis outputs
- Selected correlations between land cover metrics and analytes
- Selected correlations between antecedent moisture conditions and analytes

Fanno Creek (Penny Sunlove, 2010)
Seasonal Kendall Results

Example Output:

Phosphorus Trend at Fanno–8 (p = 0.015)
Water Quality Trends Significance

- Cond
- DO
- P
- Temp

p value

- 0.5
- 0.2
- 0.1
Make the title bold, if there is time.
Spearmans’ correlations between SC and metrics at three spatial and temporal scales

<table>
<thead>
<tr>
<th>Sub-basin</th>
<th>Annual</th>
<th>Dry</th>
<th>Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density</td>
<td>.40</td>
<td>.36</td>
<td>.39</td>
</tr>
<tr>
<td>Street Density</td>
<td>.70**</td>
<td>.68**</td>
<td>.71**</td>
</tr>
<tr>
<td>% Forested</td>
<td>-.56*</td>
<td>-.53*</td>
<td>-.59*</td>
</tr>
<tr>
<td>% Agriculture</td>
<td>-.59*</td>
<td>-.55*</td>
<td>-.59*</td>
</tr>
<tr>
<td>% Low Density Developed</td>
<td>.49</td>
<td>.45</td>
<td>.51</td>
</tr>
<tr>
<td>% High Density Developed</td>
<td>.25</td>
<td>.25</td>
<td>.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100m Buffer</th>
<th>Annual</th>
<th>Dry</th>
<th>Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density</td>
<td>.63*</td>
<td>.56*</td>
<td>.63*</td>
</tr>
<tr>
<td>Street Density</td>
<td>.63*</td>
<td>.62*</td>
<td>.67**</td>
</tr>
<tr>
<td>% Forested</td>
<td>-.54*</td>
<td>-.50*</td>
<td>-.54*</td>
</tr>
<tr>
<td>% Agriculture</td>
<td>-.59*</td>
<td>-.55*</td>
<td>-.59*</td>
</tr>
<tr>
<td>% Low Density Developed</td>
<td>.57*</td>
<td>.53*</td>
<td>.60*</td>
</tr>
<tr>
<td>% High Density Developed</td>
<td>.43</td>
<td>.42</td>
<td>.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50m Buffer</th>
<th>Annual</th>
<th>Dry</th>
<th>Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density</td>
<td>.66**</td>
<td>.61*</td>
<td>.66**</td>
</tr>
<tr>
<td>Street Density</td>
<td>.69**</td>
<td>.67**</td>
<td>.73**</td>
</tr>
<tr>
<td>% Forested</td>
<td>-.57*</td>
<td>-.54*</td>
<td>-.58*</td>
</tr>
<tr>
<td>% Agriculture</td>
<td>-.59*</td>
<td>-.55*</td>
<td>-.59*</td>
</tr>
<tr>
<td>% Low Density Developed</td>
<td>.62*</td>
<td>.59*</td>
<td>.64*</td>
</tr>
<tr>
<td>% High Density Developed</td>
<td>.45</td>
<td>.44</td>
<td>.47</td>
</tr>
</tbody>
</table>

** = significant at the 0.01 level
* = significant at the 0.05 level

Specific Conductivity:
Street density (annual–subbasin, wet–50m)
- Impervious surface runoff contributing ions to the stream
TSS:
Population density (dry–subbasin, dry–100m, dry–50m)
%LowDenDev (dry–subbasin)
 Dry season storm events – large pulses of sediment flowing off impervious surfaces and dry soils

Because the Portland area does not typically receive much rain during the summer months, any precipitation event is likely to have a flushing effect on the landscape because soil is not in a state of constant saturation. Stream flow volume is lower and less able to dilute sediment in the dry season. Additionally, construction and other major soil disturbances are more likely to take place in the dry season.
Temperature:
- %HighDenDev (dry–subbasin, dry–100m, dry–50m)
- %LowDenDev (wet–100m)
 - Urban heat island effect
 - Less riparian shading (?)
 - Thermal pollution from impervious surface runoff(?)

<table>
<thead>
<tr>
<th>Sub-basin</th>
<th>Annual</th>
<th>Dry</th>
<th>Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density</td>
<td>-.40</td>
<td>-.77</td>
<td>.18</td>
</tr>
<tr>
<td>Street Density</td>
<td>.33</td>
<td>.49</td>
<td>.55</td>
</tr>
<tr>
<td>% Forested</td>
<td>-.66**</td>
<td>-.63*</td>
<td>-.65**</td>
</tr>
<tr>
<td>% Agriculture</td>
<td>.50</td>
<td>.50</td>
<td>-.13</td>
</tr>
<tr>
<td>% Low Density Developed</td>
<td>.34</td>
<td>.17</td>
<td>.69**</td>
</tr>
<tr>
<td>% High Density Developed</td>
<td>.65**</td>
<td>.74**</td>
<td>.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100m Buffer</th>
<th>Annual</th>
<th>Dry</th>
<th>Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density</td>
<td>-.11</td>
<td>-.42</td>
<td>.42</td>
</tr>
<tr>
<td>Street Density</td>
<td>.17</td>
<td>.16</td>
<td>.52</td>
</tr>
<tr>
<td>% Forested</td>
<td>-.65**</td>
<td>-.66**</td>
<td>-.67**</td>
</tr>
<tr>
<td>% Agriculture</td>
<td>.50</td>
<td>.50</td>
<td>-.13</td>
</tr>
<tr>
<td>% Low Density Developed</td>
<td>.35</td>
<td>.23</td>
<td>.72**</td>
</tr>
<tr>
<td>% High Density Developed</td>
<td>.57</td>
<td>.74**</td>
<td>.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50m Buffer</th>
<th>Annual</th>
<th>Dry</th>
<th>Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Density</td>
<td>-.08</td>
<td>-.39</td>
<td>.45</td>
</tr>
<tr>
<td>Street Density</td>
<td>.11</td>
<td>.01</td>
<td>.58</td>
</tr>
<tr>
<td>% Forested</td>
<td>-.62*</td>
<td>-.66**</td>
<td>-.66**</td>
</tr>
<tr>
<td>% Agriculture</td>
<td>.50</td>
<td>.50</td>
<td>-.14</td>
</tr>
<tr>
<td>% Low Density Developed</td>
<td>.30</td>
<td>.26</td>
<td>.67**</td>
</tr>
<tr>
<td>% High Density Developed</td>
<td>.53*</td>
<td>.71**</td>
<td>.50</td>
</tr>
</tbody>
</table>

** = significant at the 0.01 level
* = significant at the 0.05 level
suggest that water quality can continue to deteriorate in highly urban basins even after almost all development has been completed.
Spatial Analysis Summary

- SC showed strong, significant correlations with street density during the wet season
 - Suggests that road runoff is regularly washed into many Portland area streams during the wet season

- TSS showed strong, significant correlations to population density in the dry season
 - Likely caused by the flushing of built up sediment from impervious areas

- T showed strong, significant correlation to high density development during the dry season
 - Likely caused by lack of riparian shading or thermal pollution from runoff from heated impervious surfaces

- No correlations between Green Streets point density and WQ

SC correlations strong and sig. at subbasin and buffer
TSS strong and sig. at all three scales

Need a better way to quantify BMPs
Antecedent Precip. Summary

- Spatially heterogeneous results
- Only Balch Creek shows strong correlations between N and 5- and 7-day antecedent precip.
 - Suggests more N in Balch comes from subsurface or groundwater flow
- Only Miller shows strong correlations between TSS and 1-, 3-, and 5-day antecedent precip.
 - Localized geomorphic variation?
- SC alone was showed consistent pattern
 - Strongly correlated to 3-, 5-, and 7-day antecedent precip. at many sites

in both seasons, and annually
Some Limitations of Data and Analyses

- Small number of sampling sites
- Coarse resolution of some GIS data layers
 - Example: 50m riparian zone with 30m cells (USGS LULC 2006)
- Non-normal distribution of data prevents parametric analyses
- Soil data, geology, and septic system age were not considered

Expand??
Next Steps

- Incorporate data on septic systems and stream restoration activities
- Use more water quality parameters, such as pH
- Use more metrics
 - Percent impervious surface
 - Slope
 - Geology
- Correct for climatic influences on water temperature and dissolved oxygen
- Use higher resolution LULC layer from Inst. For Natural Resources

Thanks to Zoe, Heejun, and the Portland BES!

We would love to hear your feedback!
Add any references that you plan to mention

