Improving Quality of Patient Care Through Automated Nerve Segmentation

Madisen D. Phillips
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/mcecs_mentoring
Part of the Chemical Engineering Commons, and the Electrical and Computer Engineering Commons

Citation Details
http://pdxscholar.library.pdx.edu/mcecs_mentoring/18

This Poster is brought to you for free and open access. It has been accepted for inclusion in Undergraduate Research & Mentoring Program by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Improving Quality of Patient Care Through Automated Nerve Segmentation

Maddie Phillips1,2

1Portland State University 2Maseeh College of Electrical and Computer Engineering

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image1.png}
\caption{Indwelling catheter inserted into pain site [1]}
\end{figure}

\textbf{Objective}

Build a model that can segment a collection of nerves called the Brachial Plexus in ultrasound images to increase accuracy of placement of indwelling catheters while reducing and improving pain levels for surgical patients.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image2.png}
\caption{Receiver Operating Characteristic Curve [2]}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image3.png}
\caption{Overlapping dataset analysis figure [2]}
\end{figure}

\textbf{Background and Significance}

Continuous peripheral nerve blocks (CPNBs) are the only available medium-to-long-term method to block evoked pain in patients following surgery. A CPNB is an indwelling catheter that mitigates pain by administering anesthesia in the region of the affected nerve while decreasing nausea, vomiting, and incidence of post surgery chronic pain syndromes. The ability to accurately identify nerve structures in ultrasound images is a critical step for proper insertion. With machine learning techniques, models can be constructed that identify nerve structures from large datasets of patient ultrasound images to aid medical professionals during catheter placement [1].

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image4.png}
\caption{Annotated ultrasound image of brachial plexus}
\end{figure}

False positive and false negative classifications (figure 3) can result in improper catheter placement, exposing the patient to more risk. Evaluation can indicate the proficiency and accuracy of a trained algorithm. Figure 2 includes an example of a Receiver Operating Characteristic (ROC) providing an analysis method to select optimal models.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image5.png}
\caption{Unannotated ultrasound image to test algorithm}
\end{figure}

\textbf{Materials and Methods}

Machine learning algorithms extract input features from large datasets and construct models that can predict outputs. The data required for this project included two sets of ultrasound images: the first set (5636) of which included the annotated region of the brachial plexus, the second set (5508) of which included unannotated brachial plexus regions. The role of algorithm is to learn how the data is related to the outcome, thus training a model that can be tested and used against data not included in its training (learning) phase.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image6.png}
\caption{Datasets (images) courtesy of Kaggle.com}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image7.png}
\caption{Annotated ultrasound image of brachial plexus}
\end{figure}

A common approach in machine learning, least squares regression (1) is a model that assumes a linear relationship between input variables (x) and a single output variable (y). The Dice Coefficient (2) is a method of evaluating a model output against the ground truth.

\begin{align*}
 s_i^2 &= \frac{1}{n} \sum_{i=1}^{n} s_i^2 - \bar{s}^2 \\
 2 \frac{|X \cap Y|}{|X| + |Y|} &\quad (2)
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image8.png}
\caption{Annotated ultrasound image of brachial plexus}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image9.png}
\caption{Annotated ultrasound image of brachial plexus}
\end{figure}

\textbf{Future Research}

- Produce results from least squares regression method
- Increase efficiency with more advanced algorithms
- Broaden the scope and target of this algorithm

\textbf{Acknowledgements}

The authors acknowledge the support of the Semiconductor Research Corporation (SRC) Education Alliance (award #2009-UR-20212G) and Maseeh College of Engineering and Computer Science (MCECS) through the Undergraduate Research and Mentoring.

\textbf{Contact Information}

Email: madisen2@pdx.edu

\textbf{References}
