Portland State University PDXScholar

**Research-Based Design Initiative** 

Research Centers, Institutes, and Collaborations

Fall 2012

## Improving the Integration of Sustainable Strategies in Schematic Design: Developing a multi-faceted tool to improve thermal resistance in architectural enclosure systems

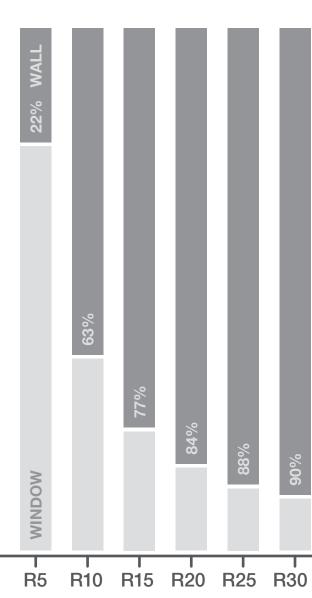
M. Boyce Postma Portland State University

Jacob Spence Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/research\_based\_design

Part of the Architecture Commons Let us know how access to this document benefits you.

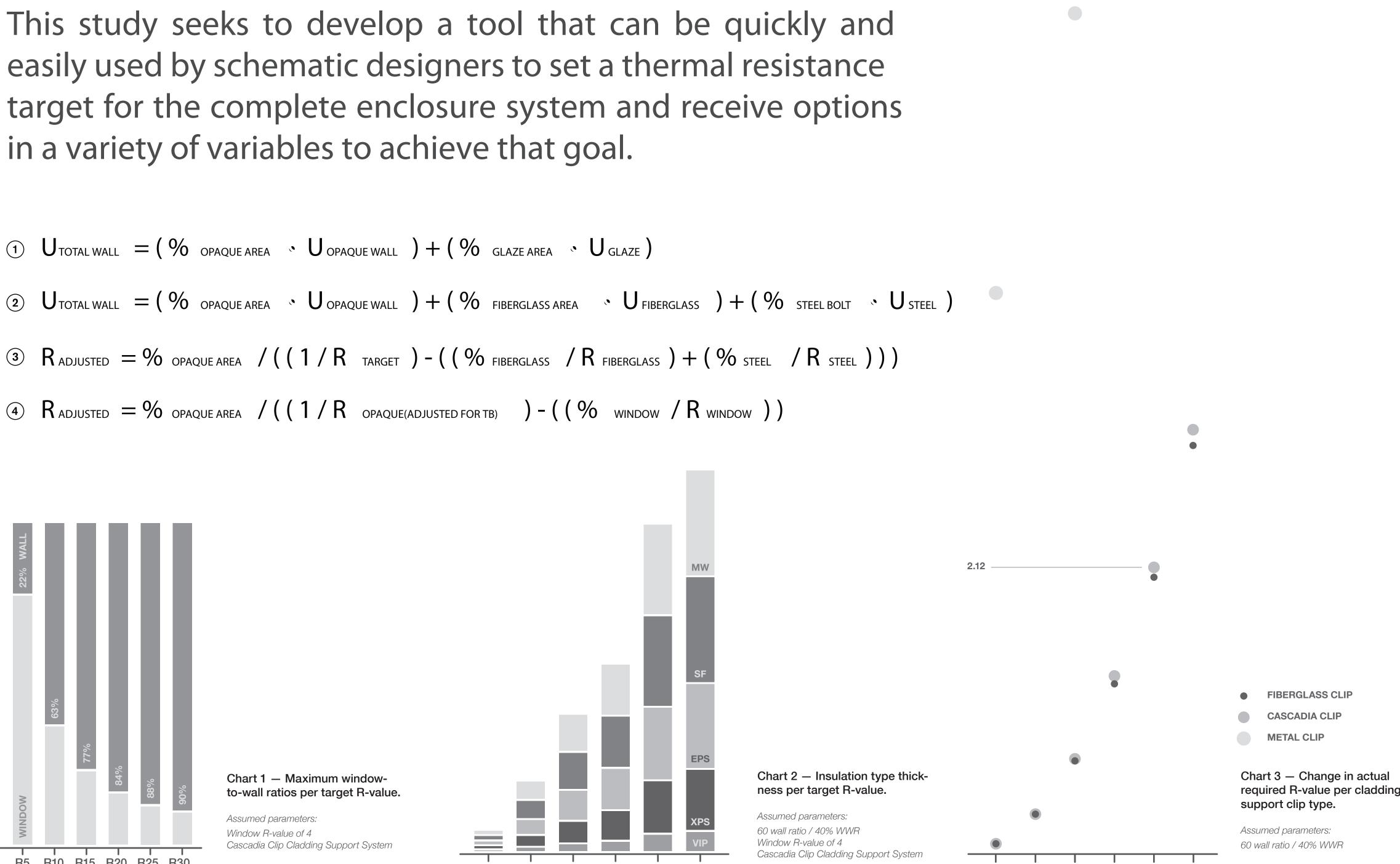
#### **Recommended Citation**

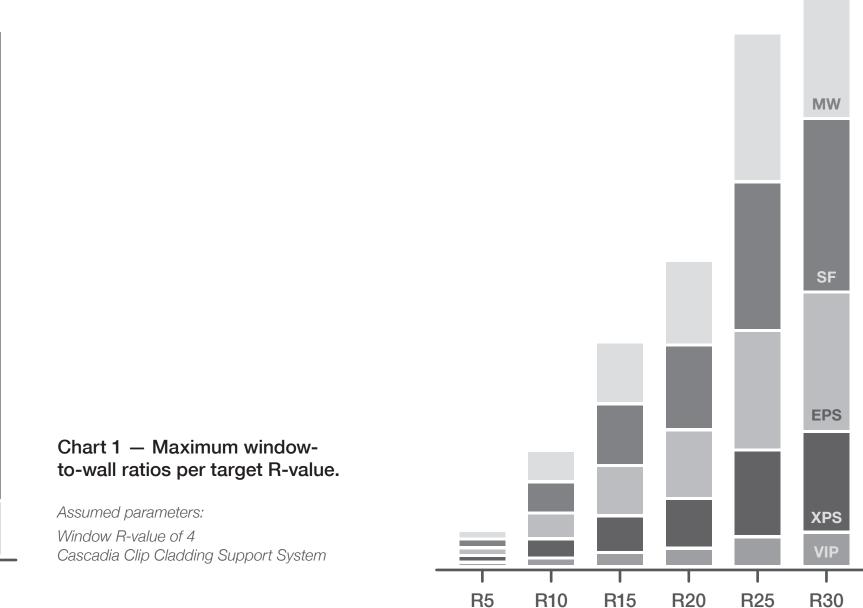

Postma, M. Boyce and Spence, Jacob, "Improving the Integration of Sustainable Strategies in Schematic Design: Developing a multi-faceted tool to improve thermal resistance in architectural enclosure systems" (2012). *Research-Based Design Initiative*. 19. https://pdxscholar.library.pdx.edu/research\_based\_design/19

This Book is brought to you for free and open access. It has been accepted for inclusion in Research-Based Design Initiative by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

|                                                                                  | 1. Ple               | ease ENTER               | Pricing for insula                | tion Mater        | ial                     |
|----------------------------------------------------------------------------------|----------------------|--------------------------|-----------------------------------|-------------------|-------------------------|
|                                                                                  |                      |                          |                                   |                   |                         |
| Туре                                                                             |                      |                          | Cost / SF / IN                    |                   | R-Value                 |
| Vacuum Insulated Panel                                                           |                      |                          |                                   | \$5.00            | 30                      |
| Expanded Poly (EPS)                                                              |                      |                          |                                   | \$0.35            | 7                       |
| Extruded Poly (XPS)                                                              |                      |                          |                                   | \$0.70            | 4                       |
| Spray Foam                                                                       |                      |                          |                                   | \$1.05            | 7                       |
| lineral Wool                                                                     |                      |                          |                                   | \$0.45            | 4                       |
|                                                                                  | •1                   | he figures given are exc | lusive of installation and suppor | t structure costs |                         |
|                                                                                  | 2                    | . Please ENT             | ER WWR for Opa                    | que Wall          |                         |
|                                                                                  |                      |                          | Opaque Wall                       |                   | Window                  |
| Window to Wall Ratio                                                             |                      |                          |                                   | 60.00%            | 40.00%                  |
|                                                                                  | 3. Ple               | ase ENTER T              | arget Wall Enclo                  | sure R-Va         | lue                     |
| Target R-Value for Enclosure System                                              |                      |                          | 20                                |                   |                         |
|                                                                                  | 4. Y                 | our Thermal              | Bridge Adjusted                   | R-Value is        | 5:                      |
| Adjusted R-Value                                                                 |                      |                          | 20.83                             |                   |                         |
|                                                                                  | 5. Least exp         | ensive insula            | tion by R-Value o                 | of window         | selection.              |
|                                                                                  | Cost / SF (\$)       |                          | Туре                              |                   | Thickness Required (IN) |
|                                                                                  | \$                   | 0.00                     | n/a                               |                   | n/a                     |
| -1 Window                                                                        | Ψ                    |                          |                                   |                   |                         |
|                                                                                  | \$                   | 0.00                     | n/a                               |                   | n/a                     |
| -2 Window                                                                        |                      | 0.00                     | n/a<br>n/a                        |                   | n/a<br>n/a              |
| -2 Window<br>-3 Window                                                           | \$                   |                          |                                   |                   |                         |
| 2-2 Window<br>2-3 Window<br>2-4 Window                                           | \$<br>\$             | 0.00                     | n/a                               |                   | n/a                     |
| R-1 Window<br>R-2 Window<br>R-3 Window<br>R-4 Window<br>R-5 Window<br>R-6 Window | \$<br>\$<br>\$       | 0.00                     | n/a<br>n/a                        |                   | n/a<br>n/a              |
| R-2 Window<br>R-3 Window<br>R-4 Window<br>R-5 Window                             | \$<br>\$<br>\$<br>\$ | 0.00<br>0.00<br>2.86     | n/a<br>n/a<br>EPS                 |                   | n/a<br>n/a<br>8.17      |

Developing a multi-faceted tool to improve thermal resistance in architectural enclosure systems


This study seeks to develop a tool that can be quickly and easily used by schematic designers to set a thermal resistance target for the complete enclosure system and receive options in a variety of variables to achieve that goal.




- Use standard forumla to find adjusted R-value of the WWR. (1)The U-Value is the reciprocal of the R-Value of a material or building assembly. As the R-Value describes the thermal resistance of a material or assembly, the U-Value describes the thermal conductivities of a material or assembly.
- 2 Modify formula: find the adjusted R-Value for a wall assem bly using one of the three CSS (Cascadia Clip).
- Modify formula: convert all U-values to R-values and rear (3) range the formula to solve for the adjusted R-Value of the comprehensive wall assembly after thermal bridging.
- Modify formula: find the Rojusted for each WWR, and (4) Rwindow values R-1—R-8.

| WINDOW-TO-WALL RATIO     | WWR                   |
|--------------------------|-----------------------|
| R-VALUE OF THE WINDOW    | R window              |
| R-VALUE OF THE ENCLOSURE | R target              |
| CLADDING SUPPORT SYSTEM  | CSS                   |
| COST                     | \$                    |
| INSULATION TYPE          | VIP, XPS, EPS, SF, MP |
|                          |                       |

# Improving the integration of sustainable strategies in schematic design.





**R5** 

R10 R15 R20 R25 R30

ARCH 567: Advanced Architectural Structures, Winter 2012 Corey Griffin, Assistant Professor, Portland State University

### M. Boyce Postma

Masters of Architecture Candidate University of Oregon

### Jacob Spence

Masters of Architecture Candidate University of Oregon