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RESEARCH Open Access

Associations between street connectivity
and active transportation
David Berrigan1*, Linda W Pickle2,3, Jennifer Dill4

Abstract

Background: Past studies of associations between measures of the built environment, particularly street
connectivity, and active transportation (AT) or leisure walking/bicycling have largely failed to account for spatial
autocorrelation of connectivity variables and have seldom examined both the propensity for AT and its duration in
a coherent fashion. Such efforts could improve our understanding of the spatial and behavioral aspects of AT. We
analyzed spatially identified data from Los Angeles and San Diego Counties collected as part of the 2001 California
Health Interview Survey.

Results: Principal components analysis indicated that ~85% of the variance in nine measures of street connectivity
are accounted for by two components representing buffers with short blocks and dense nodes (PRIN1) or buffers
with longer blocks that still maintain a grid like structure (PRIN2). PRIN1 and PRIN2 were positively associated with
active transportation (AT) after adjustment for diverse demographic and health related variables. Propensity and
duration of AT were correlated in both Los Angeles (r = 0.14) and San Diego (r = 0.49) at the zip code level.
Multivariate analysis could account for the correlation between the two outcomes.
After controlling for demography, measures of the built environment and other factors, no spatial autocorrelation
remained for propensity to report AT (i.e., report of AT appeared to be independent among neighborhood resi-
dents). However, very localized correlation was evident in duration of AT, particularly in San Diego, where the var-
iance of duration, after accounting for spatial autocorrelation, was 5% smaller within small neighborhoods (~0.01
square latitude/longitude degrees = 0.6 mile diameter) compared to within larger zip code areas. Thus a finer
spatial scale of analysis seems to be more appropriate for explaining variation in connectivity and AT.

Conclusions: Joint analysis of the propensity and duration of AT behavior and an explicitly geographic approach
can strengthen studies of the built environment and physical activity (PA), specifically AT. More rigorous analytical
work on cross-sectional data, such as in the present study, continues to support the need for experimental and
longitudinal study designs including the analysis of natural experiments to evaluate the utility of environmental
interventions aimed at increasing PA.

Background
Physical activity contributes to health through its direct
effects on disease risk as well as its indirect effects via
contributions to weight loss and weight maintenance.
These benefits have been comprehensively reviewed in a
recent report from the US Physical Activity Guidelines
Advisory Committee [1]. However, there is evidence to
indicate that there is an epidemic of sedentary behavior
in the developed world [2]. Recent results based on
objective measurement of physical activity using acceler-
ometers in the US and Sweden suggest that the

prevalence of adherence to PA guidelines is even lower
than that indicated by studies based on health surveys,
with only about 5% of US and Swedish adults adhering
to physical activity guideline recommendations of 30+
minutes of moderate or greater intensity PA five or
more days per week [3,4].
Walking and bicycling for transportation and/or lei-

sure are a major form of physical activity worldwide [5],
and such activities can meet recommendations for phy-
sical activity [6]. Individual interventions to increase
walking/bicycling are expensive and have seldom been
implemented at the population level. Furthermore, cam-
paigns aimed at changing behavior absent environmental* Correspondence: berrigad@mail.nih.gov
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change may have small or poorly maintained effects
[7-9]. Thus, there is considerable interest in the poten-
tial for understanding and improving the active trans-
portation (AT) environment as a way to increase
walking and bicycling for health and to alter mode share
away from automobiles towards AT, a goal thought to
have environmental, energy, and potentially social bene-
fits [10,11].
Street connectivity is one major environmental or

‘built environment’ feature that could have direct or
indirect influences on AT. Street networks that are
more connected are thought to increase walkability and
those that include longer blocks, fewer intersections,
and more dead-ends are argued to be less conducive to
walking. Direct effects of connectivity could include ease
of walking from place to place and the aesthetic corre-
lates of more connected networks. Indirect effects of
connectivity are often associated with the association
between destinations and connectivity. Connectivity cre-
ates more and shorter routes to such destinations
[12-15].
Diverse studies have examined the association between

various measures of street connectivity including block
length [16], block size [17-19], intersection density
[18,20], percent four way intersections [16,21]; street
density [22,23]; connected intersection ratio [19,24], and
link node ratio [25]. Grid block and path length charac-
teristics and derived indices such as the alpha and
gamma index (see below) have also been reported and
analyzed in relation to pedestrian behavior and mode
choice [14,26-29]. Many, but not all of these studies find
positive associations between measures of connectivity
and AT or leisure walking. Recent papers have also
called attention to the fact that many of these positive
associations are weak, even when statistically significant
[30-33]. It also seems likely that such measures are cor-
related with one another and therefore it is not obvious
what specific recommendation about street network
design arise from this body of work. The first goal of
this paper is to extract multiple measures of street con-
nectivity in a single study and try to identify the under-
lying factors describing street networks that are
associated with active transportation via walking and
bicycling.
A second goal of the paper is to add a geographic

perspective to the analysis of associations between street
connectivity and AT. Past studies of street connectivity
have largely or completely ignored the fact that respon-
dent environments are distributed spatially and likely to
be correlated with one another over some (unknown)
spatial scale. Sometimes this issue has been addressed
by comparing specific neighborhoods selected to differ
with respect to urban form and other variables and
separated geographically [22]. In this paper we explicitly

explore the effects of geography by including spatial ran-
dom effects in our analysis of associations between
street connectivity and active transportation behavior.
The third goal of the paper is to examine propensity

and duration of AT separately. Behavioral traits such as
leisure time walking and bicycling, AT or other forms of
physical activity have at least two components, the prob-
ability or propensity to engage in the behavior and the
duration of the behavior in the people who are active
(we acknowledge that other components such as inten-
sity and affect are not included here). Many past studies
of built environment and walking have analyzed propen-
sity and duration separately; thus we aim to illustrate
the use of a multivariate distribution with a binary com-
ponent for walking propensity and a log normal compo-
nent for walking duration. This approach should
provide more statistical power to detect covariates asso-
ciated with both aspects of AT.
To address these goals we analyzed street connectivity

and its association with AT using a large spatially identi-
fied data set collected as part of the 2001 California
Health Interview Survey. Street connectivity represents a
major class of environmental variables of great interest
to health geographers because they are potentially corre-
lated with multiple health behaviors and organized over
diverse spatial scales.

Methods
Additional detail concerning the survey and variables
analyzed here are presented in Huang et al. 2009 [34].
This study is based on a subset of data from the 2001
California Health Interview Survey (CHIS). This large
(N = 55,428 households) random digit dial telephone
survey in California is administered in seven languages
(English, Spanish, Mandarin, Cantonese, Vietnamese,
Korean and Khmer) and had a response rate, based on
the American Association for Public Opinion Research
equation RR4 [35], of 43.3% with a cooperation rate of
63.7% (weighted to account for the sample design) and
77.1% (unweighted).
We studied residents of San Diego and Los Angeles

counties where over 70% of survey respondents supplied
the name of the nearest intersection to their residence
(In LA County, 8728/12196 = 71.5%, and in SD County
1952/2672 = 73%). These addresses were geocoded to
represent the location of each respondent for purposes
of this analysis. After exclusion of respondents with
missing or invalid data, 8506 respondents from LA and
1883 respondents from SD were used in the analysis.
These two counties were the only ones with nearest
intersection data available in CHIS 2001.
The paper has two sections. In the first, we character-

ize street connectivity based on GIS-derived measures
from buffers around the nearest intersections to
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respondents homes. In the second section we used a
combination of CHIS variables, Census data, and the
street connectivity data in a model-based analysis to
explore the relative contributions of street connectivity
and other variables to active transportation (AT).

Contextual and connectivity variables
We compiled street connectivity and two density-related
variables using circular buffers (areas around a point) of
radius 0.5 km surrounding each respondent’s location
(nearest intersection to home). These buffers were
defined using TIGER map files from the 2000 U.S. Cen-
sus Bureau and implemented with GIS software (Arc-
View, ESRI, Inc.). Data concerning population and
employment density and characteristics of the street
network for each buffer were then calculated at the cen-
sus tract or census block (administrative units that are
nested within census tracts) level.
Population density within a buffer was generated by

downloading US Census data at the census block level.
Each half-kilometer buffer usually overlapped more than
one census block. We assumed that population density
is uniform within each census block and assigned a por-
tion of the population within the census block to the
buffer based on the area of the census block within the
buffer. For example, if a buffer covers half of a census
block, half of the census block’s population is assigned
to that buffer, in addition to the population in census
blocks that were completely within the buffer. The total
population in the buffer was then divided by the area
(0.785 square kilometers). Employment density data
were generated using data from the metropolitan plan-
ning organization for each area - the Southern Califor-
nia Association of Governments (SCAG) for Los
Angeles and the San Diego Association of Governments
(SANDAG) for San Diego. Each agency provided total
employment data by census tract for the year 2000. The
method to calculate employment density was identical
to that of population density, except that because of
census data availability, we used tracts instead of blocks.
Therefore, the variance associated with population and
employment densities are likely to differ in this study.
For our measures of street connectivity, we first

extracted or calculated values for nine variables for each
buffer. Later we used principal components analysis (see
results) to reduce the number of variables used in our
analysis of variance. Variables included: 1) Link/Node
Ratio, the link/node ratio is the total number of links
divided by the total number of nodes. All nodes are
included, meaning intersections and the ends of cul de
sacs and dead-end streets. A higher ratio = higher con-
nectivity. Links are defined as street segments and
nodes as intersections or dead ends. 2) Intersection
Density, intersection density is the number of real nodes

(nodes that are at 4-way or 3-way intersections, not the
end of cul de sacs) divided by the buffer area (0.785 sq.
km.). A higher density = higher connectivity. 3) Street
Network Density, the street network density is calcu-
lated by summing the lengths of all the links within the
buffer (the total network distance within the buffer,
ignoring the number of lanes on a road) and dividing by
the area of the buffer (0.785 sq. km.) (Note buffer size
choice was based on our expert opinion, budget con-
straints precluded analysis of more buffer sizes). The
portion of a street (link) that continued outside the buf-
fer was not included. A higher density = higher connec-
tivity. 4) Connected Node Ratio, connected node ratio
(CNR) is the number of real nodes divided by the total
number of all nodes. If all the nodes in a buffer were at
4-way or 3-way intersections, the CNR would be 1.0.
A higher ratio = higher connectivity (maximum = 1.0).
5) Block Density, block density is the total number of
Census blocks within a buffer divided by the area of the
buffer (0.785 sq. km.). Census block boundaries gener-
ally coincide with streets and are consistent with a block
defined by the area within connecting streets. If a por-
tion of a block was outside a buffer, only the area of the
block within the buffer was included. A higher density =
higher connectivity. 6) Average Block Length, the aver-
age block length is the average length of the links that
are completely or partially within the buffer. For links
(blocks) that continue outside the buffer, the entire
length of the link is included in the calculation. Trun-
cating the link at the buffer boundary would have
reduced the length of the block artificially. A higher
average length = less connectivity. 7) Median Block
Length, median block length was calculated in the same
manner as average block length. A higher median length
= less connectivity
The eighth variable was the Gamma index, the ratio of

the number of links in the network to the maximum
possible number of links between nodes. The maximum
possible number of links is expressed as 3 * (# nodes -
2) because the network is abstracted as a planar graph.
In a planar graph, no links intersect, except by nodes
[28]. Values for the gamma index range from 0 to 1 and
are often expressed as a percentage of connectivity, e.g.
a gamma index of 0.54 means that the network is 54
percent connected. Only links that are completely within
the buffer were included. This was because every link
must have a node on each end. If links were truncated
at the buffer, there would be no node. In addition, only
the nodes that intersect with these links were included.
Gamma was only calculated for buffers with three or
more nodes. All the locations with the number of nodes
less than 3 were treated as missing (3 points in SD and
6 points in LA). A higher value = higher connectivity
(maximum = 1.0).
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The ninth variable was the Alpha index. The alpha
index uses the concept of a circuit - a finite, closed path
starting and ending at a single node. The alpha index is
the ratio of the number of actual circuits to the maxi-
mum number of circuits and is equal to:

Alpha index
links nodes 1
2  nodes 5

= +
( )

# #
#

−
 − 

Values for the alpha index range from 0 to 1. As with
gamma, only links that are completely within the buffer
were included and only the nodes that intersect with
these links were included. Alpha can not be calculated if
the number of nodes in a buffer is less than three or the
number of nodes is equal to or greater than the number
of links. These cases were coded as missing data (98
points in SD and 128 points in LA). The second condi-
tion was violated more often than the first, because only
links within a buffer be included. This was usually in
more rural areas. A higher value = higher connectivity
(maximum = 1.0).
Several of the above measures were highly correlated;

7 of the 36 possible pairs of the 9 variables had correla-
tion coefficients above 80% (See below). Including highly
correlated covariates in a regression model leads to
instability of the model, so we used principal compo-
nents (orthogonal rotation) and factor analysis to iden-
tify the main components of variance in this data set.
This process constructed indices that explained most of
the variance of the built environment across the loca-
tions and that could be used as independent predictors
in the models. Similar principal components were
derived from analyses considering LA and SD separately.
These analyses were carried out in SAS JMP Version 8.0
(Cary, NC).

Active transportation, demographic, and anthropometric
variables from CHIS
CHIS 2001 survey data included in this study were a
measure of active transportation, and multiple relevant
demographic and anthropometric variables. AT was
measured by asking three short questions: 1) “Over the
past 30 days, have you walked or bicycled to or from
work, school, or to do errands?”, 2) “How many times
per day, per week or per month did you do this?” and
3) “And on average, about how many minutes did you
walk or ride your bike each time?”. AT was analyzed
either as a measure of prevalence such as yes/no (any
AT or none) from the answers to the first question, or
as a measure of duration such as minutes per week
among walkers/bicyclists derived from the answers to
the second and third questions.
Demographic and socioeconomic status (SES) vari-

ables including age, gender, race, education, and income

were also extracted from the CHIS survey resource for
each respondent, as were self-reported health status,
immigration status and employment status. For self
related health status we chose an activity related variable
based on responses to the query “How much does your
health limit you when climbing several flights of stairs?”.
Responses were on a three part scale, “Limited a lot”,
“Limited a little”, “Not limited at all”. CHIS includes a
variety of other variables related to diet, tobacco and
alcohol use, cancer screening practices, health care cov-
erage; we focused on variables commonly used in past
studies of active transportation. For some analyses we
also used self-reported data on height and weight to
obtain body mass index [BMI = Height/Weight (kg)2], a
measure of obesity.
Geographic identifiers included latitude and longitude

rounded to 0.01 degrees and Zipcode of address. Data
concerning bus stops and light rail were obtained from
the Los Angeles and San Diego Public transit agencies
coded as present or absent within a buffer (Thanks to
R. Adamski). Presence or absence of a freeway within a
buffer was obtained from Tiger Line files.

Statistical analysis
Preliminary analysis showed that the distribution of the
number of minutes reported in AT was skewed and had
a spike at zero, representing respondents who do not
report any AT. A logarithmic transformation normalized
the distribution of non-zero minutes. The importance of
the potential explanatory variables was tested separately
by a logistic model for the AT/no AT response and a
lognormal model for the number of minutes reported
by those with any AT [36]. These fixed effects models
included all main effects and all possible two-way inter-
actions at first. Non-significant (p > 0.05) interactions
and then main effects were removed by a stepwise
procedure.
Once the initial subset of variables and their interac-

tions were determined, the data were analyzed by a mul-
tivariate regression, with a binary component for
whether a person reported any AT and a lognormal
component for the number of minutes of AT. This
approach has the advantage of increased power to detect
significant effects that indicate a common association
with both responses. For example, if older respondents
were less likely to report any AT and those who did
report any AT spent less time in AT, then the combined
model could estimate a single parameter for the age
effect, increasing the power over that from two separate
models. Another advantage of the multivariate model is
that it can measure any correlation between the propen-
sity to report AT and the length of time spent in AT in
geographic areas with multiple respondents. A disadvan-
tage of this approach is that the more complex model is
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difficult to apply, requiring larger sample sizes and
greater computational effort to estimate its parameters
than either model component separately. These difficul-
ties are compounded by the need to account for the
correlation of responses among neighbors.
Methods have been developed to analyze data that

result from a mixture of two different statistical distri-
butions. Zero-inflated Poisson (ZIP) methods, intro-
duced by Lambert in 1992 [37], are regression models
for count data with an excess number of zero responses.
These models include a model component to represent
the probability the dependent variable occurred in a
subject. More recently, these zero-inflated mixture
model methods have been extended to other types of
data [38]. For example, Tooze et al. proposed a mixture
model that included random effects correlation among
the repeated responses of individuals [39]. This method
has been applied successfully to 24-hour dietary recall
data, with separate regression components for whether
the respondent ate a particular food during that day and
for their amount consumed of that food [40]. The prob-
ability that a person ate the food is modeled by a logistic
regression model and the usual amount consumed is
modeled by a normal regression model, after a suitable
normalizing data transformation. This model produces a
direct estimate of the correlation between the two
model components but does not allow estimation of
spatial correlation of the respondents, an important goal
of our CHIS analysis.
We used SAS PROC GLIMMIX to implement a mul-

tivariate model that is a mixture of logistic and lognor-
mal regression components for the probability that a
person reported any AT and the amount of AT, respec-
tively, similar to the model for dietary intake described
above [[41] example 5]. Covariates found to be signifi-
cant predictors of either outcome (any AT and amount
of AT) were included and were initially allowed to vary
by type of outcome. Those with non-significant effects,
as measured by p-values of the Type III (partial) sums
of squares F test greater than 0.05, were removed. If
there was no significant difference in an effect between
the two model components, the two parameters were
replaced by a single common parameter for that effect.
Covariates that were significant predictors for only one
of the two counties were retained in both county models
for comparability of effects. Covariates indicating gen-
der, race and age were retained regardless of significance
in order to compare effects across models and counties.
Each of the two regression components could include

correlation among persons living in the same small geo-
graphic area, i.e., AT habits could be similar in small
neighborhoods. Failure to account for this correlation, if
it exists, violates the assumption of independent residual
errors in standard regression analyses and can lead to

mis-specification of the variances and covariances of
model parameters, which in turn leads to mis-specifica-
tion of the corresponding statistical significance. The
spatial correlation in the original data can be accounted
for by model covariates that explain the spatial patterns
or by use of a spatial error structure for the variance/
covariance matrix of a model random effect (a hierarchi-
cal analysis) or of the model residuals. For this analysis,
we attempted to include covariates that would explain
most of the underlying spatial pattern in AT behavior
but also included a random effect to account for any
remaining spatial correlation.
We did not assume that the degree of spatial correla-

tion was identical for the two types of responses. Spatial
correlation was assessed in two ways: by an exponential
decay function where correlation decreased with
increasing distance between respondents’ addresses, and
by a threshold function where responses of persons who
lived within a defined neighborhood had a constant cor-
relation but were not correlated at all with responses
from outside that neighborhood. Spatial correlation for
each county was assessed by using a spline approxima-
tion on a 30 × 30 cell grid, corresponding to neighbor-
hoods approximately 2.3 miles square; smaller
neighborhoods had too few respondents for stable
assessment of the correlation. The threshold model was
repeated with neighborhood defined by the respondents’
postal zip codes.
No single statistic is available to assess how well

mixed effects models fit because of the complexity of
the likelihood in the presence of random effects. We
compared values of the generalized chi-square statistic
for goodness-of-fit and checked the final models by
rerunning their fixed effects equivalents separately to
calculate the Hosmer-Lemeshow statistic [42] for the
logistic component and the likelihood ratio statistic for
the lognormal component. Residuals were examined and
variograms were plotted and compared for the original
and residual data. Distances for the variogram calcula-
tions were Great Circle distances based on the geocoded
locations.
The spatial and non-spatial models cannot be com-

pared directly because of the default likelihood approxi-
mation used by SAS PROC GLIMMIX for random
(spatial) effects models. Therefore we attempted to
rerun the final models on a more powerful LINUX PC
to obtain exact likelihood results. The local neighbor-
hood spatial models did not converge, required more
computer memory than was available or produced an
invalid variance/covariance matrix. The zip code thresh-
old models did converge using adaptive quadrature
integral approximation methods. Because of the compu-
tational difficulties in optimizing the exact likelihoods,
particularly for the larger LA sample, the results in this
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paper are the pseudo-likelihood (Restricted Maximum
Likelihood) results, unless otherwise specified.
The computational difficulties involved in estimating

parameters in models where the variances/covariances
are unknown, as is the case for spatial models, are well
documented [[43], Chapter 9]. Inclusion of random
effects or the need to estimate the covariance para-
meters requires use of an iterative estimation procedure,
i.e., there is no exact solution to the optimization equa-
tions. Assessment of convergence, as reported above, is
essential for any of these models, as it gives some assur-
ance that the results are reliable. We addressed this pro-
blem by using a well-tested commercial software
program [34] for the iterative parameter estimation pro-
cess and by screening covariates and their interactions
carefully to develop a parsimonious model to improve
model stability. Finally, we compared results for several
types of models (fixed and random effects, separate and
joint propensity and duration models), with several sub-
sets of covariates and at different geographic scales,
looking for consistent effects.
The joint model of propensity and duration is com-

plex but allows information about one type of outcome
(propensity or duration) to aid in predicting the other,
in theory providing a more robust approach than ana-
lyses treating propensity and duration separately or sim-
ply using logistic regression with zero or zero + low
levels of activity as one of the categories in the depen-
dent variable.

Results
This paper concerns the association between active
transportation as measured by self-reported levels of
active transportation (AT) and independent variables
including street connectivity, demographic characteris-
tics of respondents, and a set of contextual variables
related to neighborhood SES and transit access.
Respondents from the study counties, LA (n ~8,500)

and SD (n ~1,900), have moderately similar characteris-
tics compared to the entire state of California [34]. There
are some differences between California and the US as a
whole, between California and LA/SD, and between the
two counties. The LA/SD sample is more racially/ethni-
cally diverse than California as a whole (Table 1). Com-
pared the United States, LA and SD combined and the
entire state of California are more racially/ethnically
diverse, younger, have lower income, and have more
immigrants and more college graduates and residents
who did not graduate from high school (see also [34].
The two counties are similar in age structure, but San
Diego has a much higher percentage of non-Hispanic
Whites, a lower percentage of people earning less than
100% of the poverty level, and a lower percentage of peo-
ple with less than a high school education. The percent

of respondents reporting any active transportation in LA
was higher than in SD (42.0% vs. 36.1%), whereas the
average duration of active transportation LA and SD
were similar (84 vs. 80 minutes per week).

Street connectivity
We extracted information concerning nine measures of
street connectivity. Values of these measures are typical
for large urban areas in the western and southern US
(Table 2). The nine measures of street connectivity
show a complex pattern of correlation (Table 3). Mea-
sures of block length are positively correlated with each
other but negatively correlated with intersection and
street density. Not surprisingly, there were strong posi-
tive correlations between alpha and gamma and mea-
sures of node characteristics, link node ratio and
connected node ratio. This correlation structure made
data reduction seem desirable, but inspection does not
make it obvious if one or two of the existing variables
could adequately represent the variation present in these
measures of street connectivity (Table 2, 3). Therefore
we chose to perform principal components analysis to
try to identify underlying axes or factors accounting for
variation in the data. Two factors account for 84% of
the observed variance, with the third and fourth axes
accounting for only 7 and 3% of the total variance
(Table 4). Principle component one (PRIN1), accounting
for 55% of the variance, showed positive loadings on all
the variables except for negative loadings on the two
measures of block length. Thus, it represents neighbor-
hoods with relatively short blocks and relatively higher
intersection density and proportion of 4 way intersec-
tions. The second axis (PRIN2), accounting for an addi-
tional 29% of the variation, had positive loadings on
street length and negative loadings on intersection den-
sity, street density, and block density. Thus it represents
buffers with longer block lengths. Measures of node
characteristics are still loading positively, thus these are
connected neighborhoods, but with longer blocks redu-
cing the density of intersections and blocks. Analysis of
these two variables preserves most (84%) of the variation
present in our data, but removes several computational
difficulties by replacing 9 highly correlated predictor
variables with two independent ones.

Spatial characteristics of the data
Several figures illustrate spatial characteristics of respon-
dents in LA and San Diego. Respondent density is
roughly proportional to population density (Fig 1a, b)
with concentrations, for example, of respondents in the
cities of San Diego, downtown Los Angeles, Santa Mon-
ica, and Long Beach. Choropleth plots of percent report-
ing any AT by zip code (Fig 2a, b) and average duration
of AT in respondents with any AT (Fig 3a, b) illustrate
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regional heterogeneity in the prevalence of AT. Huang
et al. [34] used spatial scan statistics to identify clusters
of elevated or reduced AT prevalence. In this paper we
take the complementary approach of examining the
impact of pre-selected candidate determinants of AT
prevalence and duration simultaneously in an analysis
that accounts for spatial clustering using random effects.

Semivariograms were used to determine the scale of
spatial autocorrelation [43]. These graphical analyses
indicated that the correlations within each county were
stronger than the correlations of responses between
counties, so Los Angeles and San Diego were analyzed
separately. The semivariograms also suggested that the
spatial correlation was limited to respondents who lived
within 10 (SD) to 20 (LA) kilometers of each other (Fig
4a). Therefore spatial correlation for each county was
assessed by using a spline approximation on a 30 × 30
cell grid, corresponding to neighborhoods approximately
2.3 miles square; smaller neighborhoods had too few
respondents for stable assessment of the correlation.
The threshold model was repeated with neighborhood
defined by the respondents’ postal zip codes. These lar-
ger geographic units masked very localized spatial corre-
lation as evident in the semivariograms, but had the
advantage of large numbers of respondents in most
areas with which to assess the correlation between the
propensity to report AT and the amount of AT.
To explore the spatial scale of street connectivity and

AT, multivariate analyses were run at 2 geographic
levels: zip code (large) and latitude/longitude (small,
rounded to 0.01 degrees); there were 277 unique zip
codes and 2463 unique latitude/longitude combinations

Table 1 Demographics of subject counties (based on respondents only), California (from CHIS 2001) and the entire
USA (from the 2001 National Health Interview Survey [34])

Variable Los Angeles* San Diego* Combined* California* USA

Area (sq.km) 12,308 11,721 24,039 410,000 9,631,000

Population 9,662,000 2,813,000 12,475,000 34,400,000 285,000,000

Sample size 8,547 1,891 10,438 56,270 69,244

Gender (%)

M 50.7 (0.4) 50.3 (0.7) 50.6 (0.3) 48.9 (0.0) 47.9 (0.1)

F 49.3 (0.4) 49.7 (0.7) 49.4 (0.7) 51.1 (0.0) 52.1 (0.1)

Race/ethnicity (%)

Non-Hispanic White 39.4 (0.4) 61.2 (0.8) 44.6 (0.3) 50.2 (0.0) 73.6 (0.4)

Non-Hispanic Black 9.9 (0.2) 5.1 (0.5) 8.8 (0.2) 5.9 (0.0) 11.2 (0.3)

Hispanic 38.2 (0.4) 22.8 (0.8) 34.5 (0.4) 29.3 (0.0) 10.6 (0.2)

Other 12.5 (0.3) 10.8 (0.6) 12.1 (0.2) 14.5 (0.0) 4.6 (0.2)

Age

18-39 47.6 (0.4) 47.3 (0.8) 47.5 (0.4) 45.7 (0.0) 39.6 (0.3)

40-59 33.7 (0.4) 32.8 (0.7) 33.5 (0.4) 34.9 (0.1) 38.1 (0.3)

60+ 18.8 (0.3) 19.8 (0.8) 19.0 (0.3) 19.4 (0.1) 22.3 (0.2)

Income (% of poverty level)

< 100 17.2 (0.5) 10.6 (1.0) 15.6 (0.4) 15.7 (0.2) 10.0 (0.2

100-200 21.7 (0.6) 21.0 (1.2) 21.5 (0.6) 20.4 (0.3) 16.8 (0.3

200-300 14.0 (0.5) 14.2 (1.0) 14.0 (0.5) 14.2 (0.2) 17.2 (0.3

300+ 47.2 (0.7) 54.2 (1.5) 48.8 (0.7) 49.7 (0.2) 56.0 (0.4

Education (%)

<HS 20.9 (0.7) 14.6 (1.1) 20.9 (0.5) 21.4 (0.1) 16.7 (0.2)

HS graduate 23.2 (0.5) 25.0 (1.2) 23.2 (0.5) 23.3 (0.1) 30.5 (0.3)

> HS 55.9 (0.7) 60.4 (1.3) 55.9 (0.6) 55.3 (0.2) 52.8 (0.4)

Table 2 Means and standard deviations for connectivity
variables in Los Angeles (n = 8542) and San Diego
(N = 1942) counties

Los Angeles San Diego

Variable Mean S.D. Mean S.D.

Link Node Ratio 1.828 0.263 1.627 0.268

Connected Node Ratio 0.863 0.123 0.751 0.133

Intersection Density 47.05 21.72 39.25 18.28

Street Density 11.96 2.853 10.16 3.179

Block Density 37.51 20.49 29.01 19.36

Average Block Length 0.168 0.053 0.181 0.110

Median Block Length 0.160 0.055 0.156 0.089

Alpha* 0.163 0.084 0.113 0.090

Gamma* 0.449 0.056 0.416 0.060

N = 8414 and 1852 for alpha and 8536 and 1911 for gamma in Los Angeles
and San Diego counties respectively

Note values for all variables are significantly different between counties (p <
0.0001).
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in LA, 91 zip codes and 856 latitude/longitude combina-
tions in SD. On average, there were 31 people/zip code
and 2.5 people/latitude-longitude in LA and 21 people/
zip code and 1.5 people/lat/long in SD. The square lati-
tude/longitude “neighborhood”, rounded to 0.01 degrees,
has a diameter of about 0.6 miles, close to the buffer
size (circle radius = 0.31 miles).

Model results
The final sets of covariates (Additional File 1) fit the
observed data well according to the logistic goodness-
of-fit fixed effects test (Hosmer-Lemeshow chi-square
statistic = 9.04, p = 0.33 in LA and 12.28, p = 0.14 in
SD) and a residual analysis of the lognormal fixed effects
model of duration. Inclusion of neighborhood character-
istics (see Additional File 1) was a significant improve-
ment over the fixed effects model with only individual
characteristics in LA (likelihood ratio chi-square statis-
tic = 101.94, df = 19, p < 0.0001) but not in SD (likeli-
hood ratio chi-square statistic = 12.64, df = 19, p =
0.856). The fixed effects logistic model of propensity to
report AT showed no over-dispersion, suggesting that
the decision to use AT was made independently by peo-
ple within a neighborhood. In contrast, the observed

semivariogram of the logarithms of duration of AT sug-
gested a small spatial correlation within 10 (SD) to 20
(LA) kilometers, necessitating a spatial model (Fig 4a)
and a spatial resolution below the observed level of spa-
tial correlation.
The spatial neighborhood models, i.e., random effects

models with local neighborhood effects, were fit to pro-
pensity and duration of AT separately and by a com-
bined multivariate model. Although the spatial random
effect estimates were not significantly greater than 0, the
multivariate (joint) local neighborhood model seems jus-
tified by a smaller sum of squared errors, particularly in
SD (generalized chi-square/df in LA = 1.00 for logistic,
1.44 for lognormal, 1.45 for multivariate with a common
spatial effect, 1.43 for multivariate with local neighbor-
hood spatial effect; generalized chi-square/df in SD =
1.03 for logistic, 1.39 for lognormal, 1.43 for multivariate
with a common spatial effect, 1.39 for multivariate with
local neighborhood spatial effect).
An additional justification for the multivariate model

was that there were common covariate effects for most
of the main effects, i.e., most of the main effects
impacted propensity and duration of AT to approxi-
mately the same degree (Additional File 1). This was
particularly true in SD, probably due to the smaller sam-
ple size there and the resulting lower power to detect
differences in effects between the two model compo-
nents. The use of common effects gives greater power
than either of the separate models to detect a significant
effect. Also, the multivariate model can account for the
correlation between the percent who reported AT and
the mean number of minutes walked; e.g., the observed
Pearson correlations in zip codes with more than 1
respondent were 14.20% (p = 0.02) in LA and 49.1%
(p < 0.0001) in SD. This reinforces the importance of
our effort to model the propensity and amount of AT
jointly.
Additional File 1 gives the joint model results for Los

Angeles and San Diego counties respectively. This table,
reflecting the model’s complexity, requires some expla-
nation. The magnitude of some associations were the

Table 3 Spearman correlations amongst street connectivity variables

LNR InD CON STD Gam Alpha BD MedB AVbL

Link Node Ratio 1.000 0.151 0.884 0.406 0.817 0.772 0.306 0.382 0.108

Intersection Density 1.000 0.360 0.865 0.424 0.492 0.854 -0.491 -0.591

Connected Node Ratio 1.000 0.550 0.832 0.830 0.414 0.155 -0.102

Street Density 1.000 0.573 0.652 0.786 -0.339 -0.556

Gamma 1.000 0.977 0.539 0.086 -0.125

Alpha 1.000 0.588 -0.047 -0.289

Block Density 1.000 -0.362 -0.484

Median Block Length 1.000 0.766

Average Block Length 1.000

Table 4 Principle Components analysis of street
connectivity variables

Eigenvalue 4.958 2.596 0.628 0.298

Percent 55.092 28.849 6.982 3.311

Cum Percent 55.092 83.941 90.922 94.234

Link Node Ratio 0.3054 0.4172 -0.1094 -0.2381

Intersection Density 0.3453 -0.3079 0.4147 -0.0712

Connected Node Ratio 0.3603 0.2914 -0.1914 -0.3613

Street Density 0.3911 -0.1710 0.2638 -0.4341

Gamma 0.3870 0.2503 -0.1512 0.4498

Alpha 0.4087 0.1694 -0.2494 0.3422

Block Density 0.3624 -0.2037 0.4533 0.3491

Median Block Length -0.1040 0.5307 0.4348 -0.2629

Average Block Length -0.2140 0.4501 0.4797 0.3300
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Figure 1 a, b. Approximate locations of respondents in Los Angeles (a) and San Diego (b) counties.
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Figure 2 a, b. Choropleth maps of % reporting any active transportation by zip code in Los Angeles (a) and San Diego (b) counties.
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Figure 3 a, b. Choropleth maps of mean active transportation duration (minutes per week) by Zipcode Tabulation Area’s (ZCTA’s) in
Los Angeles (a) and San Diego (b) counties.
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Figure 4 a, b. Semiovariograms illustrating the level of spatial autocorrelation for AT duration (logarithm of number of minutes) in
Los Angeles (a) and San Diego (b) counties.
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same for both propensity and duration of AT; these
regression coefficients and corresponding p values that
test the statistical significance of the covariate (not just
a single category of the covariate) for predicting AT are
shown in the columns labeled “Common coefficients for
duration and propensity”. Some covariates had a differ-
ent association with duration compared to propensity,
so these regression coefficients were estimated sepa-
rately by the model and are shown in the columns for
duration and propensity, respectively. Thus, results for a
covariate and its categories, if any, will be shown in
either the “common coefficients” column or in the dura-
tion and propensity columns, but not both. Exceptions
to this format are for the age effect by poverty level and
for working status by race due to the presence of inter-
actions of these effects in the model. We have chosen to
display the stratified coefficients, e.g., a coefficient for
the age effect for each category of poverty, rather than
showing the main effect and interaction regression coef-
ficients separately, requiring the reader to calculate the
combined effects. As a result, there are two sets of
p values for these stratified effects: the usual F test p
value is shown in the duration and propensity columns,
but an extra p value is shown that represents the signifi-
cance of the difference between the stratified effects and
the referent category effect. For example, the age effects
for poverty levels no greater than 200% of the federal
poverty level were highly significant compared to the
referent level (300+%) but there was no difference
between the age effect for people with incomes 201%-
300% and over 300% of the federal poverty level.
In general, we emphasize p-values rather than the

values of regression coefficients. This seems appropriate
because the variables considered in this study are mea-
sured on many different scales. Combined consideration
of regression coefficients and statistical significance of
the variables examined in Additional File 1 should allow
the readers to make their own judgments concerning
the relative importance of the many variables examined
in our analysis. Consideration of the mean values for
the connectivity variables and levels of AT can also pro-
vide information about the magnitude of the associa-
tions observed here.
A variogram of the model residuals (Fig 4b) still

showed some spatial autocorrelation, i.e., there was still
a small association between neighborhood (within 3 km)
and the duration of AT that was unexplained by the
sociodemographic and built environment neighborhood
measurements. Separate covariances for the logistic and
lognormal components of the multivariate model could
be estimated for the latitude/longitude model, but not
for the zip code model. The zip code model with sepa-
rate effects for the 2 model components would not con-
verge. That is, a more complex covariance structure, i.e.,

one with separate spatial effects for each of the two
model components, could be detected at the smaller
area level compared to the larger zip code level model.
This suggests that zip code areas are too large to cap-
ture the spatial variation in AT.

Common model effects across SD/LA and latitude/
longitude and zip code
There were a number of common effects across the two
counties and smaller spatial units, latitude/longitude and
zip code (Additional File 1, Zip code effects not shown).
1) Gender had no association with AT at any spatial
scale. 2) Age had nearly the same association with
amount of AT for all 4 models- older respondents had
slightly more minutes or AT (approximately 1% more
per year of age); however, older age had the reverse
association with propensity to report AT for all 4 mod-
els - older ages were less likely to report AT (approxi-
mately 1% less per year of age). In LA, older residents
with an income less than 200% of the federal limit were
less likely to report AT and tended to have less AT than
residents with a higher income. 3) There is a trend for
less reported AT among those with more health limita-
tions; an even stronger association was seen between
propensity to report AT than amount of AT in LA; no
significant difference could be detected in SD. 4) Hispa-
nics are more likely to report AT than Whites, but this
is not significant in SD. 5) People who were working
were much less likely to report AT and tended to report
less AT; this association was attenuated in Blacks in LA.

Difference between SD and LA
San Diego and Los Angeles differed in a number of
ways. 1) There is no significant effect of BMI, except for
the obese in LA and overall in LA for the zip code
model. 2) Birth outside the US had a significant positive
effect on propensity to report AT and amount of AT,
but is stronger in SD. 3) Education had a significant
effect in LA, not SD, and the LA effect varies for binary
and lognormal components (Additional File 1). 4) There
was a strong, but nonlinear across categories, effect of
population density on both propensity and amount
of AT in LA, not SD. 5) There was a stronger effect of
poverty level in LA than in SD for both outcomes
(lower income associated with more AT). Only the 100-
200% of poverty level has a significant effect in SD and
no trend is evident across categories. 6) There was no
difference between Blacks and Whites in SD but in LA
Blacks who work are more likely to report any AT and
more AT. Among higher educated residents of LA,
Blacks were less likely to report AT and had less AT
than other racial/ethnic groups. 7) People in SD who
had lived in the US longer tended to report less AT
(propensity and distance).
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Differences between local neighborhood and Zip Code
models
Comparison of the AIC statistics for the models that
converged using maximum likelihood estimation meth-
ods suggested that there was no advantage to the zip
code threshold model over a simple fixed effects model,
i.e., one that ignores any spatial autocorrelation in the
data (AIC in LA = 22352 for zip code model, 22348 for
fixed effects model; AIC in SD = 4501 for zip code
model, 4497 for fixed effects model; lower values are
better). The latitude/longitude models would only con-
verge using a linearizing approximation to the maxi-
mum likelihood, so that no AIC statistics are available
for comparison. However, these models did converge
and provided spatial autocorrelation estimates for both
components of the model (propensity and duration),
suggesting that any spatial correlation of AT was at a
very local geographic scale. There were a few differences
in covariate effects between the Latitude/Longitude and
Zip Code models (Not Shown). Employment density
was not at all significant for predicting amount of AT in
SD at the latitude/longitude level, but is a significant
predictor of propensity to report AT at the zip code
level (lower density was associated with less AT); results
for LA were similar for both geographies. In places with
more connected streets (PRIN1), a higher percentage of
respondents reported AT in both LA and SD in LA
there was an even stronger effect for propensity to
report AT than for amount of AT, but both were
significant.

Built environment influences on active transportation
Residents of places with more connected streets and
short blocks (PRIN1) were more likely to report AT in
Los Angeles (p = 0.015) but the positive association of
PRIN1 with duration of AT was not significant (p =
0.08). In San Diego, the association was significant for
both propensity and duration (p = 0.0019). The second
measure of street connectivity (PRIN2) had a small but
non-significant association with AT in both Los Angeles
(p = 0.0591) and San Diego (p = .1227). PRIN1 appeared
to be normally distributed and had means and standard
deviations of 0.26 (2.1) and -1.2 (2.3) for LA and SD
respectively; PRIN2 had mean 0.095 (1.6) and -0.44 (1.7)
for LA and SD. Log transformed AT minutes for
respondents with any AT were 4.54 (S.D. = 1.2) for LA
and 4.55 (S.D. = 1.2) for SD, or 93.7 and 94.6 minutes
respectively.
Residents in SD latitude/longitude level neighborhoods

with a bus stop were significantly more likely to report
AT, but their duration was less. There was a common
positive association of bus stops with AT in LA local
neighborhoods for both outcomes, but this was not sig-
nificant. There was no association of bus stops with AT

in zip code areas. Despite the pedestrian unfriendliness
of freeways, Los Angeles areas with freeways had resi-
dents who were more likely to report AT and had more
AT. Conversely, the presence of bus routes was nega-
tively associated with both outcomes in Los Angeles.
Note that the SD zip code model does not include bus
stops, freeways, bus routes or rail. Because of the smal-
ler sample size in SD than LA, fewer covariates could be
included in the SD model in order to obtain model con-
vergence. These particular covariates were excluded
because they were not at all significant in the initial pro-
pensity model for SD.

Discussion
This study has two main results. First, diverse measures
of street connectivity can be summarized by two domi-
nant axes, one representing areas with shorter more
connected blocks and the second representing areas
with longer blocks, but still exhibiting a more grid like
pattern. It remains to be seen whether this observation
extends beyond two large cities in Southern California.
Second, mixture models accounting for spatial autocor-
relation indicate significant associations between mea-
sures of street connectivity and both the propensity to
report AT and the amount of AT. As in past studies of
built environment characteristics including street con-
nectivity and physical activity, particularly walking
[44,45], the associations between built environment
remain modest. However, even small improvements in
individual behaviors can have significant population
health benefits. Additionally, the methodological and
analytical advances implemented here are important in
that they can enhance confidence in estimates of effect
sizes as well as separate influences on the propensity
versus duration of health behaviors generally and walk-
ing or other forms of physical activity specifically. This
analytical approach could apply to diet variables,
tobacco use, alcohol consumption, substance abuse, and
any other behavior divisible into occurrence and dose in
time or quantity.

Street connectivity and active transportation
This study identified small but significant or near statis-
tically significant associations between two aggregate
measures of street connectivity, particularly an index
representative of areas with a pattern of short blocks
and a grid like structure, and active transportation (AT).
This measure of connectivity (PRIN1) was more strongly
associated with propensity to report AT, but was still
positively associated with AT duration. These results are
consistent with our recent finding that PRIN1 is ele-
vated in clusters of active transportation identified with
spatial scan analysis [34]. Without attempting to recon-
cile different scales for the independent variables, the
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magnitude of coefficients estimated for the street con-
nectivity variables are challenging to compare directly.
Consideration of mean levels of AT and means and
standard deviations for PRIN1 and PRIN2 in the two
counties and the coefficients reported in the supplemen-
tary file should give the reader sufficient information to
think about the relative magnitude of the reported
associations.
A number of past studies have also examined street

connectivity and its association with different measures
of AT or leisure time physical activity [10,30,46]. These
studies are notable for the lack of standardization in
their outcome variables, measures of connectivity and
analysis approach. Handy’s [30] review tabulates about
50 studies concerning built environment, AT and physi-
cal activity. More such studies have appeared since her
review, including a review of built environment and
walking [45]. Both reviews report consistent associations
between transportation walking and density, destination
distance, and land use mix, but a mix of results con-
cerning connectivity, parks and parkland, and safety.
Saelens and Handy (2008) report positive associations
between route/network connectivity and walking in
three of seven studies of transportation walking, zero of
four studies of leisure walking, and three of six
studies of general walking [45]. The remainder of the
studies had null or unexpected associations. A few stu-
dies report interactions between measures of walkability
and other variables such as safety or demographic char-
acteristics - more work is needed systematically examin-
ing such interactions. Another recent study reports
positive associations between density and travel walking
and positive associations between large block sizes and
leisure walking [31,32]. Adoption of standard metrics for
connectivity would facilitate more specific comparisons
of results and effect sizes in such studies.

Demographic correlates of active transportation
Demographic correlates of active transportation were
somewhat different than those reported in a recent
national study of transportation walking based on data
from the 2005 National Health Interview Survey [5]. In
the US as a whole, transportation walking is more pre-
valent in men than women, decreases with age, is higher
in black men and Asian/Native Hawaiian/Pacific Islan-
der women, and is highest in the highest and lowest
income categories and highest education category. By
contrast, in Los Angeles and San Diego counties we
found positive associations between age and duration of
AT but negative associations for propensity to report
AT, higher propensity but lower duration of AT in
those with higher or lower than high school education
(i.e., not just a high school diploma), and less AT work-
ing respondents. It is difficult to know if these

differences are due to regional differences, the effects of
including bicycling as a mode of AT, or effects of survey
characteristics. NHIS is an in person survey and CHIS is
a telephone survey. Both NHIS and CHIS results are
based on self report.
Accelerometer based measures of overall physical

activity [4] and step counts based on accelerometry [47]
give somewhat different results as well. Overall physical
activity declines with age, is higher in men than women
and exhibits age by race/ethnic interactions. Step counts
estimated by accelerometer are higher in US males than
females; US national level pedometry data analyzed by
other demographic variables are not yet available. In
Colorado, walking, as measured with a Yamax SW-200
pedometer declined with age, was greatest in single men
and women, was highest in respondents with incomes
from $25-99,000 [48]. Lack of consistent study designs,
measurement modalities, and reporting schemes makes
it hard to generalize about walking/bicycling in different
geographic areas. Comprehensive and objectively mea-
sured data addressing walking distance and duration
might be required to fully describe age related changes
in propensity to walk and the characteristics of walking
trips.

Strengths and limitations
Major strengths of this study include 1) our develop-
ment of aggregate measures of street connectivity using
principal components analysis of multiple aspects of
connectivity, 2) Use of a multivariate model that is a
mixture of logistic and lognormal regression compo-
nents for the probability that a person walked and the
amount walked, respectively, and 3) Explicit analysis of
the spatial scale of street connectivity and AT imple-
mented by running multivariate analyses at two geo-
graphic levels: zip code (large) and latitude/longitude
(small). Together all three of these analytical approaches
are advances over past studies. In particular, use of the
multivariate model allows estimation of common effects
of covariates on both propensity and duration and prop-
erly accounts for spatial autocorrelation. Residual analy-
sis demonstrates that the model covariates explained all
but the most local spatial effects in the original data.
There are at least four major weaknesses of the cur-

rent study. First, this is a cross-sectional data set and so
there are several possible alternatives to a simple causal
relationship between connectivity and AT. Most notably,
recent work suggests that self selection into neighbor-
hoods with desirable features such as walkability, by
people with a preference for walking could account for
as much variation in walking as causal associations
between neighborhood characteristics and walking [[10]
p. 112,49,50]. Second, we were unable to obtain some
important data elements in this project, specifically
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more comprehensive measures of land use mix. Land
use mix is believed to be an important correlate of
transportation walking and our use of employment den-
sity as a partial proxy for land use mix is not optimal.
Ideally parcel level data on the use of different building
would be collected, summarized in an index of mixed
use and included in the kinds of models described here
[51]. Recent examples of this approach [51,52], use
square footage in three or more land use types such as
residential commercial and office, in indices of walkabil-
ity or the built environment. Such studies have reported
positive associations between walking and walkability
[45,52], but do not always attempt to separate the effects
of connectivity, land use mix and other aspects of the
built environment. Decomposition of these effects could
increase the use of such studies by policy makers and
urban planners [53].
CHIS 2001 queried respondents concerning walking

and bicycling for transportation. While use of both
modes represents ‘active transportation’, we acknowl-
edge that walking and bicycling involve different skills,
equipment, rewards, and infrastructure [54]. It seems
likely that most of the active transportation examined in
this study was due to walking and our examination of
‘street connectivity’ is arguably more relevant to walking.
However, separate measures of walking and bicycling
and examination of environmental features specifically
related to walking vs. bicycling could strengthen and
refine future studies. Later versions of CHIS have cho-
sen to focus on walking, with separate questions con-
cerning leisure and transportation walking as well as
statewide geocoding http://www.chis.ucla.edu/.
Walking and bicycling use networks of roads, paths

and sidewalks in different ways from each other and
from automobiles. The present paper is entirely based
on street networks. A few recent studies have contrasted
the effects of pedestrian network analysis versus street
network analysis on walking [55,56]. These two papers
suggest that analysis of pedestrian networks can identify
stronger and novel associations between network char-
acteristics and pedestrian behavior than the analysis of
street networks. CHIS data and further work to collect
and analyze pedestrian network data from California
could add to this promising research area.
The magnitude of the associations between street con-

nectivity and AT observed in this study and others may
seem small [30-33]. However, street connectivity is a
modifiable feature of the environment and for a popula-
tion with low levels of physical activity and high levels
of sedentary behavior such as that of the United States
[4,57], even small increases in physical activity could
have significant population and individual health bene-
fits [58].

Conclusions
This paper significantly advances the analysis of street
connectivity and AT by first identifying dominant axes
from multiple measures of connectivity, using mixture
models for the joint analysis of active transportation
propensity and duration, and thirdly by explicitly exam-
ining spatial autocorrelation in the street connectivity
variables and accounting for this variation in our analy-
sis. Together the results indicated that aggregate mea-
sures of street connectivity are statistically significant
correlates of AT independent of a number of individual
and neighborhood characteristics. This result should
encourage planners and policy makers interested in
influencing physical activity for health, but also provide
a cautionary note concerning the magnitude of expected
effects.

Additional file 1: Regression coefficients from multivariate spatial
analysis. Regression coefficients from multivariate spatial analysis of the
association between street connectivity, individual and neighborhood
characteristics and active transportation. To address these goals we
analyzed street connectivity and its association with AT using a large
spatially identified data set collected as part of the 2001 California Health
Interview Survey. Street connectivity represents a major class of
environmental variables of great interest to health geographers because
they are potentially correlated with multiple health behaviors and
organized over diverse spatial scales.
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