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Abstract

Water scarcity and soil salinity are dual stressors for plants in arid, salt-affected ecosystems. Hy-
draulic redistribution, a hydraulic adaptation which moves water through plant roots into dry or
saline soil regions along potential gradients, aids plant survival in stressful environments. Recent
theory regarding hydraulic redistribution proposes limitations on the process within saline soils.
This study applies a minimalist resistor-capacitor model of the soil-plant-atmosphere system to
the experimental conditions of a 2010 study investigating hydraulic redistribution in a salt affected
area. The effectiveness of the model is evaluated, and a sensitivity analysis is conducted to identify
key dynamics affecting the moisture redistribution process. The results indicate that a minimalist
model faces limitations when testing the theoretical restrictions on redistribution in saline soil,
but certain variables, particularly salt accumulation in the plant, can be predicted with reasonable
accuracy. Recent studies on the plant represented by the model, P. lentiscus, show agreement with
the model predictions, indicating that the experimental conditions are well-captured, and that salt
accumulation in plant leaves would be unlikely to impede hydraulic redistribution. Discussion on
model limitations and the need for greater internal complexity in the plant component is provided to
improve future investigations into salinity-based restriction mechanisms on moisture redistribution
through plant roots.
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1 Introduction

As global temperatures rise, many plants face increasing water deficits, putting species with adap-

tive mechanisms of water management at increased advantage over vulnerable species (Adhikari,

Hansen, & Rangwala, 2019). In arid climates, hydraulic redistribution (HR) - the transfer of water

between regions of soil facilitated by plant roots (Figure 1) - is an important adaptive strategy that

can preserve soil moisture, maintain root health, and facilitate efficient nutrient uptake (Neumann

& Cardon, 2012; Orellana, Verma, Loheide, & Daly, 2012). Within certain ecosystems, plants with

deep tap roots (phreatophytes) survive by accessing groundwater as a supplemental or primary

source of moisture. Studies on HR in phreatophytes include evidence of upward redistribution

(from deep soil layers to shallow layers) and reverse distribution (from shallow layers to deep lay-

ers) (Scott, Cable, & Hultine, 2008) depending on the particular water potential gradient in the

system, which can vary with season and precipitation (Prieto, Armas, & Pugnaire, 2012; Yu et al.,

2013). The ability to access both a shallow and deep source of water is a significant adaptation, and

in certain climates, the portion of plant transpiration sourced by roots below the water table can

make up a significant percentage of the overall groundwater budget (Loheide, Butler, & Gorelick,

2005; Orellana et al., 2012).

In addition to water scarcity, soil salinization is a major threat to agriculture and ecosystems in

many of these regions, particularly coastal areas facing a rise in sea levels, which drives the extent

of inland salt intrusion (Ullah, Bano, & Khan, 2021). Land use and natural resource planning in

arid, salt-affected regions requires detailed understanding of hydrologic processes. The projected

change to soil salinity in future decades varies across global zones, and many regions which are

currently salt-affected are expected to face more severe issues (Hassani, Azapagic, & Shokri, 2021).

Halophytes - salt-tolerant plants - are often the dominant species in these climates, with survival

mechanisms that allow them to thrive in saline conditions (Perri, Katul, & Molini, 2019). In land

surface investigations, for simulations of plant water storage and transpiration, a large source of

variance between models is the uncertainty involved in capturing plant hydraulics, particularly root

zone dynamics and their effect on soil moisture (Oorschot, Ent, Hrachowitz, & Alessandri, 2021).

Thus, understanding the root-facilitated mechanisms controlling water flux in dry, saline climates

is important to improve projections of vegetative and soil health in these regions.

There is abundant evidence of hydraulic redistribution along soil moisture gradients in various

climatic zones, with roots in wetter regions of soil transferring moisture to drier regions, facilitating

easier water uptake for plants. Hydraulic redistribution has also been observed along salt gradients

in saline soils, with plant roots transferring moisture from regions with less salinity to regions

of greater salinity (Hao et al., 2009). However, the potential for hydraulic redistribution driven

by salinity gradients in arid climates is a topic of recent debate. Bazihizina, Veneklaas, Barrett-

Lennard, and Colmer (2017) theorized that limitations exist on HR in saline soils based on two

primary dynamics. First, plants in saline soils may accumulate salt in the root xylem, creating a

highly negative internal water potential zone in the roots near the emission point, preventing water

from being released from the roots back into the soil. Second, a similar process may occur in plant
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leaves in saline climates, with salt accumulation stifling HR by decreasing leaf water potential,

the osmotic effects of the salt overpowering the positive water potential influence of leaf turgor

pressure. This magnification of negative leaf water potential could pull internal plant water into

the leaves during predawn periods, rather than allowing release into the dry, saline regions of the

soil touching the roots. Bazihizina et al. (2017) developed these arguments using empirical data

on salt accumulation effects in the literature, and presented an analysis of existing studies on HR

in saline soils to highlight the water potential gradients present in the experiments in relation to

the direction of HR observed. The study with the most relevant data, (Armas, Padilla, Pugnaire,

& Jackson, 2010), was conducted in an environment where the water potential gradient caused by

discrepancy in soil moisture between the saturated and vadose zones was stronger than the water

potential gradient due to salinity between the zones. Bazihizina et al. (2017) cite this as evidence

that salinity variation may be incapable of driving HR, and state that the results bolster other data

indicating salt accumulation can cause limitation on HR.

In this study, a resistor-capacitor (RC) model for the soil-plant-atmosphere (SPAC) system was

applied to investigate the results of the Armas et al. (2010) study conducted in a coastal dune

system in Almeria, Spain, which observed HR facilitated by P. lentiscus in a system with non-

saline soil moisture in the dry vadose zone, and a brackish saturated zone penetrated by deep tap

roots. P. lentiscus is both a phreatophyte and halophyte, which utilizes groundwater through its

tap roots during the dry season, and relies more heavily on vadose zone water during times of high

precipitation. The minimalist RC model, which represents the vadose and saturated soil zones as

discrete reservoirs, was calibrated to simulate the Armas et al. (2010) experiment, using estimated

values for key environmental parameters following the methods used by Bazihizina et al. (2017) in

their analysis. The goal was to evaluate the effectiveness of a minimalist RC model in capturing

the dynamics of a saline, preatophytic SPAC system, in particular, determining whether the model

could predict the correct direction of HR and the extent of salt intake based on the experimental

results. In addition, the aim was to test the limitations proposed by Bazihizina et al. (2017), and

identify the components of both the model and the physical plant system which are key to the

redistribution process in saline soils.
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Figure 1: Illustration of hydraulic redistribution (HR). Moisture, s, from the saturated soil zone,
Ψgw, is transported through the plant root system to the drier vadose zone, Ψs, when transpiration
is low.

2 Methods

2.1 Resistor-Capacitor Model

Resistor-capacitor models for plant hydraulics use a simplified, electrical circuit-style schematic that

labels key locations within the plant as nodes, in an analogy to Ohm’s law, with pathways between

nodes assigned a hydraulic conductance (the inverse of the path’s resistance). Hydraulic pathways

within the pant with higher conductance facilitate greater water flux, analogous to current, between

respective nodes (Tyree, 1997; Li et al., 2021). RC models are useful for understanding general

dynamics of the SPAC system with low computational demand, and the ability to capture the effects

of the plant’s stomatal control on transpiration rates (Daly, Porporato, & Rodriguez-Iturbe, 2004).

Previous modeling efforts have incorporated plant water storage into the basic root-to-shoot water

pathway in the form of a compartment representing total storage in a specific plant location such

as the stem or leaf (Schulte & Nobel, 1989; Bartlett, Vico, & Porporato, 2014; Hartzell, Bartlett,

& Porporato, 2018). The RC modelling approach has also been applied to capture salt dynamics
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and the varied impacts of salinity on halophytes and glycophytes (Perri et al., 2019).

This minimalist approach was applied to investigate plant dynamics for the Armas et al. (2010)

study, with the question of whether an RC model incorporating water storage, salinity, and HR

could capture the findings of the experiment. Cáceres et al. (2021) used a similar RC model to

investigate water dynamics in a Mediterranean Forest, and their approach informed the construction

of the model developed in the present study for a similar climate. The RC model captures many of

the same system dynamics as porous media models (Huang et al., 2017), but soil, groundwater, and

plant storage components in the RC approach are aggregated into compartments, each assigned a

single value of relative moisture and water potential, rather than modeling the SPAC system in

many discrete portions using a multitude of compartments.

Dynamic model simulations progress in 30 minute time increments, with soil moisture, hydraulic

conductances, water potentials, and salt concentrations updating at each time step. Weather

parameters - air temperature, relative humidity, and solar radiation - constrain the variable values

at each increment, creating a deterministic progression of system conditions.

Figure 2: Left: The Soil-Plant-Atmosphere continuum is modeled as a circuit, with water poten-
tials, Ψ, at each node, and resistors between each node. The fluxes from the vadose (soil) and
saturated(groundwater) zones to the plant base, qs and qgw respectively, are positive when entering
the plant and negative when exiting via hydraulic redistribution. Right: P. lentiscus (Vyatcheslav,
2020).

2.1.1 Water Potentials

Moisture flux within the resistor-capacitor model is driven by differences in water potential between

the various nodes of the plant. Water potential, Ψ, is the measure of the potential energy of soil

or plant water per unit volume relative to the potential energy of pure water (Koide, Robichaux,

Morse, & Smith, 2000). Multiple factors contribute to water potential, and dictate the magnitude
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and direction of flow in a system. Cohesion-Tension theory conceptualizes flow through the plant

as continuous, with potentials as the forces pulling on unbroken water columns through the plant

conduits (Sperry, Adler, Campbell, & Comstock, 1998). Therefore, as long as the water pathway

is not broken by cavitation or loss of surface tension, the flow travels from points of high potential

(less negative) to points of low potential (more negative). Matric potential, Ψm is the component

of the total potential created by the intermolecular and surface tension forces of water within soil

pores and in plant compartments (Tyree, 2003). As soil dries out, the energy required to extract it

increases as adhesive forces become stronger, and matric potential becomes more negative, creating

a gradient between dry regions and wetter regions with less negative matric potential. Another

source of variability in water potential is salinity, typically measured in terms of the electrical

conductivity of the liquid. The potential arising due to the presence of salt ions in soil water is

called osmotic potential, and is commonly calculated using Van’t Hoff’s Law for each ionic species

of interest, i.e., (Campbell & Norman, 1998)

Ψo = −CvϕiRTw , (1)

where Ψo is osmotic potential, C is the ionic concentration, v is the molecular count of ions per

molecule of the compound, ϕi is the osmotic coefficient (usually assumed as 1 for solutes in biological

systems), R is the universal gas constant, and Tw is the water temperature. Gravity is another

source of water potential in plant hydraulic systems, with gravitational potential, Ψg, becoming

significant in tall plants, such as trees, where the leaf canopy and soil are far apart vertically. The

individual components of water potential are summed to determine total potential for various nodes

within the RC model, i.e.,

Ψ = Ψm +Ψo +Ψg . (2)

2.1.2 Soil-Root System

The coastal dune system studied in Armas et al. (2010) is made up of sandy soil, with a saline

groundwater table 4-5 m below the surface influenced by seawater intrusion, and non-saline soil

water in the vadose zone. P. lentiscus, the species of interest, has significant salt tolerance, and

adapts to the dry coastal ecosystem by expanding a dimorphic root system: a dense layer of lateral

roots in the dry upper layers of the vadose zone, and a deep burrowing tap root able to penetrate

the saline saturated zone. Tap root systems are known to provide survival advantages for plants

in multiple ways, including restoration of vadose zone water through HR and allowing access to an

additional water source when dry conditions deplete moisture in the upper soil layers (Orellana et

al., 2012). Evidence from numerous studies shows that dimorphic root systems are able to transfer

groundwater towards the surface after prolonged drought periods when shallow water is depleted

(Armas et al., 2010), and potentially transfer water downwards from the vadose layer when the

gradient of moisture is more negative towards the water table (Scott et al., 2008).

In order to capture the effects of the osmotic and matric potential gradients between the dry,
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non-saline vadose zone and the saline, saturated soil zone, the RC model separates the two layers

into uniform, composite containers, following Vervoort and Zee (2009). Each layer is assigned a

relative soil moisture value, s, which is the decimal percentage of soil pore space filled with water

(Rodriguez-Iturbe, Porporato, Ridolfi, Isham, & Cox, 1999). The pore space, Vv represents voids

in the soil not filled with solid particles: n = Vv
Vsoil

, where n, the soil porosity, is the fraction of soil

volume made up of pore space.

Volumetric soil water content (VWC = Volume water
Volume soil ), the volume of water per total volume

of soil, was calculated using the gravimetric water content (GWC = Mass water
Mass soil ) values measured

by Armas et al. (2010) and dividing the masses of water and soil by their densities respectively:

GWC = kg water
kg soil and VWC =

kg water
ρw

kg soil
ρsoil

= GWC ∗ ρsoil
ρw

, where ρ is the density (in kg
m3 ) of each

particular substance.

Relative soil moisture is then calculated by dividing the volumetric water content by the porosity,

s = VWC
n . At saturation, s = 1, and the saturated zone soil moisture in the resistor-capacitor model

was assumed to be constant throughout the modeling duration, i.e. sgw = 1. Groundwater uptake

by the tap roots of phreatophytes can often lower the water table significantly, however the tap

root’s rapid growth rate (up to 13 mm/day in some species) means that over relatively short

timespans of 1-4 months it is a reasonable assumption that the roots are in constant contact with

saturated soil (Orellana et al., 2012; Gou & Miller, 2014).

The matric potential of soil water (Ψm) and soil hydraulic conductivity (Ks) were derived using

the Clapp and Hornberger (1978) empirical equations:

Ψm = Ψm,sats
−b , (3)

Ks = Ksat ∗ s2b+3 , (4)

where the empirical parameters b, Ψm,sat (matric potential at saturation), and Ksat (hydraulic

conductivity at saturation) are shown in Table 1 along with other parameters used in the soil-root

portion of the model. Soil hydraulic conductivity decreases with declining soil moisture because

air enters soil pores, overcoming the surface tension forces of water, similar to cavitation effects in

the plant xylem, fracturing the “hydraulic rope”, and decreasing the magnitude of water flux from

the soil to the plant roots (Sperry et al., 1998). Soil moisture in the vadose zone is updated in the

model at time steps of 30 minutes using the mass balance equation:

nZr
ds

dt
= qs − Ev , (5)

where evaporation, Ev, follows a linear decline from a maximum value, EvMax , as the soil moisture

approaches the hygroscopic point, sH ,

Ev =

EvMax(s− sH), s ≥ sH ,

0, s < sH ,
(6)
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and leakage from the upper soil compartment into the groundwater is assumed to be negligible in

the experiment’s conditions (Porporato, Laio, Ridolfi, & Rodriguez-Iturbe, 2001).

Root water uptake, q, in the RC model was calculated based on the assumption that the radial

conductance of moisture, through the soil and across the permeable barrier at the endodermis of the

plant root, was the limiting conductance, rather than the axial conductance of the water along the

root’s interior length towards the plant stem. This assumption reflects the justification of Huang

et al. (2017) that energy lost in the axial conduction of water through the length of a root is often

less significant to the dynamics of the overall system than the resistance posed by the hydraulic

conductivity loss in the dry soil layers. The radial soil-root conductance was calculated as a series

of the soil conductance, ks, and root permeability, kr, using the following equation:

ksr =
kskr

ks + kr
, (7)

where ksr is the combined soil-root conductance on a root surface area basis. The value of kr was

set constant (see Table 1) and ks was calculated using root architecture parameters:

ks =
Ks
l ,

l = 0.53√
π∗B .

(8)

The variable l represents the mean distance that soil moisture has to travel to contact a fine

root and B is the root length density - the amount of total combined root length per unit of

soil volume (Vogel, Dohnal, Dusek, Votrubova, & Tesar, 2013; Huang et al., 2017). Soil-root

conductance, gsr, was converted from the root conductance on a surface area basis to a total value

using gsr = ksr ∗Ar ∗Zr where Ar is the root area density (Ar = 2πrrB), the area of root exposed

per unit soil volume, rr is the average fine root radius, and Zr is the root zone depth of the

particular soil zone. The root distribution of P. lentiscus decreases in fine root area density with

depth, and Mattia, Bischetti, and Gentile (2005) reported that a logarithmic decay function fit the

decay pattern most accurately. No studies have specifically looked at mature P. lentiscus plants

with deep tap roots, so a logarithmic profile was used in the sensitivity analysis as a base case, but

variation in the root area density distribution was applied to account for the uncertainty in root

zone architecture. The root area density value for each soil compartment was determined using the

method employed by Vervoort and Zee (2009), taking an integral of the root density decay function

over the vertical bounds of each soil zone, and normalizing the integral in each region to a decimal

percentage share of the overall root area density, which was then multiplied by the total root area

density in the system (Figure 3). The integral bounds were selected using the Armas et al. (2010)

profile of soil saturation. Studies on root conductances in dimorphic systems have shown that root

conductance for tap roots can be significantly larger than for shallow, lateral roots (Orellana et al.,

2012). In the RC model, the dynamic of larger conductance in the deeper tap roots is reflected by

the effect of the maximum relative soil moisture in the saturated zone, which raises the value of

hydraulic conductivity ks significantly, increasing water contact with the deep roots, giving rise to
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a much higher soil-root conductance than that of the vadose zone root system.

The equation for root uptake from both soil compartments is the following:

q = gsr ∗ (Ψs −Ψb) (9)

The difference between the total water potential at the basal node of the plant, Ψb, and the

potential of soil water, Ψs, is thus the main determinant of the magnitude of root update and HR,

and the value of this gradient fluctuates with transpiration demand and the accompanying leaf

water potentials, Ψl, which are driven by atmospheric conditions.

Figure 3: Left: Method for calculating the root area density (Ar) for lateral (vadose zone) and
tap roots (saturated zone), following (Orellana et al., 2012). The distribution function, Ar(z) is
a logarithmic function for root area density, Zr is depth of the vadose zone, and Zgw is the total
depth to groundwater. Right: The soil profile of soil conductivity and gravimetric water content
(GWC) measured by Armas et al. (2010) in the coastal dune system.

HR is driven by heterogeneity in the root zone. The driver of flow directionality, as for the

root water uptake, is the potential gradient between the soil compartments and the basal node.

HR is represented conceptually in the model as negative root flux, and is reliant on the same

root conductances and potential gradients, justified by the passive mechanism of HR (Neumann &

Cardon, 2012). Darcian flux, the flux driven by the moisture gradient between soil layers which

is not conducted through the rooting system, was considered negligible based on its relatively

low magnitude in comparison to root transport. In addition, the decision to divide the soil into

two compartments (saturated and vadose zones) in the circuit schematic was made based on a

desire to test the minimalist approach for modelling HR, meaning fluid exchange between the two

compartments not facilitated by root transport was outside of the scope of study. With the addition

of the above ground plant storage compartment, the question of flow direction and magnitude

between the groundwater, soil, and plant storage, which all takes place within the conduit system

of the plant, resembles a three reservoir problem, common in studies of hydraulics.

Previous SPAC models have calculated the flux of salt mass between soil zones and plant water

over multi-year timescales (Runyan & D’Odorico, 2010). For the duration of the Armas et al.

(2010) study (4 months), both the volume of water within the compartments and the uptake of

salt ions dictate salinity concentration, and consequently osmotic potential (Perri et al., 2019).

Salinity in the saturated zone was assumed to be static over the course of simulations due to a
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high degree of salt exclusion by the roots (Perri et al., 2019), and the large volume of the saturated

zone compared to the small magnitude of salt mass. A simplifying assumption that 100 percent

of the salt content was NaCl was made for osmotic potential calculations (Equation 1), as relative

magnitude differences in osmotic potential between soil zones was more pertinent to the model

results than the ionic varieties present in the system. To allow for salt accumulation in the plant

water storage, water uptake through the basal node is assumed to transport salt mass based on the

concentration of the source and the filtration efficiency, FE, which represents the percentage of salt

prevented from entering the roots. All salt mass entering the plant is then assumed to accumulate

in the storage container, adding to the magnitude of storage concentration using the equation:

dCw

dt
=

qsCs(1− FE) + qgwCgw(1− FE)

wZw
, (10)

where dCw
dt

is the flux of the ionic concentration in plant storage water, w is the percentage of

available storage volume occupied in the plant, and Zw is the total available storage volume. Salt

was assumed to only enter the plant, with no salt exiting the root with redistributed water, i.e.

when when root uptake was negative, salt flux from root to soil was 0. This assumption lead to a

higher prediction of plant salt accumulation, which was beneficial for testing the Bazihizina et al.

(2017) theory that salt accumulation in plant water storage is a restrictive mechanism on HR.
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Table 1: Soil/Root Parameters and Dynamic Variables

Description Value Units

Constant
EvMax Maximum Evaporation Flux from Soil 3 b mm day−1

kr Root Permeability 10−8 d s−1
ϕi Osmotic Coefficient of NaCl 1 -
ρa Density of Air 1.27 kg m−3

ρw Density of Water 998 kg m−3

rr Radius of Fine Roots 2 ∗ 10−4 m
Tw Water Temperature 293 ◦C
v Ionic Count per Molecule NaCl 2 -
Zr Depth of Soil Rooting Zone 2 e m
Zgw Depth to Groundwater Table 3.5 e m

Varied Parameter
Ar Root Surface Area Density Varied m2 m−3

b Soil Curve Constant Varied a -
B Root Length Density Varied m m−3

FE Filtration Efficiency Varied c -
Ksat Saturated Soil Conductivity Varied a cm day−1
l Mean path length of soil moisture to fine root surface Varied m
n Soil Porosity Varied a -
sH Hygroscopic point of relative soil moisture Varied a -

Dynamic Variable

Cgw Salt Concentration in Groundwater mol m−3

Cs Salt Concentration in Soil mol m−3

qi,j Water Flux From Node i to Node j µm s−1

Ev Evaporation Flux from Soil µm s−1

ggwr Groundwater-Root Conductance µm s−1 MPa−1

gsr Soil-Root Conductance µm s−1 MPa−1

GWC Gravimetric Water Content -
Ks Soil Conductivity cm day−1
ks Soil Conductance s−1

ksr Soil-Root Conductance on a root area basis µm s−1 MPa−1

Ψs Soil Water Potential MPa
Ψgw Groundwater Potential MPa
Ψb Basal Node Water Potential MPa
Ψo Osmotic Potential MPa
Ψm Matric Potential MPa
s Relative Soil Moisture -
VWC Volumetric Water Content m3 m−3

a Values for loamy sand and sand were taken from Rodŕıguez-Iturbe and Porporato (2005)
b Approximation based on reasonable values from Rodŕıguez-Iturbe and Porporato (2005)
c Approximation based on Perri et al. (2019)
d Approximation based on Vogel et al. (2013)
e (Armas et al., 2010)
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2.2 Plant Xylem and Water Storage

The water flow through the above ground portion of the plant is conducted through the plant

xylem, represented in the RC model as a conductance pathway spanning the height of the plant, h.

Xylem conductance, gp, decreases with declining leaf water potential due to the cavitation process,

whereby the flow of moisture through the xylem conduits breaks down due to embolism formation,

which was first modelled by Sperry et al. (1998). Plants have different hydraulic vulnerability curves

representing how their xylem conductivity varies with leaf water potential (Sperry et al., 1998). Ad-

ditionally, different types of plants exhibit different control strategies on water use during drought.

Dryland plants tend to be anisohydric, continuing to keep stomata open during periods of high solar

radiation, which increases the risk of cavitation, requiring more negative leaf water potentials to

overcome decreased conductances to meet transpiration demands (Kannenberg, Novick, & Phillips,

2019). The xylem vulnerability curve for P. lentiscus was measured by Vilagrosa, Bellot, Vallejo,

and Gil-Pelegŕın (2003) as the relationship between leaf-area specific xylem conductivity and leaf

water potential, Ψl. Plant xylem conductance was calculated from the leaf-specific conductivity

(LSC) using gp =
LSC(Ψl)

ρwh , with Ψl as the independent variable for the LSC regression equation.

Plant water storage is modeled as a single compartment branching from the transpiration path-

way, using a storage conductance, gw, that regulates the flux between water flowing through the

xylem, and water stored in both voids within the xylem (apoplastic storage) and within plant cells

(symplastic storage). This type of capacitance has been previously modelled in circuit diagrams,

with gw serving as a representative value for how much water is diverted from the transpiration

pathway, ie. the flow from the plant base to the leaves, and retained as internal storage (Schulte &

Nobel, 1989; Hartzell, Bartlett, & Porporato, 2017). The exchange between storage and the flow

of the transpiration stream is mediated by Ψx, a storage node potential located along the path

from the basal node to the leaf node. The storage node potential is calculated implicitly when

Ψl is solved based on atmospheric conditions, and the exchange between plant storage and the

transpiration pathway is:

qw = gw ∗ (Ψw −Ψx) , (11)

gw = gwMax ∗ wd , (12)

where Ψw is the potential of stored plant water, gwMax is the value of the storage conductance at

saturation, d is an empirical parameter that reduces the storage conductance as the volume of water

in storage decreases, and qw is the flux out of (positive) or into (negative) the storage compartment.

Storage water potential, Ψw, was calculated using the equation for sapwood xylem water poten-

tial applied by Chuang, Oren, Bertozzi, Phillips, and Katul (2006) following empirical relationships

from Kumagai (2001):

w = (
Ψw0

Ψw0 −Ψw
)p , (13)

where and Ψw0 and p are empirical constants. The base values of the initial ionic concentration in

storage, initial storage volume, and the empirical storage constants were estimated using relative
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water content (RWC) and plant sap osmolality data from Armas et al. (2010). Plant water storage

concentration was derived from the osmolality measurements, which were converted to osmotic po-

tential using the factor 1 mmol
kg = −2.408 kPa (Estrada et al., 2021). The influx of salt concentration

into the plant water storage during the course of model simulations (Equation 10) was converted to

osmotic potential using Van’t Hoff’s Law (Equation 1), and was added to the baseline plant storage

potential (Ψw) calculated at each time step using Equation 13. The total water storage capacity

Zw was calculated using the empirical formulas employed by Cáceres et al. (2021) for P. latifolia,

a salt-tolerant Mediterranean species similar in size and physiology to P. lentiscus and commonly

growing in similar ecological zones.

The incorporation of a single storage compartment was used for P.lentiscus, a softwood tree,

because the majority of a tree’s water is typically stored in the sapwood of its trunk, and modelling

the trunk as a single compartment allowed the minimalist approach to be evaluated (Hartzell et al.,

2017). The simplification of treating the stem storage as a single compartment omits the dynamics

of internal storage circulation, but the use of the storage container’s normalized height variable, f ,

represents the location of the centroid of water storage volume in the plant system, following the

work of Bartlett et al. (2014).

Table 2: Plant Xylem/Water Storage Parameters and Dynamic Variables

Description Value Units

Constant
d Water Storage Conductance Reduction Constant 4 a -
f Normalized Storage Height Fraction 0.5 -
gwMax Maximum Water Storage Conductance 0.002 a µm s−1 MPa−1

h Height of Tree 3.5 b m
p Plant Water Storage Equation Constant 400 c -
Ψw0 Plant Water Storage Equation Constant 3510 d MPa
Zw Maximum Depth of Water Stored per Unit Leaf Area 0.012 e m

Dynamic Variable

Cw Salt Concentration in Plant Water Storage mol m−3

gp Plant Xylem Conductance on a Leaf Area Basis µm s−1 MPa−1

gw Water Storage Conductance µm s−1 MPa−1

LSC Plant Xylem Conductivity on a Leaf Area Basis kg m−1 s−1 MPa−1

Ψw Plant Storage Water Potential MPa
Ψx Storage Node Water Potential MPa
w Relative Water Storage -
a Value estimated based on trials and following Hartzell et al. (2017)
b (Armas et al., 2010)
c Value taken from Chuang et al. (2006)
c Value estimated using data from Armas et al. (2010)
e Values from Cáceres et al. (2021) for similar P. Latifolia
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2.3 Leaf Level Gas-Exchange

2.3.1 Photosynthesis

Photosynthetic processes were modelled using typical parameters for a C3 plant type, and followed

the structure of the Farquhar, von Caemmerer, and Berry (1980) model as employed in the Photo3

system of Hartzell et al. (2017). Net carbon uptake, Ad, was calculated as a product of the carbon

demand of the plant, Aϕ,cs,Tl
(ϕ, cs, Tl) and a linear reduction function fΨl

(Ψl), i.e.,

Ad = Aϕ,cs,Tl
(ϕ, cs, Tl)fΨl

(Ψl) , (14)

where ϕ is incoming solar radiation, cs is the concentration of carbon in the leaf stomata, and Tl is

the leaf temperature. The reduction function was assumed to be piecewise, with a linear reduction

in Ad between the values of leaf water potential at the onset of water stress and extreme water

stress (ΨlA1
and ΨlA0

respectively):

fΨl
=


0, Ψl < ΨlA0

,
Ψl−ΨlA0

ΨlA1
−ΨlA0

, ΨlA0
≤ Ψl ≤ ΨlA1

,

1, Ψl ≥ ΨlA1
.

(15)

Carbon demand was assumed to be a passive diffusion process scaling with stomatal conduc-

tance, gs,CO2 , and the gradient of carbon concentration between the leaf stomata (cs) and the

atmosphere (ca), i.e.,

Aϕ,cs,Tl
(ϕ, cs, Tl) = gs,CO2(ca − cs) . (16)

The carbon demand was regulated by either a limitation in Rubisco, the enzyme primarily

responsible for carbon fixation, or a limitation of available light (solar radiation) which powers the

production of ATP and other necessary molecules in the Calvin Cycle (Zhang & Portis, 1999).

Depending on the level of solar radiation, ϕ, leaf temperature, Tl , and stomatal carbon concen-

tration, cs, the limiting photosynthetic rate, Ac(cs, Tl) or Aq(ϕ, cs, Tl), which are the Rubisco- and

light-limited rate respectively, dictated the unreduced carbon demand:

Aϕ,cs,Tl
(ϕ, cs, Tl) = min[Ac(cs, Tl), Aq(ϕ, cs, Tl)]. (17)

Ac(cs, Tl) and Aq(ϕ, cs, Tl) were calculated using the equations, parameters, and assumptions out-

lined in Hartzell et al. (2017), with key species specific parameters Vcmax0 and Jmax0, the maximum

carboxylation rate and maximum electron transport rate, taken from Filella, Llusià, Piñol, and

Peñuelas (1998); Correia and Barradas (2000) (see Table 3).

Following Medlyn et al. (2011) and others, the stomatal conductance was scaled inversely with

the square root of the atmospheric vapor pressure deficit (V PD), the difference between vapor

pressure in the air and the total potential vapor pressure for a given temperature. This emergent

relationship was derived from work on stomatal optimization theories (Katul, Palmroth, & Oren,
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2009):

gs,CO2 =
aAd

cs
√
V PD

, (18)

where the parameter a represents the ratio between atmospheric and stomatal carbon concen-

trations for C3 plants, determined experimentally (Jones, 1992).

2.3.2 Transpiration and Water Balance

The transpiration flux, E, through the leaf stomata and waxy cuticles was determined using the

equation:

E = gsa
ρa
ρw

[SHl(Tl,Ψl)− SHa] , (19)

where SHl and SHa are the specific humidity in the leaf stomata and the air respectively, and ρa and

ρw are the densities of water and air respectively. The coupled stomatal-atmospheric conductance

for water vapor, gsa, is a series conductance of gs and ga computed as gsa = gsga
gs+ga

, with ga,

atmospheric conductance, assigned a standard value based on windspeed following Jones (1992).

gs, stomatal conductance to water vapor, was calculated by factoring in the diffusivity ratio of 1.6

between water vapor and CO2 and adding the cuticular conductance gcut, representing the passive

water vapor flux through the waxy cuticles, i.e.,

gs = 1.6gs,CO2 + gcut .

The atmospherically forced parameters, Ψl and Tl, appear in the equations for plant conduc-

tance, photosynthesis, and transpiration, and were solved at each time interval of the simulation

through use of the water balance and energy balance equations, which, combined with Equation

19, give a unique solution that conforms to environmental conditions. The water balance equation

for the RC model relies on the conservation of mass flux through the plant roots, into or out of

storage, and exiting the leaf through transpiration. The equations:

qb,x(Ψb,Ψl) = qsr(Ψb) + qgwr(Ψb) , (20)

qb,x(Ψb,Ψx) = E − qw(Ψx) , (21)

E =
LAIgp(Ψl)

1− f
[Ψx −Ψl] , (22)

where LAI is the leaf area index (leaf area per unit ground area), state that the flux qb,x from basal

node b to storage node x through the plant stem is equal to the transpiration (E) minus the flux

into storage (qw), and transpiration is a function of the potential gradient between storage node x

and the leaf node l. These equations allow for the node potentials to be written in terms of leaf

water potential as Ψb(Ψl) and Ψx(Ψl), and the third equation can be rewritten:

E =
LAIgp(Ψl)

1− f
[Ψx(Ψl)−Ψl] . (23)
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Equation 19 and Equation 23 can be combined with the energy balance equation surface at the

leaf surface:

ϕ = ρacp[Tl − Ta] + λwρwE , (24)

which states that the energy flux of incoming solar radiation, ϕ, is equal to the energy absorbed

as specific heat and latent heat fluxes, the two terms on the right side of the equation, where cp is

the specific heat capacity of air, Ta is air temperature, and λw is the heat of vaporization of water.

Equations 19, 23, and 24 allow the three unknown variables - Ψl, Tl, and E - to be solved, with

the solution constrained by atmospheric, soil, and water storage variables at each time step.

Table 3: Leaf Photosynthetic and Weather Variables and Parameters

Description Value Units

Parameter
a Stomatal Conductance Constant 3.46 a -
ca Atmospheric CO2 concentration 400 ppm
ga Atmospheric Conductance 324 a mm s−1

gcut Cuticular Conductance 0.0249 b mm s−1

Jmax0 Maximum Electron Transport Rate 60 c µmol m−2 s−1

LAI Leaf Area Index 3 d m2 m−2

ΨlA0
Maximum Water Stress -0.3 e MPa

ΨlA1
Onset of Plant Water Stress -4.55 e MPa

Vcmax0 Maximum Carboxylation Rate 37 f µmol m−2 s−1

Dynamic Variable

Ad Net Carbon Uptake µmol m−2 s−1

Aϕ,cs,Tl
Carbon Demand µmol m−2 s−1

Ac Rubisco-Limited Photosynthetic Rate µmol m−2 s−1

Aq Light-Limited Photosynthetic Rate µmol m−2 s−1

cs Stomatal CO2 concentration ppm
E Transpiration µm s−1

fΨl
Water Stress Reduction Function -

gs Stomatal Conductance to Water µm s−1 MPa−1

gs,CO2 Stomatal Conductance to CO2 mol m−2 s−1

ϕ Solar Radiation W m−2

Ψl Leaf Water Potential MPa
SHa Specific Humidity in Air kg kg−1

SHl Specific Humidity in Leaf kg kg−1

Tl Leaf Temperature ◦C
V PD Vapor Pressure Deficit MPa
a (Jones, 1992)
b (Bueno, 2021)
c (Filella et al., 1998)
d (Barradas & Correia, 1999)
e (Galmés, Medrano, & Flexas, 2007)
f (Correia & Barradas, 2000)
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2.4 Sensitivity Analysis

2.4.1 Model Scenario and Calibration

To calibrate uncertain plant parameters, environmental measures taken by Armas et al. (2010)

in their HR experiment in the coastal Mediterranean dune were input and the model was run

for the length of the experiment. Weather parameters - air temperature, relative humidity, and

solar radiation - for Almeria, Spain were retrieved from the the National Solar Radiation Database

(NSRDB) for 2017, the data closest in time to the 2008-2009 period of the Armas et al. (2010) study

(Sengupta et al., 2018). 2017 was an especially hot year in the region, but solar radiation timing

and duration, as well as relative humidity, were taken as reasonable proxies for conditions present

during the experiment. The base values for soil moisture and salinity of the soil compartments

were set to the values calculated by Bazihizina et al. (2017) from the Armas et al. (2010) study in

order to compare the model results to the arguments made in the paper. In the vadose zone, an

initial salt mass was calculated based on an initial concentration taken and volume of pore water,

both assigned following the analysis of Bazihizina et al. (2017). The concentration is updated at

30 minute time steps based on changes in soil moisture. Values for gw, d, rr, Ar at soil surface

were calibrated through 3-month simulations using the relative water content (RWC), internal plant

salinity, and leaf water potential benchmarks reported by Armas et al. (2010), which were measured

during April and August.

2.4.2 Model Trials

To test the relative impact of osmotic and matric potential gradients on the magnitude of HR,

30 day drydown (zero precipitation) trials were conducted. Initial values of soil moisture and

salinity concentration were varied in the saturated and vadose zone compartments, to account

for heterogeneity in the soil-root system. In addition, root distribution, soil texture, and salt

filtration efficiency were changed across trials to clarify relative impacts of plant parameters on

HR in comparison to potential gradients, and identify interactions of these factors. Table 4 shows

the configuration of these traits, soil moisture, and salinity factors in the trials of the sensitivity

analysis. The results of the sensitivity analysis are supplemented by analytical figures, which show

the effects of variations of these plant parameters on instantaneous rates of HR during typical

predawn conditions.
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Table 4: Sensitivity Analysis Trials. Soil moisture (s) was varied in the vadose zone, while soil
texture and filtrartion efficiency (FE) was varied in both soil zones. Salinity concentrations (Cgw,
Cs) and root density ratios (Argw :Ars) are listed as saturated/vadose zone values respectively. B
= base value (90:10), L/H = low/high (85:15), H/L = high/low (95:5).

Trial s Salinity Concentrations (Mol
m3 ) Soil Texture Root Density Ratio (Argw :Ars) FE

Base 0.12 300/200 Sand B/B 0.99

T1 0.12 300/200 Loamy Sand B/B 0.99

T2 0.09 300/200 Sand B/B 0.99

T3 0.15 300/200 Sand B/B 0.99

T4 0.12 300/260 Sand B/B 0.99

T5 0.12 300/140 Sand B/B 0.99

T6 0.12 300/200 Sand L/H 0.99

T7 0.12 300/200 Sand H/L 0.99

T8 0.12 300/200 Sand B/B 0.92

3 Results and Discussion

The results of the sensitivity analysis (Figure 4) show the relative impact of important factors on the

magnitude of HR in the scenario and conditions of the coastal dune experiment. Of the parameters

tested in the analysis, soil moisture and salinity distributions showed the strongest impact on 30-

day HR, while root distribution and filtration efficiency, along with other factors including leaf area

index and plant water storage parameters had less influence, particularly for the realistic range of

values in the experimental system. The magnitude of cumulative HR in the 30 day trials ranged

from about 0.1 to 2 mm, with the highest value corresponding to an increase in soil moisture (T3)

and the lowest value corresponding to a finer soil texture (T1). The average precipitation during

July in Almeria, Spain is approximately 2 mm (AEMET, 2022), which provides context to the

potential importance of HR in the region to ecosystem stability, and resistance to desertification,

particularly during the dry season.

A clear trend found in the simulations testing the relative importance of the components of

the minimalist RC model is that below-ground, root-soil factors seem to play the primary role in

determining the potential for HR in a dry, sandy, coastal system with a saline water table, dimorphic

roots, and opposite directionality of matric and osmotic potential gradients. Above ground water

storage and transpiration-related factors, while relevant to the redistribution of water in the roots

zone, exert less of an influence in the minimalist model configuration, and particularly seem to have

a muted effect when soil moisture is an obvious limiting factor in root water transport. Conclusions

drawn from the relative lack of influence imposed by plant traits on the movement of root water

must also be gauged in relation to the limitations of the RC model, and the availability of data

provided by the Armas et al. (2010) experiment. However, the model demonstrated the ability to

predict the directionality of HR in the system, and performed in fair agreement with measures of

plant relative water content and leaf water potential, indicating that a circuit schematic can be

used to capture macroscopic dynamics of plant systems in saline soils, and provide a heuristic basis
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for questions of HR dynamics.

Figure 4: 30 day cumulative hydraulic redistributon (HR) for sensitivity analysis trials

3.1 Influence of Matric and Osmotic Potential Gradients

The influence of water potential gradients between groundwater and soil compartments is the pre-

dominant factor determining the magnitude of HR in both saline and non-saline systems, and

analysis of the interplay of the components of the potential gradients may be the key to under-

standing limitations on redistribution. In the context of the schematic proposed by Bazihizina et

al. (2017), the experimental conditions of Armas et al. (2010) fall within a type-2 soil environment,

with significant contributions of both matric and osmotic potential to the overall potential gradi-

ent. An analysis using the base parameters of the experimental setup with a set of typical predawn

atmospheric conditions in the model results illustrated that the potential for HR in saline soils,

where variation in soil moisture is also a major factor, is best understood by considering the water

potential components as connected rather than as distinct drivers of HR.

Figure 5 highlights this intertwined dynamic. It shows that the osmotic water potential gradient

causes no significant increase in HR when the matric potential gradient is larger than 1.8 MPa,

but has increasing influence as the matric gradient potential decreases. For dryland systems, the

osmotic potential gradient’s effect is strongly dependent on the soil matric potential gradient, which

is developed in conjunction with the hydraulic conductivity of the soil-root system. At levels of soil

moisture that optimize soil-root contact and soil hydraulic conductivity, the model results indicate

that osmotic potential may be a more potent influence on hydraulic redistribution than matric

potential, with heterogeneity of salt in the root zone explaining the majority of HR variation.

However, in drier systems, the limiting factor in HR becomes the soil hydraulic conductivity and
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the health of drying roots, which diminishes the impact of osmotic gradients on HR. The question

of whether there are limitations on HR for plants in saline soils is thus best accompanied by the

understanding that there are limitations for HR in soil of any salinity profile that becomes very dry,

and this limitation may interact with salinity-specific dynamics to determine the redistribution of

soil moisture.

Figure 5: Influence of matric (Ψm) and osmotic potential (Ψo) gradients on hydraulic redistribution
(HR).

3.2 Influence of Soil-Root Conductance

The predominance of osmotic potential as the driver of HR in the coastal dune system occurs when

there is a smaller matric potential gradient (≈0.3-0.6 MPa) than the matric gradient present in the

experimental conditions. In this smaller matric potential gradient range, the soil is moist enough to

facilitate conductance from the root into the soil, while also being dry enough to drive this flux. The

great variation in the influence of salinity and osmotic potential relates to the exponential decline of

soil hydraulic conductance, and the significance of soil texture on this process. Figure 6 illustrates

this pattern in dry, sandy soils, which maintain greater hydrualic conductivity than finer grained

soils at low levels of soil moisture. Notably, following the Clapp and Hornberger (1978) equation,

which is based on significant empirical evidence, the hydraulic conductivity increases more rapidly

at a level of soil moisture near the base level of 0.12 measured by Armas et al. (2010), and the

influence of soil texture also increases, as the difference between the two curves at equivalent levels

of soil moisture widens.

No soil can be perfectly classified as a sand or loam, and heterogeneity in soil horizons means

that different sections of the plant root system will be exposed to soils of slightly differing texture,
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[a]

[b]

Figure 6: Variation of (a) soil hydraulic conductivity, Ks, and (b) matric water potential, Ψm, as
a function of soil moisture, s.

with varied ability to conduct moisture to the rootlet surface, as well as away from the root and into

the soil during the process of hydraulic redistribution. Variation in soil texture also affects the the

magnitude of matric potential that rootlets experience due to the variation in the matric potential-

soil moisture curves. The variation in matric potential between sand and loamy sand (Figure 6b)

is far less pronounced than the difference in hydraulic conductivity (Figure 6a), however in both

soil types, the magnitude of matric potential gets exponentially larger with drydown. Thus, from

a root-soil perspective, while the redistributive emission of root water into the surrounding soil is

made easier in wetter soil patches with greater hydraulic conductivity, these wetter patches also

exert a smaller potential gradient on the root water due to their less negative matric potential. The

opposition of these factors and their relative influence on a system’s proclivity for HR is understood

through the comparison of their governing equations. Equation 3 dictates that matric potential

magnitude decreases in conjunction with soil moisture with an exponential factor of b, while soil

hydraulic conductance increases with an exponential factor of 2b+3. Figure 7 captures the effect of

these components on HR as soil moisture and texture varies. There is an optimal value of relative

soil moisture (near 0.14), for both soil types, at which the gains in conductivity and losses in matric

potential magnitude allow for the greatest amount of HR to occur. The fact that sand and loamy

sand share an optimal range of soil moisture for HR is due to the similar shape of their hydraulic
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conductance and matric potential curves (Figure 6), which is controlled by the empirical constant b

in the Clapp and Hornberger (1978) model (Equations 3 and 4). Thus, the magnitude of HR varies

greatly between similar soil textures, but the optimal moisture range remains nearly constant.

These model results match the conclusions of Bazihizina et al. (2017) on the importance of soil

texture and conductivity on hydraulic redistribution, as well as past research results. For example,

in an arid Australian system, soil dryness was shown to reduce magnitude of HR without shutting

it off completely, partially because of loss of conductivity (Burgess, Pate, Adams, & Dawson, 2000).

The inclusion of salinity as a factor in the model complicates the picture of the role of hydraulic

conductivity as a limiting factor of redistribution. Unlike matric potential, which is directly tied to

soil moisture, osmotic potential is a function of both salt mass and local soil moisture, both of which

can vary greatly, and not necessarily in conjunction, throughout a root zone. The combination of

Figures 5 and 7 suggest that osmotic influence influence is greatest when hydraulic conductivity is

high, but that the salinity gradient must be stronger in wetter soil patches in order to exert enough

pull on root water to extract moisture. In the very dry conditions of the coastal dune system, the

salinity gradient is never the primary driver of upward HR due to the highly saline groundwater

in the system, which is far saltier than soil water in the upper layers. However, increasing the

salt concentration in the vadose zone allows the dryness gradient to be expressed more strongly

through an increase in upward HR. In locations with greater moisture conductance and more salt

mass, cumulative HR tends to be largest. In summary, from a soil-root perspective, salinity is

neither the limiting factor nor the primary driver of redistribution in the dry coastal dune system.

However, in wetter patches of the upper root zone, with soil texture more conducive to conducting

water, salinity is a major influence on the HR of the system, and this influence may be large enough

to provide survival advantage in a Mediterranean climate with minimal precipitation during the

dry season. More experimental data for less arid saline climates will help clarify the interaction of

osmotic potential and soil hydraulic conductivity, and elucidate whether salt-related limitation on

HR exist separate from limitations due to conductivity loss.

Figure 7: Influence of soil texture on hydraulic redistribution (HR) at varying levels of relative soil
moisture, s
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3.3 Influence of Root Distribution

Variation of the root area density distribution, particularly the ratio of root area density in the

vadose zone to the root area density in the saturated zone, exerted influence on the magnitude of

HR in the coastal dune system. Using the assumption of a tapering pattern, as identified by Mattia

et al. (2005), with significantly more fine root area in the upper soil than the groundwater layer,

the relative ratio of roots within each compartment was shifted to understand the level of impact

that each part of the dimorphic system had. Due to the dryness of the upper soil layer, during the

drydown trials, the sole source of uptake was through the groundwater roots, with the lateral roots

serving only as conduits for redistribution of lifted water and water flowing out of plant storage.

[a]

[b]

Figure 8: Influence of root area density (Ar) in the vadose (soil) and saturated (groundwater) zones
and matric potential gradient (Ψm) on hydraulic redistribution (HR).
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Figure 8a highlights the nearly nonexistent influence of groundwater root area density on HR.

The clear limiting factor in the coastal dune environment is the root area density of the lateral

roots in the vadose zone. Groundwater uptake increases for the plant with a larger spread of

groundwater roots, but the previously discussed limitations in soil conductivity prevent prevent an

increase in HR without added contact between vadose zone root surface area and soil water. If

root surface area is insufficient in dry soil, any additional groundwater uptake tends to contribute

to increased transpiration during the day and additional water storage during predawn periods.

Figure 8b shows a similar pattern to the soil texture-soil moisture relationship displayed in Figure

7. There is a critical value of of soil moisture and accompanying matric potential for which the root

area distribution can be an influential factor on HR (Ψm ≈ 0.7 − 0.9 MPa, s ≈ 0.14 − 0.15), with

decreasing influence outside of these conditions. This is because HR scales linearly with available

root surface area in the vadose zone. Outside of the optimal range of soil moisture illustrated in

Figures 7 and 8b, the magnitude of HR is so limited by the influence of soil hydraulic conductance

and matric potential that the linear amplification of increased root area on HR has a neglible effect.

The 30 day trials conducted in the sensitivity analysis were run assuming a static rooting

profile. Research shows that plants expand their root systems dynamically on the time scale of

months to years (Schymanski, Sivapalan, Roderick, Beringer, & Hutley, 2008), and can forage to

find nutrient and moisture rich patches in soils (Shemesh, Arbiv, Gersani, Ovadia, & Novoplansky,

2010). In addition, expanding the root density in the upper soil layer, while beneficial to soil

moisture balance during the dry season, can prove costly to plants when roots in drier regions lose

conductivity and function, and require biophysical maintenance. The short-term simulations thus

capture the immediate benefits of expanded root density in the dry upper layer, but not the long

term factors that may also affect the survival of the plant.

3.4 Salinity in Plant Water Storage

The two primary arguments proposed by Bazihizina et al. (2017) for the existence of limitations

on HR in saline soils both relate to the magnitude and interior location of salt uptake within the

plant. To attempt to elucidate the process of salt uptake and some of its controlling factors, filtra-

tion efficiency - a key trait in most halophytes (Perri et al., 2019) - was varied, and mass transport

of salt ions was conjointly allowed to increase. Figure 9 shows the effect filtration efficiency has

on the total water potential in plant storage when salt mass is allowed to accumulate. In multiple

ways, the RC model likely overestimates the amount that salt accumulation impacts storage po-

tential. First, all salt mass taken in through root water uptake is assumed to accumulate in the

storage compartment, making the osmotic potential more negative. In reality, halophytic plants

possess multiple methods of osmoregulation - the partial regulation of of osmotic potential - through

physiological processes beyond salt filtration (Perri et al., 2019), including accumulation of salt in

cell vacuoles, modifications to cellular transporters, and control over ionic distribution (Alvarez,

Rodŕıguez, Broetto, & Sánchez-Blanco, 2018). Second, the 30 day drydown simulations assume no

precipitation occurs during the period, while even the small amount of typical precipitation in the

23



coastal dune system would dilute salinity in the root profile, reducing salt uptake.

Figure 9: Relationship between filtration efficiency, FE, and plant water storage potential, Ψw. For
seasonal periods where saline water is the main source of root water uptake, Ψw tends to equilibrate
when FE is high, but extended reliance on saline water can cause high levels of salt accumulation.

The base value for filtration efficiency, FE = 0.99, was determined based on RWC and twig

osmolality data reported during the Armas et al. (2010) experiment for April and August within

the coastal dune system. The total decrease in relative water content, ∆RWC, over the 4 month

period was just 5%, meaning plant water did decline, but that water loss was well controlled, even

during the driest months of the year. Greater salt uptake tends to limit plant water storage loss

due to the increase in osmotic pull on storage water, meaning lower filtration efficiency serves to

prevent water loss significantly. Based on the previously mentioned simplifications - that all salt

mass accumulates in water storage during the trial - it is also likely that this osmotic potential

driven restriction on water loss is over-predicted. However, the assumption that all salt intake

ends up in an internal water storage location that exerts osmotic potential on other compartments

within the soil-plant-atmosphere system still provides a reasonable mechanism for analysing the

Bazihizina et al. (2017) hypothesis, which was explicitly formulated based on the osmotic potential

within the plant.

The results of varying the filtration efficiency in the model indicate that if plant water storage is

viewed as a single compartment within P. lentiscus, the salt intake during a typical dry period is not

enough to make it a dominant sink to the extent that HR is limited. Figure 10 shows that even for

a relatively low value of filtration efficiency (FE = 0.91), a full month of drydown conditions do not

cause the storage water potential to become more negative than the potential of the vadose zone.

When the duration of salt uptake with a low FE is extended, however, eventually salt accumulation

becomes the dominant influence on storage water potential (Figure 9), with storage volume reaching

a level near full capacity. For FE values which accurately represent the water content of the plant
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Figure 10: Change in plant water storage potential (Ψw) relative to vadose and saturated zone
water potentials (Ψs, Ψgw) during an extended simulation with a relatively high level of salt uptake
(FE = 0.91)

during drydown, the change in storage potential is less pronounced. In the base case (FE = 0.99),

the potential drop is just 0.2 MPa, from -1.3 to -1.5 MPa, barely below the potential of the saline

groundwater, and fitting well with the change in osmolality measured by Armas et al. (2010) during

the coastal dune experiment. As Tattini et al. (2006) note based on their study of P. lentiscus,

a greater fraction of the change in plant water storage osmotic potential tends to come from salt

accumulation than change in relative water content. This mechanistic nuance is captured by the

RC model, and indicates the high degree of salt filtration that halophytes can develop to, among

other survival benefits, retain the capability to redistribute water through their root system without

plant water storage acting as a dominant sink during periods of low transpiration. The model also

indicates that while halophytes may retain the capacity for HR when using saline water sources

seasonally, prolonged dependence on saline water could lead to prohibitive level of accumulation if

other osmoregulation mechanisms are not available.

3.5 Model Evaluation and Limitations

There are several important caveats to the conclusions drawn based on the RC model, particularly

the osmotic storage component. Namely, certain aspects of the model may reduce its explanatory

power for testing the hypothesis of Bazihizina et al. (2017) regarding the potential limitations on

HR. The first aspect of the hypothesis, that salt concentration can magnify in the root xylem

of plants (particularly during periods of low transpiration) preventing the release of water into

the soil, is not well analyzed by the RC model, which collapses all water storage into a single

representative compartment. Research by Clipson and Flowers (1987) on root magnification of salt

concentration found more than twice the osmotic potential in the root xylem of a halophyte during
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low transpiration periods as compared to daytime conditions. The RC model is not able to capture

this level of spatial and temporal variation in xylem salinity, and thus cannot definitively provide

resolution on this particular limitation. An improved RC model, which incorporates root xylem and

leaf storage (Figure 11), could capture the complexity of the internal storage system, and provide

the spatial resolution to better investigate the potential sources of HR limitation. Alternatively, a

porous media model similar to the scheme developed by Huang et al. (2017) with an incorporation

of soil salinity could be used to discretize the root zone, stem, and leaf canopy, helping to complexify

internal osmotic and storage gradients.

Even without the incorporation of root and leaf storage, the results of the simplified RC model,

in addition to the data provided by Bazihizina et al. (2017) and other studies on P. lentiscus, provide

evidence that complicates the reasoning laid out in the HR limitation hypothesis. The empirical

data from Clipson and Flowers (1987) for halophyte S. maritima do show an increase in xylem ionic

concentration during periods of low transpiration, but the ionic concentration appears to plateau at

a level below the salinity concentration present in the soil water provided as a source (200 mol/m3),

as this amplifying effect was actually less pronounced in more saline soil (400 mol/m3). The trials

were for 28 days, indicating that salinity uptake in the root zone may initially cause xylem salt

concentration to increase, but that some mechanism may limit the upper threshold of this effect,

even in more saline soil.

A study on long term salt uptake by P. lentiscus conducted by Alvarez et al. (2018) did find

significant amplification of the salt concentration in the roots and leaves compared with the stem

(1407, 1227, and 503 mMol kg−1) of a plant given saline irrigation, however the measurements did

not account for potential compartmentalization of the ions in cell vacuoles. These levels were found

after 11 months of saline irrigation, which suggests that salt accumulation could potentially reach

concentrations posing a restriction on HR in P. lentiscus if the only driving gradient between the

root and soil is osmotic, with no additional matric potential gradient, and if the use of saline water

is year round, rather than a dry season adaptation, balanced by the use of non-saline soil water

during the wet season. Another questionable aspect of the root water concentration limitation

proposed by Bazihizina et al. (2017) is whether the accumulation tends to occur only in the parts

of the root system where saline water uptake occurs, or whether salts are transported from these

predominant uptake zones inside the roots to other regions where where less uptake and more HR

would presumably occur, i.e. rootlets in saltier patches of soil where less water is absorbed from

the soil.

The second limitation on HR proposed by Bazihizina et al. (2017), that salt accumulation in

plant leaves could become a dominant sink during periods of low transpiration, is also not ideally

answered using the simplified RC model, which would benefit from an additional water storage

compartment for plant leaves. Previous RC model studies have incorporated leaf water storage

(Cáceres et al., 2021), and there is greater empirical data on leaf turgor and conductance patterns

than is available for stem storage. The data found by Alvarez et al. (2018) suggest that year round

irrigation can lead to a significant accumulation of osmotic potential in the plant leaves. Total
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leaf storage water potential in P. lentiscus, however, was found to equilibrate at -1.71 MPa after 8

weeks of saline treatment under high levels of solar radiation in a separate study, with leaf turgor

increasing as ions attracted more water to the symplastic compartments (Tattini et al., 2006). This

potential is well above the total potential of the vadose zone in the Armas et al. (2010) study, which

would suggest that under dry conditions, or an environment with a very strong salinity gradient,

leaf ion accumulation would not prevent HR.

Figure 11: A modified resistor-capacitor (RC) model which could test the limitations on hydraulic
redistribution (HR) posed by osmotic potential (Ψo) in the root xylem and leaf storage water

Other aspects of the simplified RC model could be added and improved in future investigations

to better represent soil-root dynamics. Axial root conductance (friction loss in root xylem) is not

considered in the RC model, based on the assumption of radial conductance as the predominant

bottleneck in the hydraulic system. Additionally, the xylem vulnerability data for P. lentiscus

indicates that it is resistant to embolisms, particularly at the levels of leaf water potential reported

in the Armas et al. (2010) experiment. However, it is possible that axial root conductance could

influence the magnitude of root water redistribution in other ecological settings, as shown in other

experiments conducted during dry seasons (Warren, Meinzer, Brooks, Domec, & Coulombe, 2007),

and could provide more accuracy in future modeling efforts (Bazihizina et al., 2017). Reduction in

axial root conductance due to salinity has also been observed in some previous reports (Bazihizina

et al., 2017). Castillo-Campohermoso et al. (2020) showed a reduction in axial root conductance

specifically in mastic tree, however, that reduction appeared to level off for soil water salt concen-

trations above 100 mMol. The influence of soil texture on HR magnitude is also simplified in the

RC model, since root-soil contact, the amount of surface area of soil particles touching the root
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surface, is not well expressed in the soil-root conductance equation. Figure 7 shows that coarser soil

correlates with greater magnitude of HR in the RC model, however, previous experiments provide

evidence that coarser soils can sometimes provide less conductivity (Bazihizina et al., 2017; Wang,

Tang, Guppy, & Sale, 2009). Without clear data on the distribution of soil heterogeneity in the

setting of the Armas et al. (2010), it is hard to say whether the pattern reproduced by the model is

accurate (greater conductivity loss in finer soils), and may require refined simulation of the effects

of root contact in addition to soil hydraulic conductivity.

4 Conclusion

Hydraulic redistribution is a vital process for plants in arid climates, which often also face challenges

from soil salinization. Hypothetical limitations on HR propounded by Bazihizina et al. (2017) were

developed based on the lack of strong evidence for redistribution in saline soils, as well as an

empirical pattern of salt accumulation in plant roots and leaves which could prevent the emission

of root water into surrounding soils. This study evaluated whether a minimalist RC model of the

Soil-Plant-Atmosphere continuum could reproduce the results of the most detailed study on HR

in a saline climate (Armas et al., 2010), and applied sensitivity analysis to test the influence of

various plant parameters on HR. The direction of moisture redistribution, change in plant relative

water content, and accumulation of salt in stem water storage was well captured by the simplified

RC model, but key complexities - mechanisms of salt incorporation and division of the plant xylem

into smaller sections - were highlighted, and should be incorporated into future models to better

understand the proposed limitations to HR. Studies on the magnitude and internal location of salt

accumulation, specifically in P. lentiscus and other halophytes, match the results of the minimalist

model, suggesting that in the conditions of the Armas et al. (2010) study salt accumulation would

not be large enough to shut down HR, providing a counterexample to the Bazihizina et al. (2017)

hypothesis. Future studies should investigate species-specific salt storage mechanisms, implement

more spatially discrete mapping of the SPAC system, and model environments where the osmotic

gradient is the more dominant factor for HR than the matric gradient. These modifications will be

useful in further testing the barriers to HR that may arise in certain saline regions.
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Soriano-Melgar, L., Mounzer, O., & Sánchez-Blanco, M. J. (2020). Plant-available water,
stem diameter variations, chlorophyll fluorescence, and ion content in Pistacia lentiscus
under salinity stress. Revista Terra Latinoamericana, 38 (1), 103. doi:
10.28940/terra.v38i1.510

Chuang, Y. L., Oren, R., Bertozzi, A. L., Phillips, N., & Katul, G. G. (2006, 2). The porous media
model for the hydraulic system of a conifer tree: Linking sap flux data to transpiration rate.
Ecological Modelling , 191 , 447-468. doi: 10.1016/j.ecolmodel.2005.03.027

Clapp, R. B., & Hornberger, G. M. (1978). Empirical equations for some soil hydraulic
properties. Water Resources Research, 14 (4), 601-604. doi: 10.1029/WR014i004p00601

Clipson, N. J. W., & Flowers, T. J. (1987). Salt tolerance in the halophyte suaeda maritima (l.)
dum. the effect of salinity on the concentration of sodium in the xylem. The New
Phytologist , 105 (3), 359-366. doi: 10.1007/BF00392237

Correia, O., & Barradas, M. C. D. (2000). Ecophysiological differences between male and female
plants of Pistacia lentiscus L. Plant Ecology , 149 (2), 131-142. doi:
10.1023/A:1026588326204
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conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during
an intense drought. Journal of Experimental Botany , 54 , 2015-2024. doi:
10.1093/jxb/erg221

Vogel, T., Dohnal, M., Dusek, J., Votrubova, J., & Tesar, M. (2013). Macroscopic modeling of
plant water uptake in a forest stand involving root-mediated soil water redistribution.
Vadose Zone Journal , 12 (1). doi: 10.2136/vzj2012.0154

Vyatcheslav, V. (2020). Pistacia lentiscus. Ukrainian Biodiversity Information Network.
Retrieved from https://ukrbin.com/show image.php?imageid=176533

Wang, X., Tang, C., Guppy, C. N., & Sale, P. W. (2009, 1). The role of hydraulic lift and subsoil
P placement in P uptake of cotton (Gossypium hirsutum L.). Plant and Soil , 325 (1),
263-275. doi: 10.1007/S11104-009-9977-1/FIGURES/6

Warren, J. M., Meinzer, F. C., Brooks, J. R., Domec, J.-C., & Coulombe, R. (2007). Hydraulic
redistribution of soil water in two old-growth coniferous forests: quantifying patterns and
controls. New Phytologist , 173 (4), 753-765. doi:
https://doi.org/10.1111/j.1469-8137.2006.01963.x

Yu, T., Feng, Q., Si, J., Xi, H., Li, Z., & Chen, A. (2013). Hydraulic redistribution of soil water
by roots of two desert riparian phreatophytes in northwest China’s extremely arid region.



Plant and Soil , 372 , 297-308. doi: 10.1007/s11104-013-1727-8
Zhang, N., & Portis, A. R. (1999). Mechanism of light regulation of rubisco: A specific role for

the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Plant
Biology , 96 (16), 9438-9443. doi: 10.1073/pnas.96.16.943


	Hydraulic Redistribution Under Saline Conditions
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1670443305.pdf.bKrwT

