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Adaptive Resource Management Via Modular Feedback Control

Ashvin Goel, David Steere, Calton Pu, Jonathan Walpole
Department of Computer Science and Engineering

Oregon Graduate Institute, Portland

Abstract

A key feature of tomorrow’s operating systems and run-
time environments is their ability to adapt. Current state
of the art uses an ad-hoc approach to building adaptive
software, resulting in systems that can be complex, unpre-
dictable and brittle. We advocate a modular and methodical
approach for building adaptive system software based on
feedback control. The use of feedback allows a system to
automatically adapt to dynamically varying environments
and loads, and allows the system designer to utilize the sub-
stantial body of knowledge in other engineering disciplines
for building adaptive systems. We have developed a toolkit
called SWiFT that embodies this approach and helps sys-
tem designers construct, analyze and visualize the behavior
of their system. SWiFT provides a framework for compos-
ing simple feedback mechanisms that operate within lim-
ited domains, and for dynamically reconfiguring them in
response to drastic changes in the environment. The result
is a system that is efficient and predictable across a wide
range of operating conditions. We describe three SWiFT
applications to demonstrate the feasibility of this technol-
ogy.

1 Introduction

Operating systems need to be more adaptive to per-
form efficient resource management in the face of applica-
tions with dynamically varying resource needs running in
chaotic, shared environments. Unfortunately, existing ap-
proaches to system design result in systems that are unpre-
dictable and tuned to specific operating conditions. We ad-
vocate adaptive system software design based on feedback
control theory, which has been used in other engineering
disciplines to design controls such as fly-ball governors and
cruise controls [5].

Although feedback has previously been used for resource
management, for example in multi-level feedback sched-
ulers [4] and TCP congestion control [7], the control mech-

This research was supported in part by DARPA contracts/grants
N66001-97-C-8522, N66001-97-C-8523, and F19628-95-C-0193, and by
Tektronix, Inc. and Intel Corporation.

anisms have two problems. First, their design incorpo-
rates implicit assumptions about therange of their operat-
ing environment. For example, TCP’s adaptive congestion-
control algorithm performs poorly over wireless links. Re-
placing this policy with one more suited to wireless use re-
sults in better performance [20]. Second, these controllers
were written without a systematic approach which resulted
in an ad-hoc design. This leads to controls that are tightly
integrated with the system, which limits their reusability
and complicates their maintenance. For example, it would
be useful to reuse an existing control, such as parts of
TCP congestion control [7], in a new domain such as CPU
scheduling [18]. In addition, the lack of a systematic ap-
proach makes it difficult to analyze the characteristic be-
havior of the controlled system. The scarcity of good con-
trollers in system software bears witness to the wizardry
required to build them. Our goal is to move the task of
building adaptive resource managers to the realm of engi-
neering.

We propose systematic use of feedback control for pre-
dictable and controlled adaptation in operating systems.
Our approach produces controllers that areanalyzable,
modular anddynamically reconfigurable. An adaptive sys-
tem is more predictable when its controls can be analyzed
and the controller’s operating ranges are known or can be
detected. Modularity not only allows reuse but also piece-
wise analysis of the controls. Further, modular controls are
easier to modify when the runtime environment changes.
Reconfiguration allows switching simple feedback controls
that are tuned to operate within limited domains in response
to drastic changes in the environment. Reconfigurable con-
trols thus enable a system to run efficiently across a wide
range of operating conditions.

In this paper, we present SWiFT, a software feedback
toolkit that embodies our approach and helps system de-
signers construct, simulate, analyze and visualize the be-
havior of their system. SWiFT supplies tools to analyti-
cally or empirically determine the characteristic behavior
of a controlled system using a model of the system and a
specification of the control goal. This analysis allows us to
determine properties such as stability of the system based
on control theory. Modularity in SWiFT results from our
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Figure 1: A block diagram of feedback control

use of components and containers as the underlying abstrac-
tion for building controls. SWiFT enables dynamic recon-
figuration by limiting the interaction between components
to a simple input/output model and by supporting guarding
and replugging of controllers [12]. Hence, our approach re-
sults in predictable, modular and reconfigurable control de-
signs. In addition, SWiFT provides GUI-based debugging
tools such as a software oscilloscope and a library of feed-
back components such as low pass filters to ease the task of
building adaptive system software.

The next section presents the feedback control model
in the SWiFT toolkit. Section 3 provides an overview
of our approach for designing adaptive applications using
SWiFT. We have used the SWiFT toolkit for developing
adaptive control mechanisms in a diverse range of domains,
from network flow and congestion control in multimedia
streams to proportion-based CPU scheduling. This section
describes three adaptive applications that were enabled by
SWiFT. Section 4 describes the current status of SWiFT.
Section 5 summarizes related work in feedback control for
designing adaptive systems. Finally, Section 6 presents our
conclusions.

2 The SWiFT Model

The SWiFT toolkit follows the design methodology used
in hardware control where components interact with each
other only through their inputs and outputs, and their be-
havior can be expressed using block diagrams [6]. Figure 1
shows the abstract architecture of a feedback control system
built with SWiFT. The controller adjusts the system to drive
system output to match some objective goal. It is integrated
with the system through monitors and actuators. A mon-
itor measures the controlled variable, and is the source of
the feedback. The controller’s output causes the actuator to
adapt the system’s behavior in response to disturbances, or
changes in the system’s environment. For example, cruise
control monitors the wheel speed and adjusts the throttle
when the road incline changes. The SWiFT feedback con-
trol design approach separates the system from the control,
the monitor, and the actuator, thus providing a modular de-
sign.

State

In
pu

t P
or

ts

O
utput P

orts

Reset
Feedback
Component

Parameters Parameter = R

State = y

y(k) = R * u(k) +
    (1−R) * y(k−1)

u y

Low−pass
filter component

Figure 2: The SWiFT component model, and an example
low-pass filter component.

Components and Containers The basic blocks in
SWiFT are feedback components. Feedback components
read data from their input port(s), calculate an output value
based on their transfer function, and pass the value to their
output port. A control circuit is built by connecting a com-
ponent’s output port to input ports of one or more compo-
nents. Monitors and actuators are special feedback compo-
nents with no input ports and no output ports respectively.
Parameters allow modification of the component’s behav-
ior. They are typically adjusted from outside the controller,
such as through a slider in the GUI. The state of a com-
ponent is internal and generally not exposed by the compo-
nent. A reset port is provided to reinitialize the component’s
state.

Figure 2 shows the feedback component model and a
first-order low-pass filter component as an example. The
output of the low-pass filter is an estimator of the average of
its recent inputs. The parameter R is an aging factor that de-
termines the contribution of old inputs to the average. The
internal state is the previous output of the filter.

Feedback containers, shown in Figure 3, provide mod-
ularity and hierarchical structure. A container is a feed-
back component that contains other feedback components
and containers, and defines a circuit of connections among
its children and its input and output ports. The container
can expose key parameters of its children by mapping its
parameter ports to theirs. Figure 3 shows an example of a
feedback container that calculates the mean and the stan-
dard deviation of an input signal. The parameters of the
low-pass filters are exposed by the container.

The outermost or top-level container manipulates and
drives the lower layers. Inner components run syn-
chronously to avoid race conditions. A top-level container
is either clocked with a fixed rate (the sampling rate) or
driven on demand by the system it controls to achieve
discrete-event control.

Analysis and Debugging Tools SWiFT currently per-
forms simple analysis for feedback controllers. A compo-
nent’s transfer function is specified by its creator. A con-
tainer’s transfer function is calculated from its layout and
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Figure 3: The SWiFT container model, and an example
container that estimates the average and the standard de-
viation. component.

the transfer functions of its children. We use MuPad, a sym-
bolic manipulation package, for doing the algebra.

Along with feedback analysis, SWiFT also helps visual-
ize the outputs of a feedback controller in real time with a
GUI toolkit that can be attached to a running control. Other
GUI components in SWiFT include a control panel for ac-
cessing the parameters of the controller, a scope panel that
allows adjustment of the outputs as shown on the scope and
various signal generators such as sinusoid, square and ran-
dom wave generators.

Dynamic Reconfiguration Reconfiguration in SWiFT
allows composition of simple feedback mechanisms. It also
allows tuning a control circuit’s parameters, or replacing
some or all of a control circuit at runtime when the operat-
ing conditions change significantly. Three types of recon-
figuration are possible. First, a component parameter can
be altered. Since parameters are constants in a component’s
characteristic equation, the effect of this component on the
controller’s behavior must be recalculated. Second, a reset
that reinitializes the states and parameters of a component
can be issued. For example, the state of a low pass filter
that is estimating current latency should be discarded after
a network interface switch. Finally, new components can
be plugged in or old components can be removed.

Reconfiguration occurs upon the firing of user-specified
predicates, calledguards, that are simple min-max range
conditions on the input or the output ports or the state of

the controllers. While software reconfiguration in general
is complex, it is enabled in SWiFT because of our modular
approach. For instance, a SWiFT controller can be replaced
by another controller only if both have the same number of
input and output ports. In addition, parameters and states
of the control can be named and their values may be trans-
ferred to the corresponding named entities during reconfig-
uration.

3 Feedback Control Using SWiFT

As an example of using our approach, consider the task
of designing a network flow controller. One starts with a
parameterized model of the system’s environment, and then
designs a control policy that tunes the system’s behavior to
the model. In this example, the client’s received packet rate,
C, can be modeled as varying linearly with the server’s send
rate, S, in the network. If S is less than the network’s avail-
able bandwidth B, no packets are dropped and C equals S.
When S exceeds B, packets are lost due to congestion and
C (the client rate) is less than S (and probably less than B
as well). The client controller’s goal is to tune S to approx-
imate B, by monitoring the rate of packet loss. In other
words, the controller will dynamically estimate B and set S
accordingly. SWiFT allows monitoring and visualization of
the packet loss rate. It also enables modular composition of
the controller and its analysis.

Below, we describe controllers that we have built using
SWiFT for three diverse system domains: clock synchro-
nization over unreliable networks, a streaming network pro-
tocol for multimedia applications and a proportional-share
real-rate CPU scheduler.

Clock Synchronization In this application, clients syn-
chronize their clocks with a reference time server. The con-
trol goal of this circuit is to ensure that the client time in-
creases monotonically and the client-server phase lag con-
verges to zero. The controller tracks the phase of the ref-
erence clock and actuates an adjustable client clock using a
phase lock loop (PLL) feedback circuit. The use of a clas-
sic controller such as a PLL demonstrates the efficacy of
our approach, since PLLs have been widely used in appli-
cations such as in a radio receiver for tuning to the carrier
frequency of an FM signal.

The phase lock loop works well as long as the network la-
tency does not change drastically over short periods. In the
worst case, if the network fails, the client clock can start di-
verging quickly. We canguard the client against this prob-
lem. When the client notices that the server has stopped
sending signals to it, we canreplug the control and use a
running average of the server time that ismore accurate than
the client clock rate that was set at the last adjustment. Once
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the server restarts sending signals, we can replug the PLL
back again. Currently, SWiFT provides a framework for
implementing guards and replugging. Eventually, SWiFT
will use the control goal and controller specification to au-
tomatically generate guards to detect unstable behavior and
replug a control that is more appropriate for the current en-
vironment.

Streaming Control Protocol The streaming control pro-
tocol (SCP) [3] is designed for transferring continuous mul-
timedia data over the Internet, while coexisting harmo-
niously with TCP traffic. Since multimedia applications
can tolerate some lost frames but not delayed frames, SCP
does not retransmit lost packets. SCP’s controller, like TCP,
uses exponential back-off and slow start during congestion.
However, when the network is not congested, SCP’s con-
trol goal is to maintain appropriate buffering in the net-
work to achieve predictable latency and maximize through-
put. SCP monitors acknowledgement arrival and network
buffering and actuates a combined rate and window-based
flow control policy that maintains smooth streaming. In
contrast, TCP repeatedly increases its congestion window
size, causes packet loss and backs off.

SCP’s feedback was implemented using SWiFT. SCP re-
plugs its controls when guards fire indicating a change in
environment state such as fromsteady state to congested
state. The SWiFT programming model makes the guards,
the controls for each state, and the state transitions explicit
and therefore easier to analyze, visualize and modify. Cur-
rently, SCP is implemented at the user level. Once SWiFT
is ported to the kernel, we will implement SCP in the kernel.

Real-Rate CPU Scheduler The proportional-share real-
rate scheduler [18] allocates resources to processes based
on an application-specifiedprogress rate. Allocating more
resources will be wasteful, while allocating less will de-
lay the application. A combination of application-provided
hints and application semantics are used to estimate the
progress needs of applications. For example, the progress
of a producer or consumer of a bounded buffer can be in-
ferred by measuring the fill-level of the bounded buffer.
If the buffer is full, the consumer is falling behind and
needs more resources while the producer needs to be slowed
down.

The feedback controller’s goal is to maintain the speci-
fied (or estimated) application progress rate. The controller
monitors the current progress, say based on the fill levels,
and adjusts the resource allocation according to this goal.
The control model is challenging not only because different
applications have changing progress requirements, but they
also have different responsiveness requirements. For exam-
ple, an isochronous software modem needs a much faster

allocation adjustment than a soft real-time media player. In
addition, the scheduler must mediate the global allocation
requirements of applications at a rate that may conflict with
the response needed by each application.

SWiFT helps in building controls with different response
behavior, for example, linear or exponential rise or back-
off. Moreover, controls can be built with hysteresis so that
state change is not too frequent between controls that op-
erate in different environments, such as during CPU under-
load and during overload. We believe that the various tools
provided by SWiFT helped us to build the complex feed-
back controls in the real-rate scheduler.

4 Current Status

We have implemented SWiFT in C++, C and Java,
and we have applied it to several user-level and ker-
nel applications as discussed above. Version 1.0
of SWiFT is available, along with a tutorial, at
http://www.cse.ogi.edu/DSRG/swift. Cur-
rently, we are building a visual editor for designing, im-
plementing, and monitoring controls and dynamic recon-
figuration using SWiFT. We are also porting SWiFT to the
Linux kernel so that feedback-based kernel allocators, such
as a proportional share CPU or disk scheduler [18, 16], can
be built entirely within the kernel.

5 Related Work

The ideas in SWiFT are indebted to previous work on
feedback-based control systems. Massalin and Pu intro-
duced the idea of feedback-based resource management
in operating systems [9] and used it in the Synthesis ker-
nel [14]. Pu proposed a modular approach to building feed-
back systems [13]. Cen built an early version of SWiFT,
and used it to build an adaptive distributed multimedia
player [1, 3].

Several commercially available toolkits, such as Mat-
lab [19] support building linear, nonlinear and fuzzy con-
trollers. They provide various predefined control building
blocks, simulation, analysis and GUI tools. The target ap-
plications of these toolkits are traditional hardware or em-
bedded control systems that have predictable dynamics and
gradual transitions. These toolkits are designed to be used
off-line at control design time, whereas SWiFT is designed
for online runtime use. For example, SWiFT supports di-
rect manipulation of a running control through its debug-
ging tools. In addition, SWiFT supports dynamic reconfig-
uration through guarding and replugging.

Software feedback has been used extensively for adaptive
scheduling, flow and congestion control [7, 17, 8] and intra-
and inter-stream synchronization in distributed multimedia
systems [15, 2]. The Odyssey system [11] provides efficient
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and agile (responsive) resource allocation to mobile appli-
cations by using system level resource monitoring and ar-
bitration that insulates applications from insignificant varia-
tions in resource levels. These systems implement feedback
mechanisms, while we advocate building modular feedback
and monitoring policies that can be analyzed, simulated and
visualized.

Adaptive systems often use dynamic reconfiguration. For
instance, adaptive LFS [10] dynamically chooses the tradi-
tional cleaner during low loads and does hole plugging dur-
ing high loads for overall performance. SWiFT provides
support for building such reconfigurable controllers.

6 Conclusions

We have presented SWiFT, a software feedback toolkit
that provides a framework for building feedback-based
highly adaptive systems using modular composition of sim-
ple building blocks. Our experience with the design of con-
trollers for various adaptive applications, including OS re-
source allocators, indicates that our approach of systematic
use of feedback control is valid. It enables building pre-
dictable, complex feedback controls that have not been built
until now because appropriate feedback analysis and online
debugging tools did not exist. Our use of reconfiguration
of simple feedback mechanisms allows adaptive systems to
operate over a wide environment range while being efficient
within each limited domain.

References

[1] Shanwei Cen.A Software Feedback Toolkit and Its Applica-
tions in Adaptive Multimedia Systems. PhD thesis, Oregon
Graduate Institute of Science and Technology, August 1997.
Department of Computer Science and Technology.

[2] Shanwei Cen, Calton Pu, Richard Staehli, Cowan Cowan,
and Jonathan Walpole. Demonstrating the effect of soft-
ware feedback on a distributed real-time MPEG video au-
dio player. InProceedings of the Third ACM International
Multimedia Conference, November 1995.

[3] Shanwei Cen, Calton Pu, and Jonathan Walpole. Flow
and congestion control for internet streaming applications.
In Proceedings of Multimedia Computing and Networking
(MMCN), 1998.

[4] F. J. Corbato, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing system. InProceedings of the
AFIPS Fall Joint Computer Conference, pages 335-344,
1962.

[5] Gene F. Franklin, J. David Powell, and Abbas Emami-
Naeini. Feedback Control of Dynamic Systems, chapter 1,
pages 1–15. Addison-Wesley, third edition, 1994.

[6] Ibid., chapter 3, pages 111–113.

[7] V. Jacobson. Congestion avoidance and control.ACM Com-
puter Communication Review; Proceedings of the Sigcomm
’88 Symposium in Stanford, CA, August, 1988, 18, 4:314–
329, 1988.

[8] Srinivasan Keshav. A control-theoretic approach to flow con-
trol. In SIGCOMM’91, pages 3–16, September 1991.

[9] Henry Massalin and Calton Pu. Fine-grain adaptive schedul-
ing using feedback. Computing Systems, 3(1):139–173,
Winter 1990.

[10] Jeanna Matthews, Drew Roselli, Adam Costello, Randolph
Wang, and Thomas Anderson. Improving the performance
of log-structured file systems with adaptive methods. InSym-
posium on Operating Systems Principles, October 1997.

[11] Brian Noble, M. Satyanarayanan, Dushyanth Narayanan,
James Eric Tilton, Jason Flinn, and Kevin Walker. Agile
application-aware adaptation for mobility. InSymposium on
Operating Systems Principles, October 1997.

[12] Calton Pu, Tito Autrey, Andrew Black, Charles Consel,
Crispin Cowan, Jon Inouye, Lakshmi Kethana, Jonathan
Walpole, and Ke Zhang. Optimistic incremental specializa-
tion: Streamlining a commercial operating system. InSym-
posium on Operating Systems Principles, December 1995.

[13] Calton Pu and Robert M. Fuhrer. Feedback-based schedul-
ing: a toolbox approach. InFourth Workshop on Workstation
Operating Systems, pages 124–128, October 1993.

[14] Calton Pu, Henry Massalin, and John Loannidis. The syn-
thesis kernel.Computing Systems, 1(1):11–32, Winter 1988.

[15] Srinivas Ramanathan and P. Venkat Rangan. Adaptive feed-
back techniques for synchronized multimedia retrieval over
integrated networks.IEEE/ACM Transactions on Network-
ing, 1(2):246–260, April 1993.

[16] Dan Revel, Dylan McNamee, Calton Pu, David Steere, and
Jonathan Walpole. Feedback-based dynamic proportion al-
location for disk i/o. Simultaneously submitted to Hot OS,
1999.

[17] Scott Shenker. A theoretical analysis of feedback flow con-
trol. In Proceedings of SIGCOMM’90, pages 156–165,
September 1990.

[18] David Steere, Ashvin Goel, Joshua Gruenberg, Dylan Mc-
Namee, Calton Pu, and Jonathan Walpole. A feedback-
driven proportion allocator for real-rate scheduling. InPro-
ceedings of the Third USENIX Symposium on Operating Sys-
tems Design and Implementation. USENIX, February 1999.
To be published.

[19] The MathWorks, Inc. Matlab product tour.
http://www.mathworks.com/products.html,
1997.

[20] R. Yavatkar and N. Bhagwat. Improving end-to-end perfor-
mance of TCP over mobile internetworks. InWorkshop on
Mobile Computing Systems and Applications, Santa Cruz,
CA, U.S., 1994.

5


	Adaptive Resource Management via Modular Feedback Control
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1389043338.pdf.9Pcb7

