May 8th, 11:00 AM

Finding RNA-DNA Hybrid Viruses

Jeremy Filip
Portland State University

Geoffery S. Diemer
Portland State University

Kenneth M. Stedman
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Molecular Biology Commons

Let us know how access to this document benefits you.

Student Research Symposium. 10.
https://pdxscholar.library.pdx.edu/studentsymposium/2013/Poster/10

This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
RNA-DNA Hybrid Viruses
Jeremy Filip, Geoffery Diemer, Kenneth Stedman
Stedman Lab Portland State University

Abstract

Until recently it was thought that recombination between DNA and RNA viruses was practically nonexistent. The discovery of the RNA-DNA Hybrid Virus (RDHV) genome in a metavirome from a high-temperature acidic lake changed this view (Diemer and Stedman, 2012). We and others have discovered multiple examples of this recombination hiding in plain sight in multiple published and unpublished metagenomes from many different environments and recent publications (Rosario et al., 2012; Tae Woong Whon et al., 2012; Mitsuharu Yoshida et al., 2013, and others through personal communication. Comparing the proteins of these hybrid viruses against each other will reveal conserved regions. This will also reveal insight into the evolutionary relationships between the various viruses. Locating conserved sequences will allow for the creation of detection tools such as degenerate primers which can be employed on environmental samples to detect the presence of similar viruses. Finding more Hybrid RNA-DNA Viruses may eventually help further the understanding of viral evolution.

Methods

Sequences of capsid proteins with homology to BSL RDHV capsid proteins were collected from metagenomes and other research groups. The bioinformatics software program Geneious was used to compare and investigate phylogenetic relationships of the replication initation (rep) protein and capsid proteins with homology to BSL RDHV and similar viruses contain a capsid protein similar to that found in RNA viruses and a replication initiation protein similar to that found in ssDNA circoviruses.

Results

RNA-DNA hybrid viruses are extremely diverse in both the replication initiation (rep) protein and the capsid proteins. The newly discovered reclaimed water virus capsid protein is homologous to BSL RDHV. Tampa Bay virus, and DMCMV but its replication initiation protein is very different. The rep protein from BSL RDHV is homologous to the Circoviridae family of animal ssDNA viruses but the rep protein from the reclaimed water virus is homologous to the plant Geminiviridae ssDNA viruses. The inverse is true when comparing BSL RDHV with Dfcv. Here the rep protein is homologous but the capsid proteins are very different. It is also interesting that geography appears to play little role in the phylogeny of RNA-DNA hybrid viruses. The capsid protein from BSL RDHV, from Boiling Springs Lake in California, is most similar to capsid proteins from Lac Pavin in France. As for the reclaimed water virus, from Florida, the other virus which shared the most homology within the capsid protein came from an air around Seoul, South Korea. Much more can be learned about this new group of viruses as more metagenomes are collected and more genomes are sequenced. It is also still unclear how exactly these hybrid viruses came to be and answering that may help further our understanding of viral evolution.

Discussion

RNA-DNA hybrid viruses may eventually help further the understanding of viral evolution.

References

Diemer, Stedman. 2012”A novel virus discovered in an extreme environment suggests recombination exactly these hybrid viruses came to be and answering that may help further our understanding of viral evolution.”

Acknowledgments and thanks.

Karine Rosario and Masa Brookfield for dragonfly virus genome and reclaimed water virus genomes. (as resistor for DMCMV genome)

Lauren Mcdonald for Tampa Bay virus genome.

Research on Boiling Springs Lake in the Stedman Lab is supported by the National Science Foundation (NSF) grants.