
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

6-2000

Application of Control Theory to Modeling and Application of Control Theory to Modeling and

Analysis of Computer Systems Analysis of Computer Systems

Molly H. Shor

Kang Li

Jonathan Walpole
Portland State University

David Steere

Calton Pu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer and Systems Architecture Commons, and the Digital Communications and

Networking Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
"Application of Control Theory to Modeling and Analysis of Computer Systems," Molly H. Shor, Kang Li,
Jonathan Walpole, David Steere, and Calton Pu, In proceedings Japan-USA-Vietnam Workshop on
Research and Education in Systems, Computation and Control Engineering, HoChiMinh City, Vietnam,
June 7-9, 2000.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/21
mailto:pdxscholar@pdx.edu

1

Application of Control Theory to Modeling and Analysis of Computer Systems℘

Molly H. Shor
shor@ece.orst.edu

Department of Electrical and Computer Engineering
Oregon State University, Corvallis, OR 97331-3211 USA

Kang Li, Jonathan Walpole, David C. Steere
kangli@cse.ogi.edu, walpole@cse.ogi.edu, steere@cse.ogi.edu

Department of Computer Science and Engineering
Oregon Graduate Institute, Box 91000, Portland, OR 97921-1000 USA

Calton Pu
calton@cc.gatech.edu
College of Computing

Georgia Institute of Technology, Atlanta, Georgia 30332-0280 USA

℘ This research was supported in part by DARPA contracts/grants N66001-97-C-8522 and N66001-97-C-8523, by NSF grants
CCR-9876217 and by Tektronix Inc., and Intel Corporation.

Abstract – Experimentally, we show that Transmission
Control Protocol (TCP)’s congestion control algorithm
results in dynamic behavior similar to a stable limit
cycle (attractor) when data from TCP flow into a
fixed-size buffer and data is removed from the buffer
at a fixed service rate. This setup represents how TCP
buffers packets for transmission onto the network,
with the network represented by a fixed-size buffer
with a fixed service rate. The closed trajectory may
vary slightly from period to period due to the discrete
nature of computer systems. The size of the closed
trajectory is a function of the network’s buffer size and
the network’s service rate of packets in the buffer.

INTRODUCTION

The transport-layer protocol most commonly used in
computer networks to provide error-free, in-order
delivery of packets is TCP (Transmission Control
Protocol) [1]. TCP is a protocol that determines how
packets are sent over a network from one computer to
another. It is specified as a standard prescribed set of
rules that the sender and receiver must follow. TCP is
a complicated mixture of different algorithms, applied
under different conditions.

TCP’s correct behavior under various
conditions can be verified. “Correctness” of the TCP
algorithm means that packets will be delivered in order
and without errors. Packets with errors or that are not
delivered will be retransmitted eventually.

Besides reliable in-order delivery of packets,
TCP has a number of other useful features. TCP has a
flow control mechanism to guarantee that the rate at
which packets are sent will not overwhelm the
receiver’s maximum processing rate, overflowing the
receiver’s buffers. It has a congestion control
mechanism that guarantees that senders will “back
off” the rate that they send packets if the network gets
congested. Congestion control keeps buffers in the
system from constantly overflowing and bounds the
time packets take to go from sender to receiver.
Congestion control also probes the network for
bandwidth availability and increases the rate to take up
any unused bandwidth. The congestion control
algorithm is the topic of this paper.

Analytic models of TCP’s congestion control
mechanism have been developed that predict average
values of various parameters. Mathis, et al. [2], use a
stochastic model to derive an expression for average
throughput under the assumption that data are lost in a

2

periodic and predictable fashion. Padhye, et al.[3,4],
develop a model to approximate the throughput of
TCP flows as a function of loss rate and round trip
time, during the “steady-state” operation of TCP, and
compare their estimates with real-life TCP traffic.
Cardwell, et al. [5], extend the model in [3] by
considering timeout and TCP slowstart modes. Yeom
and Reddy [6] study the model in [3] in the diff-serve
(differential service) architecture, and propose an
improvement to TCP in the diff-serve architecture [7].
The above analytical models are useful for computing
some average values of parameters for TCP operating
in isolation of other “adaptive” (dynamic)
mechanisms.

Motivation for dynamic modeling

Dynamic system analysis is essential when the
interaction of various dynamic subsystems must be
understood. Computer system designers are finding
more and more reasons to develop adaptive (dynamic)
mechanisms. Some motivations include network
congestion control (above), a relatively new “real-
rate” class of applications that require their rates to be
matched to an external rate (e.g., network video,
network audio, web servers), quality of service
specifications for such applications, and any
application that adapts its behavior to resource
availability. For instance, an adaptive video player
may drop packets in response to low bandwidth
allocation to meet certain user-specified “Quality of
Service” specifications [15].

Multiple adaptive mechanisms implemented in
a single system are likely to interact. How they interact
is relevant to design. Computer system researchers
would be assisted in their design efforts by the
development of dynamic modeling techniques that
apply to their systems.

TCP is the dominant congestion control
protocol that accounts for more than ninety percent of
bandwidth usage on the Internet. Internet bandwidth
sharing relies on all applications using congestion
control mechanisms that “conform”. Applications
using transport protocols that do no congestion
control, such as UDP, potentially can grab more
bandwidth and swamp TCP-like congestion-controlled
applications. The term TCP-friendly has been
proposed [8] to describe applications that share
network bandwidth “fairly” with TCP-based
applications.

A packet scheduler, in a router or an end-host,
is an operating system component that allocates the
limited bandwidth of an outgoing network interface
among competing flows. Packet schedulers interact
with network applications [9,10]. A TCP-like flow
with a complicated packet scheduler may compete for
bandwidth with a different aggressiveness in terms of
how fast the flow responds to bandwidth variations.

Different types of applications require
different network services in terms of delay,
throughput, and reliability. Packet schedulers in
networks play a major role the way bandwidth shared
among flows, which determines the service and
services isolations to applications [11]. Complicated
packet schedulers, such as WFQ [12] and RED [13],
have been designed to supply service-differential
mechanisms for applications, so that different
applications can be provided different levels of
service. Some packet schedulers, such as [10], allocate
bandwidth according to the applications’ requirements.

The existing TCP models [2,3,4,5,6] focus on
how much bandwidth a “TCP-friendly” application
gets for a certain loss rate. Throughput by itself does
not show how TCP reacts to bandwidth changes. It
doesn't answer the following questions: (1) Do TCP-
friendly applications reach a new stable equilibrium or
periodic behavior when bandwidth changes? (2) How
fast does TCP respond to bandwidth allocation
variations? If an application responds to bandwidth
changes slower than another application, then one
application may get more share of bandwidth, at least
temporarily, even if they get same average throughput
under the same loss rate. The models above do not
address TCP's dynamic behavior in terms of its
stability and responsiveness, which we believe are
important factors related to bandwidth sharing and are
necessary to understand its interactions with other
adaptive mechanisms.

Contribution of paper

In this paper, we describe the dynamic behavior of
TCP’s congestion control algorithm, using phase
portraits plotted in state space, based on a simple
experiment. These models were developed for fixed
service rate and fixed buffer size. The dynamic
behavior was examined for various service rates and
various buffer sizes to determine how those variables
affected the state trajectory.

TCP’s congestion control algorithm results in
dynamic behavior similar to a stable limit cycle

3

(attractor). The closed trajectory may vary slightly
from period to period due to the discrete nature of
computer systems. The size of the closed trajectory is
a function of the service rate and buffer size.

TCP CONGESTION CONTROL

TCP is the dominant transport layer protocol in the
Internet today [14]. Most Internet applications, such as
web browsing and file transfer, are built using TCP.
TCP is an adaptive protocol. It adjusts the sender’s
data output rate according to the network path
characteristics and the receiver side behaviors.

TCP contains several control components.
This text focuses only on a major one called TCP
congestion control, which controls the sender’s packet
transmission rate based on whether the network path is
congested or not. The widely deployed Reno-style
TCP includes at least four congestion control modes
(slow-start, congestion avoidance, fast recovery and
fast retransmission). TCP switches control modes
when special events happen, such as timeout (when no
acknowledgment is received for a packet after a
certain time) and resuming from a long idle time. The
dominant congestion avoidance controller is studied
here.

We can represent TCP congestion control as a
feedback control system that outputs a signal onto the
network that probes the network state, which is then
used to control the data output rate. This feedback
control system is illustrated in Figure 1. The feedback
loop is composed of the rate controller, the probing
signal that goes across the network, and the feedback
monitor that monitors the sampling results and sends
them to the rate controller.

Figure 1. TCP Congestion Control System

TCP probes the network’s state with the data it
sends. Data packets travel from the sender to the
receiver, and acknowledgments for each packet travel
back from the receiver to the sender.

The time from sending a packet to receiving
its acknowledgment is the round-trip time (RTT). The
RTT is an important state variable in this system. This
is the delay around the feedback loop, as well. The
RTT varies primarily as a function of the buffer fill
levels in the network path along which the data travels.
The longer the packets must wait in buffers, the longer
it takes them to traverse that path. A significant
increase in RTT may be a useful indicator of network
congestion.

If a packet arrives somewhere and the buffer is
full, then it is lost. Each time the rate controller
probes the network, the feedback monitor determines
if the packet’s acknowledgment returns or not. If the
acknowledgment for a packet arrives, the result is 1.
Otherwise, the packet is assumed lost, and the result is
0. TCP detects this packet loss by looking at out-of-
order acknowledgements. If acknowledgements have
arrived for three packets that are sent out later than a
certain packet that has not been acknowledged, then
TCP decides that that packet is lost.

TCP controls the rate at which data is sent out
on the network by using a congestion window. The
congestion window size defines the maximum amount
of outstanding data, data that has been sent but not yet
acknowledged; hence the amount that is sent out in
one round-trip-time. The congestion window size is an
important state variable in this system. The rate
controller uses an additive increase, multiplicative
decrease algorithm to control the congestion window
size, or out-going data rate. If acknowledgments are
received for all packets that are sent during one RTT,
then TCP increases its congestion window size by one;
otherwise TCP decreases its congestion window by
half.

EXPERIMENT ENVIRONMENT

In order to study the behavior of TCP congestion
control, we set up the following environment, which
can be easily controlled by us.

Assume that a network path’s characteristic
can be modeled roughly as a leaky bucket. A leaky
bucket is a buffer with two specified parameters, the
bucket size and the leak rate. The bucket size
simulates a network path’s buffering capacity. The
leak rate simulates a network path’s servicing rate.

We run a simple TCP application, and we
inject a leaky bucket simulator between TCP and the
network (Figure 2). From TCP’s point of view, the
leaky bucket controller is just a network link inside the

 Rate
Controller

Feedback
Monitor

Network

Output DataInput Data

Congestion-
SamplingPacket loss or not

4

network. By adjusting the leaky bucket’s leak rate and
bucket size, we can produce a wide range of network
path characteristics. By monitoring TCP’s states under
different path characteristics, we can study the
behavior of TCP congestion control in a controlled
environment.

EXPERIMENT RESULTS

The set of variables that describe a TCP congestion
control system in detail is very large. (For example,
the delay interval of every two outstanding packets in
the network.) It is not possible to draw them on paper.

Figure 3(a). Sawtooth “steady-state” congestion window

By selecting which features are important to us, or are
important in determining “what happens next” in the
system, we can plot the phase portrait for a simplified
model of the system.

We chose the network’s (allocated) service
rate, the round-trip-time, and TCP’s congestion
window size as the three state variables. The reasons
that we choose these state variables are as follows. In
TCP congestion control, the congestion window size
determines the outgoing data rate (into the leaky

bucket). The network’s allocated service rate
determines how quickly the leaky bucket is emptied.
If TCP is successful, then the network’s service rate
will be matched, on average, by the outgoing data rate.
The buffer fill levels determine TCP congestion

control’s round-trip time. Thus, the round-trip time is a
useful indicator of the buffer fill levels. When the
buffers overflow, packets are lost and the congestion
window size is reduced. The round-trip time also
represents the delay in the feedback loop.

Figure 3(b). Limit cycle for TCP congestion control

Experimentally, we have found that TCP’s
state follows a limit cycle for a fixed service rate and
network buffer capacity.

TCP congestion control results in a limit cycle

A well-known behavior of TCP congestion
control is that, when it reaches it’s “steady-state”, its
congestion window shows a saw-tooth shape (Figure
3(a)). Our experiments show that when TCP’s
congestion window shows the saw-tooth shape, its

 Figure 2: Experiment Environment

 Sender

Network

 Set
(Leak Rate, Bucket Size)

TCP Leaky Bucket

 Receiver State Monitor

5

trajectory is a limit cycle. Actually, the limit cycle is
the result of the TCP congestion control algorithm. If
we use a triangle (XYZ) to approximate the limit cycle
shown in Figure 3(b), then the three edges of the
triangle correspond to the three stages in TCP
congestion control. Packet losses occur when the
bucket is full, which also corresponds to a long RTT.
Apex X indicates the system’s state when a packet loss
is detected. After the packet loss, the congestion
window size reduces very quickly. The edge XY
shows this multiplicative backoff stage.

After the backoff, TCP starts the additive rate
increase. It starts with a lower rate than the network
service rate, and keeps increasing until apex Z, at
which TCP’s rate matches the network service rate.
The downward edge YZ of the triangle indicates this
stage. When TCP’s output rate is higher than the
network service rate, packets begin to accumulate in
the bucket, which causes the round-trip-time to
increase. This stage is indicated by the upward edge
ZX. Eventually, the bucket overflows, and packet
losses occur again, again at apex X.

The limit cycle is an attractor

We manually set TCP’s state to several different
starting points and found that TCP’s states eventually
enter the same limit cycle (Figure 4). A proof is
needed to show whether this is a global attractor for
this service rate and buffer size.

Attractors transition

We claim that the state of TCP’s congestion control
follows an attractor for any given service rate and
buffer size. Therefore, we believe that TCP’s state will
transition from one attractor to another when the
service rate or the buffer’s size changes. In Figure 5,
we have generated the trajectories for various buffer
sizes and for various service rates. Figure 5(a) shows
that the size of TCP’s attractor and the time TCP goes
one round increase as buffer size increases. This result
is consistent with the prediction from TCP models
[3,4] that TCP with long RTT expands its congestion
window slowly than the one with short RTT. Figure
5(b) shows that as service rate increases and buffer
size equals to same amount of delay, the size of
attractor increase while the time TCP goes one round
is roughly unchanged. This indicates that TCPs keep
expanding its congestion window in the same pace,

and the TCP with large service rate can expand its
congestion window size to a larger value compared to
the one with small service rate. This result also
conforms to the behaviors of real TCP traffic.

Figure 4(b). To limit cycle from random point.

Figure 4(a). To limit cycle from “slow-start”

6

APPLICATIONS OF TCP CONTROL MODEL

Predict TCP-friendliness aggressiveness from the
state space model

We define the oscillation period as the time that TCP’s
state goes one round of its attractor. Since we sample
TCP’s states with a fixed interval, the number of
points on one round of an attractor indicates this
oscillation period value.

Network buffering (in terms of delay) affects
TCP’s oscillation period, as in Figure 5. Given fixed
network buffering and service rate, TCP’s oscillation
period is determined. If we think about an arbitrary
flow’s oscillation period in the same condition (same
service rate & network buffering), an infinitely
aggressive flow can have a very small oscillation
period. It would fill up the network buffer very quickly

after it backs off. On the other hand, for a relative less
aggressive flow than TCP will fill up the network
buffer more slowly than TCP, and would have a longer
oscillation period.

CONCLUSION

In this paper, we use a dynamic modeling technique,
the state space model, to analyze TCP congestion
control protocol. We have gained more insights to
TCP congestion control just by using the dynamic
model. We observe that TCP appears to have
asymptotically stable periodic orbits for fixed buffer
size and service rate. Some simple derivations from
the model matches with results derived from other
TCP models and reality. The next step of our work is
to determine whether this new model can (i) predict
useful properties of TCP, (ii) be used to prove how
multiple adaptive mechanisms interact, and (iii) be
used to design adaptive mechanisms and applications
that interact with TCP in desired ways.

REFERENCES

[1] Van Jacobson, and Michael J. Karels. "Congestion
Avoidance and Control". Proceeding of ACM SIG-
COMM’88, pp. 79-88, August 1988.

[2] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and
T. Ott. "The Macrosopic Behavior of the TCP
Congestion Avoidance Algorithm". ACM Computer
Communication Review, vol. 27, no. 3, July 1997. Also
http://www.psc.edu/networking/papers/model_abstract.
html

[3] Jitendra Padhye, Victor Firoiu, and Don Towsley. "A
Stochastic Model of TCP Reno Congestion Avoidance
and Control". CMPSCI Technical Report 99-02,
University of Massachusetts, MA, 1999.

[4] Jitendra Padhye, Victor Firoiu, Don Towsley and Jim
Kurose. "Modeling TCP Throughput: A Simple Model
and Its Empirical Validation". ACM SICOMM’98. Also,
CMPSCI Technical Report TR 98-008, University of
Massachusetts, MA 1998.

[5] Neal Cardwell, Stefan Savage, and Thomas Anderson.
"Modeling TCP Latency", IEEE Infocom2000. Also,
http://www.cs.washington.edu/research/projects/networ
king/detour/

[6] Ikjun Yeom, and A.L. Narasimha Reddy. "Modeling
TCP Behavior in a Differentiated Services Network".

Figure 5(a). Limit cycles for different buffer sizes, from
15KB to 30KB (Smallest buffer size has lowest RTT.)

Figure 5(b). Limit cycles for different service
rates, from 25KB/sec to 50 KB/sec.

7

TAMU ECE Technical Report, May 1999. Available at
http://ee.tamu.edu/~reddy/papers/index.html

[7] S. Blake, D.Black, M.Carlson, E.Davies, Z.Wang and
W.Weiss. “An Architecture for Differentiated Service”.
RFC2475. December, 1998

[8] Sally Floyd, and Kevin Fall. "Promoting the Use of End-
to-End Congestion Control in the Internet" IEEE/ACM
Transactions on Networking, August 1999. Available at
http://www.aciri.org/floyd/papers.html

[9] A. Aggarwal, S. Savage, T. Anderson. "Understanding
the performance of TCP Pacing". IEEE INFO-
COM’2000, 2000.

[10] Kang Li, Jonathan Walpole, Dylan McNamee, Calton
Pu and David Steere. "A Rate-Matching Packet
Scheduler for Real-Rate Applications". Submitted to
Computer Communications, 2000.

[11] David D. Clark, Scott Shenker, and Lixia Zhang.
"Support Real-Time Applications in an Integrated
Service Packet Network: Architecture and Mechanism".
Proceeding of ACM SIGCOMM’92, 1992.

[12] Alan Demers, Srinivasan Keshav, and Scott Shenker.
"Analysis and Simulation of a Fair Queueing
Algorithm". Proceeding of ACM SIGCOMM’89, 1989.

[13] S. Floyd and V. Jacobson, "Random early detection
gateways for congestion avoidance", IEEE/ACM
Transactions on Networking, vol.1, pp.397-413, August
1993.

[14] Mark Allman, Vern Paxson. “On Estimating End-to-
End Network Path Properties”, Proceeding of
SIGCOMM’99, pp. 263-274, 1999.

[15] Charles Krasic, Jonanthan Walpole, Mark Jefferys,
Dylan McNamee, David Steere and Calton Pu.
“Dynamic QoS Adaptation in Shared Heterogeneous
Environments.” OGI-Tech-Report-CSE-99-011.

	Application of Control Theory to Modeling and Analysis of Computer Systems
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1389050219.pdf.wRYT3

