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Thaddeus T. Shannon and Martin Zwick 

Systems Science Program, Portland State University 
 

Abstract: Extended Dependency Analysis (EDA) is a heuristic search technique for finding significant relationships 
between nominal variables in large datasets. The directed version of EDA searches for maximally predictive sets of 
independent variables with respect to a target dependent variable. The original implementation of EDA was an 
extension of reconstructability analysis. Our new implementation adds a variety of statistical significance tests at 
each decision point that allow the user to tailor the algorithm to a particular objective. It also utilizes data structures 
appropriate for the sparse datasets customary in contemporary data mining problems.  Two examples that illustrate 
different approaches to assessing model quality tests are given. 
 

I. Introduction 
 Extended Dependency Analysis (EDA) is a heuristic search strategy, proposed by Conant [1][2] that directs 
the information theoretic exploration of large sets of nominal variables. It is an extension of Reconstructability 
Analysis (RA) [5][6][8][13]. The number of computations involved in a complete RA scale doubly exponentially in 
the number of variables considered, while the more limited directed Dependency Analysis (DA) scales exponentially 
in the number of variables (RA allows an arbitrary number of relations in a model, while DA considers models with 
only one predicting relation)). Conant devised EDA to scale polynomially with respect to the number of variables 
considered, while still being capable of discovering significant high order interactions between variables. 
 In this paper we illustrate some possible uses for EDA in the data mining context. The analysis in the 
examples we present was performed with a new software implementation developed for use on large data sets [12]. 
The examples we present are intended to illustrate some of the goals and issues that arise in data mining. The 
problem data sets themselves are still relatively small (26 and 195 independent variables) and so are not indicative 
of EDA’s true potential, since in both cases the analysis can be performed in under a minute on a personal computer. 
 In the following section, we begin by reviewing Conant’s original work in our own terms. The third section 
is a discussion of implementation issues we believe germane in a data mining context. We introduce several 
variations on Conant’s original proposal to address these issues. In the next sections we present two examples of 
data mining tasks and the results we obtained using EDA: developing a forecasting model from a rainfall time series, 
and designing a pattern classifier for satellite imagery. The final section extends our earlier discussion of 
implementation options and suggests further applications for EDA. 
 

II The Origins of EDA 
 Reconstructability Analysis and related methods are techniques that seek to explain some set of observed 
variables in terms of a set of one or more relations among the variables [5][6][8]. The variables are assumed to be 
nominal and the sense in which the relations explain the observations differs depending on the nature of the data. 
The nominal variables may be crisp possibilistic in which case the analysis is essentially set theoretic. Alternatively, 
the variables may be probabilistic, i.e., random variables with some joint distribution. In both the crisp possibilistic 
and probabilistic cases, RA seeks to find projections of the joint distribution that can reconstruct the original 
distribution when joined using the maximum uncertainty principle.  EDA applies to probabilistic systems, and that is 
the focus of this paper. 

The variables that necessarily participate in a projection together are dependent on each other and form a 
relation. In what Conant termed a “static” analysis, finding all significant dependencies in a set of variables is the 
goal of the analysis, this corresponds RA for a neutral (undirected) system. Alternatively, what Conant called a 
“dynamic” analysis seeks to explain one particular variable using all the other variables; this corresponds to RA for 
a directed system. In this case, one wants to find all the relations (projected distributions) in which the variable of 
interest participates. The set of variables in the identified relations together explain the dependent variable in the 
sense that they maximally reduce the uncertainty of the dependent variable. This is the view we take for our data 
mining context. 
 RA is a method for finding the significant relations among a set of variables. The set of all possible 
relations that could be searched through grows doubly exponentially with the number of variables considered [4]. 
Thus direct application of RA quickly becomes impractical as the number of variables grows beyond seven or eight. 
Conant’s EDA escapes this curse of dimensionality by limiting the search to the subset of “saturated” (single 



 2/7 

relation) models that grows only polynomially with the number of variables. EDA will not therefore generally find 
the best possible model, i.e. the full set of significant relations.  
 EDA has two distinct phases, a directed modeling phase and a undirected modeling phase.  If EDA is 
applied to a directed system, only the directed analysis need be performed. For a undirected analysis, the directed 
phase is carried out repeatedly with each variable in turn considered as the dependent variable, and the results are 
then aggregated in the undirected phase. The directed analysis is composed of three operations, an initial search 
named Initialize (Conant’s H2), followed by repeated applications of a routine named Reduce (based on DA) and a 
second search heuristic named Expand (Conant’s H3). The general relationship of the search phases is illustrated in 
Figure 1. 

 
 

Initialize 

Reduce Expand 
 

Figure 1 EDA Directed Analysis 

 The first heuristic, Initialize, begins by calculating the three-way transmissions (mutual information) 
T(D;CiCj) = u(DCiCj) – u(D|CiCj) = u(D) + u(CiCj) – u(DCiCj), 

where D is the dependent variable of interest, Ci is the i-th candidate variable [7], and u is information-theoretic 
uncertainty (Shannon entropy). All possible combinations of candidate variables are tried. These transmission values 
are the strengths of the relationships between the dependent variable and the pair of independent variables. If the 
dependent variable is completely determined when the values of the independent variables is known, this 
transmission value will equal the initial uncertainty of the dependent variable. If on the other hand the dependent 
variable is independent of the independent variables, this transmission will be zero. Given n independent variables 
there are n(n-1)/2 such pairs to check. For each independent variable Ci, the transmission value for all possible 
pairings with other independent variables is calculated, and the highest transmission value found is stored if that 
interaction passes a chi-square significance test. This results in a list of variables with transmission values of length 
n, which can be sorted based on the transmission values. The d variables with the highest transmission values then 
form an initial model MI =C1C2…Cd, the search set of candidate variables. The size of the search set is the user 
selected parameter that controls both model complexity and run time for the analysis. In essence, this heuristic 
performs an exhaustive search through the triadic relationships involving the dependent variable. 
 Reduce tests the significance of the uncertainty reduction of the dependent variable provided by a candidate 
model M. The significance of the participation of each individual variable in the model is evaluated in the context of 
the high order relation posed by the model. A significance criteria, either statistical or information theoretic, must be 
provided for this evaluation. Some possible evaluation criteria and the problem contexts in which they could be 
appropriate are discussed in the following section on implementation issues. Variables that are found to be not 
significant are eliminated from the candidate model, resulting in a simplified model MS = MI – CNS. 
 The second heuristic, Expand, takes the candidate set of variables passed from Reduce and attempts to 
expand it by checking for high order relations involving the dependent variable, all the current candidate variables, 
and every individual non-candidate variable. Specifically, the transmissions T(D;MSCNT) are calculated for each 
variable CNT not tried already in the candidate set. This search allows variables into the explanatory set that are 
found to take part in higher order relationships to a significant degree (as determined by a chi-square test), even 
though they were not found to take part in significant relationships in Initialize. The search alternates between 
Expand in which the candidate model is expanded to contain d variables, and Reduce in which insignificant 
variables are discarded. The search ends when a set of d significant variables has been found, or when Expand can 
find no more candidate variables to add to the model. It is almost always the case that the bulk of the computation in 
any analysis takes place in Reduce. 
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III Implementation Issues for Data Mining  
 As the primary reason for adopting a set of search heuristics such as EDA is to avoid exponential scaling of 
the computational load with respect to the number of variables considered, there are a number of implementation 
issues that require attention. Consider for example, the analysis of 100 binary valued variables. In principle the 
complete contingency table representing this dataset contains 2100 entries. In practice, we will find this table sparsely 
populated, if for no other reason than that we have a limited amount of data (in this example one observation 
requires 12.5 bytes of storage, so 1 tera-byte of observations, i.e. 240 observations requires 12.5 tera-bytes of storage, 
but would still leave at least 260 empty entries in the table). Analysis of large numbers of variables necessarily 
implies comparative sparseness of data. 
 The first consequence of this observation is that sparse matrix methods should be used for data 
representation and manipulation. The size of the overall contingency table for a dataset scales exponentially in the 
number of variables; therefore, to maintain the desired polynomial scaling of EDA we must omit all the empty cells 
from our representation. 
 The second consequence of data paucity is the limitation of our ability to test large models or relations for 
statistical significance. As a rule of thumb, one needs five times as many observations as degrees of freedom in a 
model to justify a chi-square significance test of the model. The degrees of freedom for the models we consider are 
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Thus, the number of observations we need to justify fully analyzing a dataset (i.e. test all possible models) scales 
exponentially in the number of variables. As the above example illustrates, one needs an astronomical number of 
observations to justify completely analyzing even a medium size collection of variables. 
 Thus, the domain of EDA is a model search space that scales doubly exponentially in the number of 
variables over an observation state space that scales exponentially in the number of variables, wherein the required 
number of observations for a complete statistical analysis also scales exponentially. While the scaling of the 
observation space can be completely handled for any practical implementation by omitting all the empty cells from 
the contingency table, choosing which subsets of models to check and how to check them requires factoring together 
the goals of the analysis with the actual data constraint encountered. 
 Three alternative analyses can be performed, one in which models are compared to each other 
incrementally considering both complexity and uncertainty reduction, a second in which models are compared to a 
reference model (usually the independence model) to maximize uncertainty reduction subject to a significance 
constraint, and a third in which models are compared to a reference model to minimize complexity subject to an 
uncertainty reduction constraint. The first case uses an incremental significance test between models; the second a 
cumulative significance test with respect to the reference model; the third imposes no significance test. Different 
problem contexts suggest these different kinds of analyses. The first case might involve searching for significant 
relationships between variables that provide meaningful scientific explanations of observed phenomena. The second 
case might aim at developing a model that is maximally predictive of another variable. The third case might involve 
selection of features for use in compression or pattern recognition. These objectives suggest the use of different 
significance tests at the various decision points within EDA.  

In the first case, the objective is to draw only the conclusions that are significantly supported by the data. If 
there is not enough data to justify a relation, then the relation is not considered in the analysis. In this case, one 
would use the usual chi-square significance tests with an appropriately chosen α at each decision point. Usually this 
test would be an aggregate test of the model H1 versus the independence model H0, 

L2(M) = n (1.3863) T(D;M) ~ χ2(df(D;M)), 
in Initialize and an inter-model (incremental) test, 

L2(Mn → Mn-1) = n (1.3863) [T(D;Mn) - T(D;Mn-1)] ~ χ2(df(D;Mn) - df(D;Mn-1)), 
in Reduce and Expand. In addition, one sets the search set size to limit the number of models tested that contain too 
many degrees of freedom to justify testing, i.e. models that are a priori likely fail the significance test due to sample 
size. One would like to avoid testing such models and if the ordinality of all the independent variables is the same, 
this can be done exactly, i.e. no a priori likely to fail models need be tested. Otherwise, the search set size must be  
large enough to include all the potentially justifiable models and some unjustified models will be included. 
 In the second case, the objective is to obtain the maximum uncertainty reduction possible. With 
comparatively small numbers of observations available, the probability of committing a type II error with an 
incremental significance test will tend to be high. A more appropriate significance test in Reduce would be the 
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cumulative significance of the proposed model versus the independence model. One can drop the significance test 
from Expand altogether at the cost of lengthening the analysis somewhat. Changing to a cumulative test in Reduce 
tends to abbreviate the search, since a depth first search will tend to stop at a larger model, which will in turn tend to 
limit the search depth.  As Reduce is less computationally costly with the cumulative test, it can be applied to check 
a greater number of candidate variables. 
 In the third case, the objective is data reduction without serious information loss. There may be significant 
but minor information that can be discarded to obtain better compression, or there may be insufficient data to 
establish significance using standard statistical tests. In this later situation one is often faced with design challenges 
in which a large dataset is thought to contain sufficient information to achieve an objective. A wide variety of 
machine learning algorithms have been developed to extract significant rules from such datasets, e.g. artificial neural 
networks, tree classifiers, etc. Implementation of any such algorithm is greatly benefited by a reduction in the 
dimensionality of the dataset. Obviously, any dimensionality reduction strategy employed needs to minimize the 
inherent loss of information.  EDA implemented in information only mode (with no statistical significance test) 
provides a method for identifying those variables that can be discarded without serious information loss. In this 
context, the significance of the final model can be treated explicitly using the tools of structural risk minimization 
[3]. 
 

IV Application: Mask Analysis of Time Series for Prediction 
 This example application uses EDA to perform mask analysis on a multivariate time series, with the goal of 
forecasting future states. The data consists of daily rainfall measurements collected at four sites over the period from 
1982 to 1990. The original data series was quantitative (inches of rainfall), for our analysis we abstracted the data 
into two values: measurable precipitation and no measurable precipitation. This example is an extension and 
refinement of the analysis reported in Zwick et al. [14]. In this example, we use cumulative tests for model 
significance, i.e. we seek the most explanatory model that is significant compared to the independence model. 
 We form five variables out of the time series for each site by taking the current and the first through fourth 
lagged values of the time series as the variables current values.  This variable assignment is summarized in Table 1. 
 

day   :  t - 4 t - 3 t - 2 t - 1 t 

si te:  1 Q M I E A 
2 R N J F B 
3 S O K G C 
4 T P L H D 

Table 1. Mask analysis framework 

We also introduce a set of seasonal variables to include in the analysis. Since we do not know a priori how many 
seasons to include, nor when to define the start of each season, we include a range of possible season variables as 
defined in Table 2. 
 

W1 12 seasons 
W2 6 seasons (Jan/Feb, …) 
W3 4 seasons (Jan-Mar, Apr-Jun, …) 
W4 2 seasons (Oct-Mar, Apr-Sep) 
W5 2 seasons (Nov-Apr, May-Oct) 
W6 2 seasons (Dec-May, Jun-Nov) 
W7 2 seasons (Jan-Jun, Jul-Dec) 
W8 2 seasons (Feb-Jul, Aug-Jan) 
W9 2 seasons (Mar-Aug, Sep-Feb) 
W10 2 seasons (Nov-May, Jun-Oct) 

Table 2. Season variables considered 

 In [14] it was noted that A, B, C, and D are not independent, i.e. if we form the aggregate variable Z = 
ABCD, then 

u(Z) < u(A) + u(B) + u(C) + u(D) = u(A:B:C:D). 
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In this case u(Z) = 3.25 bits, which is significantly less than u(A:B:C:D) = 3.79 bits. The aggregate variable was then 
used as the dependent variable for the rest of the analysis.  The analysis was further simplified by including only 
first and second lags of observed rainfall. Finally, a seasonal variable was selected in a preliminary analysis that 
compared the predictive power (uncertainty reduction divided by degrees of freedom) of each of the candidate 
variables in isolation. The preliminary analysis chose W10 as the most efficient predictor of Z. The analysis went on 
to find that  

Y = FGHJKW10 
was the best statistically significant predictor of Z, with u(Z|Y) = 2.52 bits for an uncertainty reduction of 22.4%. 
 Using EDA we analyzed each dependent variable separately, including all 26 of the independent variables 
E,…, T, and W1, …, W10 in each case. The models suggested by Initialize were: 

YA = EFGHJLW1W9W10,  u(A|YA) = 0.52 bits, ∆ u = 39.1%, 
YB = FGHJLPW1W9W10,   u(B|YB) = 0.56 bits, ∆ u = 41.9%, 
YC = FGHJLW1W6W9W10,  u(C|YC) = 0.67 bits, ∆ u = 32.2%, 
YD = FGHJKLNPTW6W10, u(D|YD) = 0.41 bits, ∆ u = 58.1%. 

None of these intermediate models is statistically significant. Note that all these initial proposals include two or 
more seasonal variables. We would anticipate that these variables should be redundant and that the analysis will 
select the best from among them. The best models obtained at the end of the analysis using a cumulative 
significance test with an alpha of 0.05, and a search set allowing up to 9 independent variables, (11 for site 4) were: 

YA = FGHJLSTW1, u(A|YA) = 0.42 bits, ∆ u = 50.5%, 
YB = FGHLNORW1,  u(B|YB) = 0.46 bits, ∆ u = 52.3%, 
YC = FGHJOSTW1,  u(C|YC) = 0.48 bits, ∆ u = 51.6%, 
YD = FGHKNPTW1,  u(D|YD) = 0.46 bits, ∆ u = 53.5%. 

These final models include only one seasonal variable each, in all cases  W1, which differentiates all twelve months 
was chosen. In aggregate we then have 

u(A|YA: B|YB: C|YC: D|YD) = 1.82 bits, ∆u = 52.0%, 
which represents a reduction in uncertainty of 0.7 bits, approximately 28%, beyond that of the best joint predictor 
previously found. Finding the best predictors of A, B, C, and D separately is better than finding the best predictors 
of a single joint dependent variable, Z = ABCD.  Further reduction in uncertainty may be possible by using the 
constraints among A, B, C, and D, by adding a model component specifying these constraints. 
 

V Application: Classifier Design with Limited Observations 
  This example demonstrates the use of EDA in a case where there is too little data to justify significance 
tests of all but the simplest relations. For classifier design from a Bayesian viewpoint, the preferred procedure would 
be structural risk minimization. One would trade classifier simplicity against performance on the limited design 
examples. Greater simplicity tends to produce poorer performance on design samples but increases the likelihood 
that generalization performance will mirror performance on design examples. 
 Our proposal here is to use EDA to select a limited number of features out of all the observable variables, 
for use in a classifier. Furthermore, we can use the contingency table from EDA to form a prototype classifier that 
can be used as is or refined using other methods. In this context, performing statistical significance tests in EDA 
would amount to picking one particular solution to the structural risk minimization problem without considering the 
actual structural form of the final classifier. Worse yet, this solution would tend not to be a good starting point for 
further refinement since potentially useful information will already have been lost. Instead, we suggest using the 
information only version of EDA to select features with the structural risk minimization and refinement processes 
handled explicitly as separate steps. 
 Our example problem is that of designing a land-use classifier for satellite imagery. The images are 2-
kilometer circular aperture photographs of the Phoenix metropolitan area, derived from plates taken during the Sky 
Lab II mission [10]. Each image is represented by wedge and annular ring samples of its 2-dimensional Fourier 
transform. One hundred 1.8º wedge samples and ninety-five ring samples were taken from each transform. This 
representation offers translation, size and rotational invariance for items in each image [9]. Five land use classes are 
represented in the sample: urban, residential, farm, mountain and water. While we have 195 observables per image, 
we have only 177 extant images to work with. We divide these into two sets, a 100-image set for classifier design, 
and a 77-image set for classifier evaluation. We suggest that this condition of limited data is actually representative 
of a major class of problems, e.g. genome studies. 
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 Since the ring and wedge samples are quantitative variables, we begin by binning each variable. The fewer 
bins we use per variable, the smaller the contingency table will be. Nevertheless, our binning should preserve 
meaningful distinctions between values for each variable. In this case, we choose to use five bins per variable based 
on the surmise that five land use types could give rise to five distinct values. We break up the total observed interval 
of values for each variable into five subintervals of equal length and assign observations to bins based upon which 
subinterval they fall into. 
 Using EDA we searched through the entire set of wedge (W) and ring (R) variables. The intermediate 
models suggested by Initialize for a search set of size eight was: 

Y = W37W70W83 W84R47R48R49R52,   u(type |Y) = 0.0 bits,  ∆ u = 100 %, 
This predictor is not statistically significant, however, it is the smallest set that Initialize can find that completely 
explains land use type. The best statistically signifcant predictor, however, using a cumulative significance test with 
an alpha of 0.05 and a search set of size eight was: 

Y = W37R48R81,   u(type |Y) = 0.15 bits,  ∆ u = 93.7 %, 
We have several options in the data reduction context, we could keep all the variables selected by Initialize for use 
in our final classifier design, we could use only the three variables included in the statistically significant predictor, 
or we could employee Reduce and Expand with information content tests to see if there is a subset of the Initialize 
dependency set that still contains all the information necessary to determine land use type. Applying this last 
procedure, we find that there are four equally explanatory dependency sets of size four: 

Y = W37W83 W84R47,  
Y = W37W83 W84R48,  
Y = W37W83 W84R49,  
Y = W70W83 W84R47, 

and one of size five, 
Y = W70W83 W84R48R52, 

all with  
u(type |Y) = 0.0 bits,  ∆ u = 100 %, 

 
This additional analysis suggests that none of the eight variables found by Initialize  is irrelevant, but there is 
redundancy when using all eight.  In the final models, all of the variables appear in at least one set of size four or 
five. That Ring 52 does not participate in any of the sets of size four suggests that it could be a candidate for 
elimination. When the above binning scheme and analysis are used to directly construct a classifier, the 
generalization rates on the holdout dataset for the four variable predictors range from 89% to 94% [11]. 
 

VI Conclusion 
 In summary, directed EDA is a useful method for data reduction and forecasting problems involving large 
numbers of nominal variables. Our recent software implementation can apply EDA’s polynomial time search 
heuristics on large numbers of variables using a variety of significance tests appropriate for data mining problems.  
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