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ABSTRACT

The diversity in parallel architectures and the programming styles induced thereof, make
benchmarking of parallel machines a hard problem. Current benchmarking techniques are limited
in applicability due to the issues of portability. We present a different approach to benchmarking
parallel machines, which would make the resulting benchmarks portable, easy to use and widely
applicable. The approach involves the use of a software architecture to mask the diversities of the
underlying architectures. The benchmarks are based on the Linda Tuple Space, and is called
BeLinda.

In this report, we motivate the use of a software architecture, give a specification of the
benchmark suite, discuss its implementation on three radically different architectures, and present
the results of the benchmark.

1. Introduction

Performance evaluation of parallel architectures is a hard problem. Firstly, one is faced with
the aspect of diversity. We currently have parallel machines whose architectures are totally
different from each other. Parallel machines can either execute in single instruction stream, multi-
ple data stream (SIMD) mode like the Thinking Machines CM-2 [1], or multiple instruction
stream, multiple data stream (MIMD) mode like the Sequent Symmetry [2] and Intel iPSC/2
[3, 4, 5]. MIMD machines can be further subdivided based on the characteristics of the address
spaces of the constituent nodes. If the address spaces are disjoint, we get the distributed memory
distributed address space machines like the iPSC2, and if the address spaces partition the com-
mon global address space, we get the distributed memory shared address space (DMSA)
machines like the BBN Butterfly. DMSA machines are characterized by non uniform memory
access times depending on the address being accessed.

This diversity in architecture induces a diversity in the programming styles. On a shared
memory machine, the programmer has to identify shared data and explicitly protect them from
concurrent accesses through some form of locking. The shared data structures are available to all
the processes on the machine. On the other hand, in a distributed memory machine, the program-
mer is forced to adopt a network style of parallelism. The processes have to be split up keeping in
mind the higher costs of communication and synchronization, with the failure in doing so result-
ing in ineffecient implementations. Cooperation is achieved through message passing as against
shared data in the previous case.
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Next we are faced with the crucial issue of portability. What we need is a language which
spans the barriers of architectural diversity to provide a uniform model of parallel computation to
the user. Under such circumstances it becomes easy to think of the problem purely in terms of the
parallelism built into the application rather than addressing oneself to the vagaries of a particular
architecture. In the hope of alleviating the problem of portability and uniform programming
style, there has been a significant push to develop languages which offer a sufficiently high level
of abstraction and yet are easily and efficiently implemented on a wide variety of machines.
Languages such as CSP [6], Concurrent Prolog [7], and Strand [8] were developed for this pur-
pose.

Because of the problems mentioned above, pervious work reported in the area of bench-
marking of parallel machines has tended to be in either of two directions. The first one is compar-
ing different versions of the same machine, or different implementations in the same architectural
category. Bomans [9], Kolawa [10], and Grunwald [11] do it for evaluating different versions of
iPSC hypercube, MARK II and the NCube. The other direction specifies the performance with
respect to some application program. This is the approach followed by Martin [12], Fraboul [13],
and Gustafson [14]. Both these methods have their own drawbacks. The first one limits applica-
bility to the machines of that flavor only, while the second approach limits the usefulness of the
results to applications in the same domain as the program being used as the benchmark. Furthur,
a user wishing to get an idea about the cost he would incur in running a (any) program would not
find the timings on another application program very useful. Other studies on the performance of
parallel machines have been analytical, such as the one by Flatt & Kennedy [15], The problem
here is that this approach does not provide any information on the performance of any specific
implementation.

In this paper we present a different approach to benchmarking parallel machines. This
approach involves the use of a software architecture. The stress is on portability, ease of imple-
mentation and usefulness of results. The benchmark, called BeLinda, is based on the Linda Tuple
Space [16, 17, 18] which we believe defines an appropriate level of abstraction for comparing
different parallel computing platforms. An advantage of using a Linda based benchmark is that it
is easily portable over a wide variety of hardware architectures. However, the results of a bench-
mark at this level of abstraction are influenced not only by the performance of the underlying
architecture, but also by the implementation of Linda on that architecture. Consequently, a good
figure indicates that the combination of the implementation and the underlying architecture is
good. However, a bad figure does not necessarily distinguish between a bad architecture, a bad
Linda implementation, or both.

One usually talks about the instruction set architecture in uniprocessors. The idea there is
the distinction between the architecture which is visible to the programmer, as against the imple-
mentation of the sequential machine and details like the presence of cache, pipelines etc., which
improve performance but are not visible to the programmer. In parallel machines, we have com-
ponents for evaluation other than the processors at various nodes viz. the communication and syn-
chronization issues. This fact not withstanding, Linda provides us with a software architecture
not unlike the instruction set architecture of sequential machines, because it masks out the details
of how the parallel machine has been implemented, and on what model of computation it is
based. This analogue is the basis on which we build the thesis that the way to go as far as genera-
tion of a benchmark suitable for parallel machines is via a software architecture.

Linda is a programming model based around a shared tuple space and several tuple space
operations [19, 20]. These tuple space operations can be embedded into any standard language
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such as C or FORTRAN, creating a new parallel language. Instead of having read and write
operations over shared memory values, or using message passing, Linda provides the abstraction
of the tuple space for both communication and synchronization.

A tuple consists of an ordered set of values. These values can be integers, floating point
numbers, arrays, blocks, or even programs. The tuple space operations are : out(), in(), inp(),
rd(), rdp(), and eval(). in() removes a selected tuple from the tuple space. If there is no tuple
satisfying the in(), the process will block until such a tuple appears. read() acts like in() in that
the tuples values are read, but the tuple remains in the tuple space. out() adds a tuple to the tuple
space. eval() acts like out() except the tuples are active. An active tuple can be thought of as a
process. In that sense, eval() acts somewhat like the UNIX fork() system call. However, it can
eventually become passive, i.e. leave a result in tuple space. inp() and rdp() are asyncronous ver-
sions of in() and rd() respectively, in that they do not block if the matching tuple is not found.
They return the status of the match. These operations are more fundamental than their synchro-
nous counterparts, because the later can be built using inp() and rdp() but not vice versa. How-
ever, these are not incorporated into the present study.

The rest of the paper is organized as follows. Section 2 describes some attributes of a good
benchmark, and we try to relate our benchmark with that list. In section 3, we detail our choice of
the performance measures, which are of interest in any parallel computation. Section 4 gives the
specification of BeLinda, our benchmark set. Section 5 describes the data collected about Linda
primitives and how these figures were used to arrive at the weights for the individual performance
measures. Section 6 describes the compiler and architectural features of the machines under con-
sideration. Section 7 contains the results obtained for the three machines and tries to relate them
with the underlying machine architecture. We discuss the results and arrive at the final BeLinda
figures in section 8. Section 9 concludes the paper.

2. Attributes of a good benchmark

Gustafson [14] points out that a benchmark should have the following characteristics:

• It should be representative of actual applications.

• It should not artificially exclude a particular architecture or configuration.

• It should reduce to a single number to permit one-dimensional ranking.

• It should report enough details to be reproducible by an independent investigator.

• It should permit simple verification of correctness of results.

• It should use simple algorithms to fit into one page.

We shall now try and relate our set of benchmarks with respect to these attributes. Contin-
ueing the parallel to the instruction set architecture evaluation, what is needed is the identification
of work primitives, or constructs which typify parallel computation and which occur in most
applications. BeLinda attempts to identify such a set. The results obtained from these would be
of generic use and each user would be in a position to relate to these, to their application.

The second issue deals with the portability of the benchmarks across architectures. The fact
that Linda is portable has been seen before. It is also apparent that as long as one writes bench-
marks in a language which projects its own architecture the benchmarks are going to be portable.
As Gustafson [14] points out this aspect has not been addressed in many previous studies.

Apparently, the requirement of reduction to a single number came out of convenience. Gus-
tafson mentions the fact that the Livermore Kernels present an entire statistical base of data, but
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the performance of these kernels is often stated as a single number. The benchmarks listed here
also produce a statistical base of data. The approach adopted here has been to weigh the figures
obtained from various programs based on the frequency of occurrence of the particular construct
being evaluated. In order to obtain the weights for the programs, we collected data from various
applications developed in Linda and instrumented the code to find out the dynamic and the static
frequencies of the constructs. The other issues are concerned with the ease of implementation and
verification of the benchmark and have been met as far as possible in BeLinda.

3. Identification of work primitives

The work primitives identified fall into the following categories:

• Basic Linda primitives

• Primitives for communication and synchronization as used in Linda

• Primitives for computation

• Primitives for overlap of computation and communication

• Other issues in parallel computation

We shall now examine each one of these in turn.

3.1. Basic Linda primitives

Linda has four primitive operations in(), out(), rd() and eval(). The efficiency of the Linda
implementation depends to a large extent on the methodology for the implementation of
theseprimitives. Hence, the time to perform each of these has to be measured.

Secondly, Linda gets a lot of its power from its content addressability through structured
naming. Therefore, an important measure is the number of fields in the tuple, and the number of
actuals in these fields. It is clear that the larger the number of fileds in the tuple, the larger will be
the time to perform the match. Many of the Linda compilers available, optimize out the tuple
references and reduce the time for match by performing what is known as the tuple analysis.
However, it is a known fact that compilers play a crucial role in the performance of the bench-
marks.

3.2. Primitives for communication and synchronization

In Linda, synchronization is achieved through the tuple space. Thus it is no longer a primi-
tive operation of the native architecture, but we get it via the software architecture portrayed by
Linda. Synchronization is achieved by means of a single field tuple exchange between the two
processes. In order to ensure correctness, the single field in the tuple is an actual.

Communication is an operation which is not visible to the user. This is intentional and is
part of the Linda semantics. The user looks on the machine as a huge tuple space in which parallel
processes crawl over distributed data structures. The communication primitives for an architec-
ture are defined in terms of the following

Latency: Latency is the time required to send a zero length message between two nodes in
the architecture. In the case of shared memory systems, the cost involved is only in terms
of copying between different buffers and is an operating systems overhead. Where as in a
distributed memory machine we require physical transmission of data between two nodes
over the communication network.
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Contention: This refers to the fact that messages going in opposite directions might
influence the communication times of each other. This measure is highly dependent on the
number of redundant paths in the network and also on the presence of full duplex communi-
cation in the network.

Multicast: This is the operation required when one node talks to k other nodes. If k hap-
pens to be the number of nodes in the network, this operation is called the broadcast.

Reverse-Multicast: This is a k-1 operation when many nodes send messages to a single
node. This might happen when a process is waiting on a barrier from all the other nodes.

Message-Size: It is a measure of the effect of increasing message length on the transmission
time. In some shared memory systems message passing may be implemented via memory
mapping in which case message length does not effect the transmission time. Increasing
message delay increases the point at which it would be less costly to distribute the task
among several processors.

3.3. Primitives for computation

Although Linda is now being used in a variety of application domains, including systems
programming [21], the majority of the applications continue to be in the scientific computation
domain. The frequently reported primitives in this domain are the add and multiply times for
integers, floats and double precision floats. Also, we report the timings for a+b*c operation on
the various machines.

3.4. The overlap of computation and communication

Communication between non-neighboring nodes is typically handled by separate communi-
cations controllers in the sender, receiver and the intermediate nodes. So, the node processors of
the intermediate nodes should not be affected by the passing traffic. A good way to measure the
overlap in computation and communication in parallel machines would be to measure the time for
computation and the time for communication separately and then put the communication and the
computation parts together and time it again. The amount of overlap will be obtained by subtract-
ing the last measure from the sum of the measures in the first two cases.

However, this would be tough to do in the context of Linda. The method we adopt is then to
try and measure the amount of interference caused because of interaction between the computa-
tion and communication. We measure the effect in two ways. The first being the effect of com-
munication on the computation off other processors, and, the effect of computation off other pro-
cessors, on the communication between the cooperating processes. Although, this is the way it
should be, Linda provides no way of ensuring that a particular process runs on a particular proces-
sor. Thus to increase the chances that the processes doing the computation are on different proces-
sors, we eval() several processes doing the same computation.

3.5. Other issues in parallel computation

There are several issues in parallel computation which should be considered in systems
design but not all are relevant in the benchmarking phase. Some of the measures in this category
are fairness and starvation. However there are some issues which could not be placed in any of
the above categories but are relevant to measure the implementation. They are

Scaling-Effect: The biggest advantage in distributed memory machines is scalability. In
most shared memory machines the bus becomes a bottleneck as the system size is increased
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(exceptions may be in the form of the BBN Butterfly). We need to measure the time to com-
pute a constant workload using an increasing number of eval()s.

Blocked-in()s: This is a measure directly aimed at testing the implementation of Linda. The
point is that when a tuple is missing on an in(), the process is supposed to suspend. But in
some shared memory implementations, the processes spin. If the process spins, clearly there
will be a degradation. If instead the process is kept in a blocked queue of processes, we still
have some amount of degradation because of the overheads associated with managing the
queues and checking periodically if the tuple has arrived. The goal is to check if this results
in any degradation as far as the overall computation goes.

We have tried to list out the various parameters to be included in evaluating the Linda
benchmark. The fact remains that although Linda masks out the native architecture from the users
viewpoint, inefficient implementation of the underlying architecture, or, bad architectural features
can cause degradation in the performance on the applications. We have strived to incorporate in
the benchmarks, tests which will reflect these features. The following section will explain the
program set constituting the benchmarks, the specification of each module and the method of
implementation.

4. The BeLinda Specification

BeLinda consists of a set of eleven individual programs which evaluate the various charac-
teristics discussed above. A brief description of each of the BeLinda programs is given below:

primitives.l evaluates the cost of doing the Linda out(), in(), rd(), and eval() operations by
performing n primitive primitive operations of each type1. The time is then divided by ’n’
to obtain the average time for each individual operation. In the case of eval(), a null eval
which does no processing is performed.

actuals.l evaluates the cost of executing a primitive operation with a varying number of
actuals in the tuple. This is achieved by varying the number of actuals and timing rd() and
in() operations.

formals.l evaluates the cost of executing a primitive operation with a varying number of
formals in the tuple. This is achieved by varying the number of formals in the tuple and tim-
ing rd() and in() operations.

spin.l checks whether processes spin during in() or rd() operations by timing the execution
of a task using four workers on a single processor. The task is then rerun with one of the
workers blocked on an in().

scale.l determines how the time required to execute a constant amount of work varies as the
number of eval()s2 is increased.

latency.l measures the latency involved in communication between processes by bouncing
the same message (with one actual field) back and forth between two processes. After N
iterations, the elapsed time is divided by 2N to obtain a figure for latency.

contention.l measures the degradation in performance due to contention for channels by
simultaneously exchanging tuples in opposite directions between two processes. The
number of such interacting pairs is varied. To ensure that messages are indeed transmitted

________________

1 where ’n’ is large enough to ensure that the overall time is discernible.

2 The number of eval()s is guaranteed to be higher than the number of processors.
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simultaneously, we transmit many messages in succession (this increases the probability of
overlap but does not guarantee that every pair will overlap).

size.l measures the time to send messages of different sizes.

broadcast.l measures the time required to perform both multicast and reverse multicast
communications. In both cases M processes are eval()ed from the main one in order to exe-
cute the required in()s and out()s. M is varied.

overlap.l checks the effect of computation on communication and vice-versa. This is deter-
mined by: measuring the time required to eval() a computation-bound process; measuring
the time required to send a message between two other processes (involving no computa-
tion); and then by measuring the time required for each when they are both run together.

arithmetic.l Measures the basic arithmetic capability of the processors by measuring the
time for integer, double, and floating point addition, multiplication and a+b*c operations.

5. Assigning Weights to the programs

In order to generate a single benchmark figure for the BeLinda it is necessary to combine
the results obtained from the above programs. The importance of each particular benchmark is
largely determined by the type of application to be run on the architecture in question. However,
to obtain an overall generic performance indicator we collected data from a number of different
applications and used the average occurrence of the work primitives in question to weight the
results produced by the BeLinda benchmarks3. The significant information for BeLinda is the
ratio of the number of occurrences of each of the work primitives relative to the others.

Table 1 contains the static (compile time) frequencies of some attributes of the tuple space.
It may be noted that some attributes being evaluated like latency, contention etc., are nontangible.
We adopt the approach of giving equal weightage to each of the categories, and use the relative
frequencies to differentiate between the different factors in the same category. The factors which
increase the number of primitive operations being performed include the number of workers,
number of times the loop is executed etc. The first of these is the dominating factor & varies
drastically from application to application. Therefore, we shall use the static frequencies as the
basis for our weight computation.

Table 2 gives the weights obtained. The first category has the basic Linda primitives. In
this we had evaluated the costs of the primitives, and also the cost of the primitives with varying
number of fields. We give equal weightage to both of these. Based on the relative frequencies, we
arrive at the weights for each test as shown in the table 2.

The next category is for communication and synchronization primitives. MOst of the
parameters being measured in this category are nontangible. We recognize the fact that they occur
each time a tuple operation happens in some implementations, but not necessarily in others. We
therefore, give each of them a uniform weightage. A study of Table 1 shows that most synchroni-
zation is of the form 1-1, M-1 or 1-M, with M being the number of workers. The times for 1-1
communication is measured in terms of latency and contention. Thus, in the multicast/ reverse
multicast tests, we shall only consider the timings of 1-4 and 4-1 with equal weights. The number
of workers in the computation varies depending upon the application and also might vary between
different invocations of the same computation. Our choice of 4 workers seems suitable, in the
________________

3 The data was collected from the set of ten programs which are included with the SCA linda package.
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Table 1. Static Frequencies

absence of any supporting evidence for a commonly occuring number of workers.

The size of the message being transmitted also varies depending on the application. We
shall use the time for 256 bytes of data. It may be noted that in some Linda implementations (eg
iPSC2), the unit of data in the Linda Block structure is char, while in some others (eg Sequent, it
is long). Thus different sizes of messages need to be sent on different machines depending on the
transmission units of the implementation.

The rest of the table can be interpreted in a similar manner. Another point of interest is how
to arrive at a figure for scalability. The expected behaviour when we increase the number of work-
ers doing a computation is an initial decrease in the time for completion followed by a level off
and a subsequent increase. We also want the unit of measurement to be in time. Furthur, in keep-
ing with the other parameters being measured in time units, we would like a low figure to imply a
more scalable implementation. We thus define a measure as:

Scalability = Slope of the upward curve

This defenition is quite ad hoc in recognition of the fact that the figure would depend quite a
lot on the workload. If we were to have an application with a lot of interdependencies, the time
for a sequential execution would be the lowest, and if we have a perfectly parallel problem, we
would end up with an almost linear drop and then a level off after the number of workers becomes
equal to the problem size. Also important is the granularity of the eval(). For the same amount of
parallelism, we can get different timings based on the granularity (with the bottom case being
when the amount of computation is so low that the average cost per worker becomes same as the
cost of doing a null eval().
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Table 2. Weights Obtained

In recognition of all these problems, we feel that it is not practical to include scalability as a
basic measure of the implementation. We feel that it is a property of the implementation but it is
not easily quantifiable. Blocked-in()s also depends quite a bit on the implementation. We there-
fore do not include these features in the final BeLinda figures.

In the case of overlap of computation and communication, the parameters of interest are the
increase in computation time due to communication, and, the increase in communication time due
to computation. These are listed in table 2 as overlap1 and overlap2.

6. Machines being evaluated

We have used BeLinda to evaluate three different Linda based parallel architectures: the
Sequent Symmetry, the Intel iPSC/2, and the Cogent XTM. The architectures used in the evalua-
tion included the following features:
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Sequent Symmetry
The architecture consists of a shared memory, 8x80386 processors each with 32KBytes of
writeback cache, 53MBytes/sec pipelined bus, 32MBytes of main memory, a Wietek float-
ing point accelerator and an SCA Linda compiler. The Linda implementation contained a
number of performance optimizations.

Intel iPSC/2
The architecture consists of a distributed memory, 32x80386 processors in a 4 cube
configuration, an additional 80387 numeric coprocessor, 8MBytes of local memory per
node, a Direct Connect Module per node to improve communication, 2.8 Mbytes/sec com-
munication rate and an SCA Linda compiler.

Cogent Research XTM
Our configuration included two Cogent Research XTM workstations each containing two
Inmos T800 processors, connected to a resource server containing 8 T800 processors each
with 4 MBytes of memory. The processors in the resource server use a hybrid network of a
shared bus and a crossbar (the bus is used for short messages, while a crossbar connection is
used for heavy communication between two processors). The Linda implementation used in
this case was Cogent’s Kernel-Linda [21].

Kernel Linda has the following distinguishing features:

• Tuples are implemented as dictionaries ( a Key & Value pair)

• Provides multiple & nested tuple spaces

• Has no eval() instruction

• Provides support for variable weight process creation

• Provides a set of language independent data types

• Has the restriction that the tuples have a single key

• Changes the semantics so that ordering of tuples is guaranteed.

7. Results and their interpretation

Having described the benchmarks and the environment in all the machines, let us now take
a look at the results and try to interpret them in light of the features which the particular architec-
ture or the compiler has. We shall go over the results in order of the tests.

7.1. Basic Linda primitives

7.1.1. Primitives

Table 3. summarizes the results. We immidiately see the benefits of a shared memory archi-
tecture. The cost of doing any Linda primitive is substantially less than on any other machine.
The tuples in iPSC2 are distributed across the cube and costs of communication are incurred in
tuple operations. XTM falls between these two extremes. It places the tuples in the node running
the process doing the out(). The distributed memory is not utilized, but the underlying assumption
must have been that if one achieves load distribution of eval()s, distribution of tuples on an out()
would be a consequence.

Figure 1 plots the variation in the time for primitives as the number of nodes in the system
changes. The figure is for the iPSC2. There are a couple of points of interest here. Firstly, the cost
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Table 3. Cost of Primitives (in us)
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Figure 1. Time for Primitives in iPSC2 (in ms)

of the operations is higher for lower number of nodes and eventually becomes constant as the
nodes are increased. This is surprising because when only one node is being used, communication
costs are eliminated. But, since all the tuples are hashed onto the same node, there would be more
collisions. The effect is most pronounced for an out() as expected. The out() semantics do not
specify that the process should wait till the tuple has reached its final destination. The communi-
cation costs are therefore never part of the picture. Figure 2 is for the XTM. It says that the costs
remain constant as the number of nodes change. This is because we have only one process doing
all the operations and as such all the tuple operations are independent of the number of nodes in
the system. The cost of rd() and in() are lower than that of out() because there is no communica-
tion involved in the tests.
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Figure 2. Time for primitives (on XTM)

7.1.2. actuals

The times to do a rd() and an in() are shown in tables 4. and 5.

437

system

Sequent

iPSC2

XTM

Actuals (read)

1 2 4 8 16

1038 1048 1038

14 14 14 14

--

(8)

(16)

(8) 808 1551

14

1046

Table 4. Time to rd() actuals (in us)

From the figures of iPSC2 and Sequent we see that the number of fields in the tuple does not
effect the time to do a rd() or an in(). This is clearly because of the compiler preprocessing where
the fields are all hashed onto one number. Also apparent is the fact that the times to do an in() or a
rd() are almost the same. The dominating cost is therefore one of locating the matching tuple and
copying to the applications address space, rather than the cost of removing it from the TS. The
cost of doing a rd() or an in() increases linearly with the number of fields in the XTM. This is
because of the fact that Kernel Linda does not allow you to access more than one value at a time.
Thus, as the number of actuals (or formals) increases, correspondingly larger nesting of multiple
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467 1581838(8)

(16) --

15141414

system

Sequent(8)

iPSC2

XTM

1 2 4 8 16

Actuals (in)

1039 1050 1041

14

1047

Table 5. Time to in() actuals (in us)

tuple spaces needs to be used. Thus the cost to access more than 3 actuals is more in XTM than in
iPSC2.

7.1.3. formals

We now change the number of formals in the tuple and find out the time to match. The
times are listed in tables 6 and 7.

3

---1.661.291.23

Formals (read)

system

Sequent

iPSC2

XTM

1

.34 .41 .56 .80

7 15

same as actuals

Table 6. Time to rd() formals (in ms)

Figures 3 & 4 give the variation in time to rd() and in() formals as the number of computing
nodes changes. As the number of nodes increases in the system, the cost of doing a rd() or an in()
becomes constant after an initial increase. The point is that as the number of nodes increases, the
percentage of hashes to remote bins also goes up. Therefore the communication cost adds to the
time. Another way of looking at it is to vary the number of formals keeping the number of nodes
fixed. Again we notice an increase in the time for computation. Also apparent is the fact that the
cost of removing a tuple from the TS is negligible. In the XTM the times for actuals cannot be
differentiated from those of the formals, because of the way multiple tuple spaces are configured.
Thus, again we can expect a linear increase in time as the number of formals increases.
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same as actuals

7 15

1.04.68.47.37

3

---1.661.311.23

Formals (in)

1

XTM

iPSC2

Sequent

system

Table 7. Time to in() formals (in ms)

(ms)
E
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T

Number of nodes
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3 formals (rd)

1 formal(rd)

3

2

1

161412108642

Figure 3. Time for rd() with different number of formal fields

7.2. Primitives for communication and synchronization

7.2.1. Latency

The time required to send a zero byte message cannot be measured in Linda. The first prob-
lem is that Linda presents us with a model of computation in which the user cannot explicitly ask
an eval to be running on a particular node. Secondly, all out()s and in()s have to contain at least
one key. Therefore, in measuring latency in Linda would be equivalent to the cost of synchroniza-
tion between two processes. The times measured for the various systems are given in table 8. The
cost of communication seems to be the highest in the XTM. Of course, the time obtained in the
shared memory machine is the best.
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iPSC2
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Figure 4. Time for rd() - another view

1.051

XTM

iPSC2

Sequent
LatencySystem

7.631

.0455

Table 8. Latency (in ms)

7.2.2. Contention

The method for measuring contention has been detailed before. If the figure obtained here is
any different from the figure for latency, we have degradation due to conflict in the use of chan-
nels. The times are given in table 9. We see a performance degradation by 33% in the case of the
iPSC2 due to channel contention. In the case of the Sequent and the XTM, the timings are
uneffected.

7.2.3. Multicast & reverse multicast

Table 10 presents the timings of M to 1 and 1 to M communications for different values of
M. These represent the primitives for different kinds of synchronization between different
numbers of processes. The time increases as synchronization is required among increasing
number of processes. The time again is the highest in the XTM.

-15-



Benchmarking Parallel Machines

1.575

XTM

iPSC2

Sequent

ContentionSystem

7.466

.044

Table 9. Contention (in ms)

XTM

iPSC2

Sequent

System 1 - 161 - 81 - 41 - 2

1 - M

16 - 18 - 14 - 12 - 1

M - 1

.30 1.3 3.1 6.7.10 .60 2.0 4.3

2.0 5.2 11.6 23.81.0 2.9 6.8 14.0

9.67 14.9 44.7 93.14.05 7.46 15.1 59.2

Table 10. Multicast & reverse multicast (in ms)

7.2.4. Message size

Figure 5 plots the time taken for different size messages for the three machines. While the
units of transmission in Sequent is longs, the unit in iPSC2 is char. What is of interest is the
trend. While the time for transmission remains constant (or increases at a very small rate) in the
XTM and the iPSC2, the change is more dramatic in the Sequent. The iPSC2 uses the DCM for
its internode communication, by which it establishes the path using a probe, after which the data
is DMAed between the nodes. Thus the overhead with increase in message size is minimal.
Whereas in Sequent, the message has to be copied explicitly between the processes. The cost
therefore, increases linearly with message size.

7.3. primitives for computation

Sequent and iPSC2 both have intel 80387 on their node processors. But XTM does not have
any floating point coprocessor. We see the effect of this reflected in the times for floting point
computations in table 11.

7.3.1. Primitives for overlap of computation and communication

In the case of Sequent we see that the times for computation or communication are
uneffected by the presence of the other (see table 12). Mostly the communication is not affected
by the presence of computation. But we see a defenite degradation in computation times in the
presence of communication in XTM and to a lesser extent on the iPSC2.
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Figure 5. Message Transmission time

-5.44.66.24.143.84.03.6

-3.03.0

-11121.31.3

XTM

iPSC2

Sequent

doublefloatint

System add mult multadd add mult

41.3

4.0

a+b*c a+b*c a+b*c

1 1 1 1 1

Table 11. Basic arithmetic time (in us)

A measure of performance which has been proposed is the overlap time. It is defined as
Overlap Time = Time for computation + time for communication - time for both
By this measure Sequent should have the maximum overlap, iPSC2 the next and XTM the least.

7.4. Other issues

7.4.1. Scaling effect

Figure 6 shows the variation in times with a constant workload and changing the number of
eval()s. What one expects is an initial decrease in the time as the number of workers increases.
But eventually this should level off and then go upwards as we keep increasing the number of
eval()s. This is pretty much the story in Cogent XTM and Sequent. The XTM was running with
three processors, while the Sequent had 8. The iPSC2 also shows the effect but the upward curve
is less pronounced. It was running with 32 processors. Some of the factors contributing to this
performance would be the low cost of starting a worker of on another node, low cost of
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21.24421.134 1.815

.27

secsec .124.08744.94 sec4.67 sec
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Table 12. Interferance times

Number of processes

(s)

1.0

2.0

3.0

4.0

5.0

Sequent

XTM

iPSC2

4 20 32

(3)

(8)

(32)

Medium weight

XTM light weight

Figure 6. Scaling effect - constant workload

communication & more number of processors.

Figure 7 shows that time for various number of evals() on each host using eight processors.
Amazingly, the iPSC/2 comes out ahead, in fact it is more than twice as fast as the Sequent for
more than eight evals(). One possible explaination could be the fact that the iPSC/2 implementa-
tion loads a copy of the main program on each node processor. Evals could then be activated by
simply sending a message to another processor requesting it to exeucute a particular procedure.
On the other hand the Sequent needs to perform a fork of an extremely heavyweight process.
Still, this matter needs to be futher investigated.

The Cogent Research XTM has the worst times. Kernel Linda doesn’t have an eval(), rather
it provides routines for creating light to heavyweight processes. Unlike SCA’s eval() which
makes use of the UNIX fork(), Kernel Linda must create a process from an executable file.
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Figure 7. Cost w/ varying workload & eval()s
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Figure 8. Cost with varying number of nodes, iPSC2
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Figure 10. Cost with varying number of nodes, XTM
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Process creation may involves transfering an entire program from one processor to another. Note
that figure 10 shows the best time for a two processor systems. One of the reasons is that all
processes are limited to two processors so there isn’t a great need to transfer programs between
processors. The figure clearly shows that the XTM does not scale very well. As the number of
processors is increased in the system, the time for the eval()s remains the same.

7.4.2. Blocked-in()s

System 10 workers
10 workers and
10 blocked workers

Sequent
iPSC2
XTM

581307
583 ms 891 ms

us us
400ms 1100 ms

Table 13. Time (in us) for computation
in presence of blocked workers

When a process blocks, the process spins on the tuple in Sequent (see table 13). Therefore
all the other processes suffer a degradation in their time. The effect is less pronounced in the oth-
ers (since they suspend).

8. Discussion of results

The final beLinda figures for the three implementations are given in table 15.

66650.61 uS

1006.10 uS

489.68 uS

XTM

iPSC2

Sequent

System BeLinda Figure

Table 14. Final BeLinda figures

As expected, Sequent gives the best figures for BeLinda (see table 14). More surprising is the
fact that iPSC2 does only twice as bad as the shared memory machine. A lot can be attributed to
the fact that iPSC2 scales pretty well, and also that its communication costs are almost constant
and independent of the message size. The figure for XTM is pretty bad. A lot can be attributed to
its extremely bad communication between processes. Because of this, every communication and
synchronization primitive suffers. Also, it does not scale very well. The concept of multiple tuple
spaces causes the time for primitives on more than one value field to increase linearly. Thus,
although it has better time than the iPSC2 on the basic in(), rd() operations, it winds up far behind
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overall.

Based on the BeLinda figures we can say the following

• Communication plays a big role in the implementation of any parallel architecture.
What is apparant is that even with the most effecient implementation of the Linda
primitives, if the communication primitives are not effeciently implemented, the end
result is not good. Even a shared memory machine like Sequent has bad communica-
tion overheads, and can clearly benefit from memory mapping between address spaces
of processes.

• The choice of the weights determines the final time obtained from the benchmark
suite. In the face of some nontangible properties being measured, we have attempted
to make a selection of weights based on equal importance to all the categories. This
was partly in recognition of the fact that the implementations in which the these fac-
tors contribute to other primitives being measured (like communication issues effect
Linda primitives in distributed memory implementations), the factors would
inherently be given more importance anyway. The major point is that we are able to
obtain figures for different parameters, thus each user can choose his own weights to
identify the usefulness of the results to his application.

• Finding a good measure of scalability is very difficult. This is partly because of its
extreme sensitivity to the workload at hand, amount of parallelism inherent in the
workload, the amount of communication overheads involved, and the granularity of
the eval()s. In the face of so many variables, we approached the problem from several
angles, but could not come up with a practical way in which to answer the question.
We therefore concluded that scalability is not a primitive operation, but is a property
of the implementation which depends on several other primitives.

9. Conclusions

In the absence of portable benchmarks and formal analytical methods of measuring the per-
formance of parallel machines, the experiences with using a software architecture seems
encouraging. It provides a convenient and quick way to benchmark parallel machines, possibly
with different architectures.

Apparant is the fact that the degree to which conclusions can be drawn about the native
architecture is limited by the level of optimizations in the implementation of the software archi-
tecture. The choice of the software architecture is important, in that it should not be biased
towards any particular model of parallel computation.

We have implemented the set of benchmarks on three parallel machines with different archi-
tectures: a shared memory machine, a distributed memory machine and a machine with a hybrid
architecture. The fact that we could do that seems to imply that the use of a software architecture
would satisfy the demand for portable and easy to use benchmarks for parallel machines.
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