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Abstract 

This study analyzes land-cover types in the Gee Creek Watershed of southern 

Washington using the pixel-based and object-based image analysis approaches. Landsat 

imagery has traditionally been used for pixel-based classification and change detection in 

land-cover studies. In recent years, the availability of high-resolution satellite and aerial 

imagery have enabled for land-cover classification to occur at scales not possible using 

traditional Landsat imagery. High-resolution aerial imagery of 1 meter or greater has 

become readily available for free. Yet, commonly found black and white ( or 

panchromatic) aerial imagery is without the multiple spectrum bands found in Landsat 

imagery, thereby limiting the accuracy of traditional pixel-based multispectral 

classification approaches. Instead, object-based image classification can be used as an 

alternative analysis approach for determining land-cover types on high-resolution 

imageries. 

This paper examines and compares two traditional Landsat pixel-based techniques 

with the high-resolution object-based approach. Both approaches are used to conduct 

land-cover classification within the highly variable landscape of the Gee Creek 

Watershed. The high variability found within the Watershed is the result of recent years 

of development that have changed the landscape from predominantly forest and 

agriculture to one of the fastest growing suburbia's outside the Portland-Vancouver 

metropolitan area. Two pixel-based classification analyses are conducted using Landsat 

imagery; supervised classification of multispectral bands and unsupervised classification 

of transformed Tasseled Cap bands. These traditional approaches are then compared to 

object-based classification using 1 meter resolution natural color aerial imagery obtained 



from the United States Department of Agriculture. The result of this analysis suggests 

that Landsat pixel-based approaches are only suitable for determining general land-cover 

types, whereas the use of object-based classification on high-resolution imagery resulted 

in increased accuracy and ultimately led to a higher number of land-cover classes being 

distinguished. 
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Introduction 

Over the past few decades, methods utilizing multispectral satellite imagery for 

extraction of land-cover types were largely founded on pixel-based approaches, such as 

supervised and unsupervised classification algorithms (Traux et al, 2006). However, 

traditional satellite imagery sources, such as Landsat, contain a spatial resolution of 30-70 

meters, allowing for the classification of only general land-cover types (Welch, 1982). In 

recent years, the availability of high-resolution satellite and aerial imagery of 1 meter or 

higher have enabled for land-cover classification to occur at scales not possible using 

traditional Landsat imagery. Instead, object-based image classification can be used as an 

alternative analysis approach for determining land-cover types on high-resolution 

imageries, thereby providing new opportunities for mapping detailed land-covers. 

The goal of this paper is to examine and compare two traditional pixel-based 

classification approaches with the object-based approach. Two pixel-based classification 

analyses are conducted using Landsat Enhanced Thematic Mapper Plus (ETM+) imagery; 

supervised classification of ETM+ multispectral bands and unsupervised classification of 

transformed Tasseled Cap (TC) bands. These traditional approaches are then compared 

to object-based classification using 1 meter resolution natural color aerial imagery 

obtained from the US Department of Agriculture's (USDA) National Agricultural 

Imagery Program (NAIP). Both approaches are used to conduct land-cover classification 

within the highly variable landscape of the Gee Creek Watershed located in southern 

Washington. The high variability found within the watershed is the result of recent years 

of development that have changed the landscape from predominantly forest and 
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iculture to one of the fastest growing suburbia's outside the Portland-Vancouver 

This paper first introduces pixel- and object-based classification methods. It then 

discusses the unique physical characteristics of the Gee Creek Watershed, including a 

background discussion on the watershed's history ofland-use over time. This discussion 

is followed by a description of the image data used in this study, as well as a detailed 

description on the methodology used for both the pixel- and object-based classification 

approaches. An accuracy assessment is then discussed, which provides the percentage of 

land-cover types correctly classified, along with summary statistics on the acreages of 

land-cover types classified. The paper concludes with a discussion on the classification 

approaches utilized, including future uses and potential limitations for using each method 

at the watershed level. 

Comparing Pixel- and Object-based Classification Methods 

Simple spectral-based classifiers were first developed in the 1970s for use with 

multispectral data (Traux et al, 2006). The objective of traditional image classification 

procedures is to categorize all pixels in an image into land-cover classes. In most cases, 

multispectral data are used to perform the classification, which uses the spectral pattern 

present within the data for each pixel as the numerical basis for categorization. The 

recognition of a spectral signature is based on the analogy that different feature types 

manifest different combinations of Digital Numbers (DN) based on their inherent spectral 

reflectance and emittance properties (Orne et al, 2006). The term signature refers to the 

set of radiance measurements obtained in the various wavelength bands for each pixel 

(Orne et al, 2006). Both unsupervised and supervised spectral-based approaches are 
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routinely applied to remotely sensed data based on spectral or pixel-based schemes. 

However, recent investigations have shown that a pixel-based analysis of high-resolution 

imagery has explicit limits, such as accurately delineating landscape objects that have 

internal reflectance variation (Meinel and Neubert, 2004). 

Object-based classification is a new classification method (Lewinski and 

Zaremski, 2004). It is utilized by software packages that include new image-analysis 

tools, such as eCognition (Definiens Imaging, 2006) and SPRING (Brazil's National 

Institute for Space Research, 2006). Despite some early research activities ( e.g., Kettig 

and Landgrebe, 1976), image segmentation was established late in the field ofremote 

sensing. First beginning with the availability of very high-resolution imagery (<lm) and 

their characteristics (high level of detail, spectral variance, etc.) this method has become 

popular as a common variant of data interpretation (Meinel and Neubert, 2004 ). In 

contrast to traditional pixel-based approaches, groups of pixels called objects are 

examined during the classification process. Objects are created during the segmentation 

process; when the images are subdivided into groups of pixels which have similar local 

contrast values. Objects that share common properties are then encompassed into classes. 

A scale factor, which determines the size of the objects, is the basic parameter in their 

creation. The elements analyzed are not only the spectral values of an object, but also its 

shape, texture and course of its boundary with other neighboring objects. By applying 

the correct scale factor, it is possible to obtain objects with boundaries the paths of which 

closely resemble those in the visual interpretation of the image. It is acceptable that the 

segmentation of the image takes place in multiple phases (Lewinski and Zaremski, 2004) .. 

Based on the already existing objects, new higher order (larger) or lower-order (smaller) 



objects are created. Using object-based classification techniques, common problems 

associated with pixel-based image classification can be overcome, such as taking into 

account the characteristics of larger, interconnected areas through neighborhood and 

hierarchy relations ( e.g. Meinel et al, 2001 ). 
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The object-based approach in this analysis utilizes the free segmentation software 

product SPRING, which was developed by Brazil's National Institute for Space Research 

(INPE). SPRING is an object-oriented data model image classification software similar 

to eCognition. Segmentation is the first and important phase in the SPRING software 

and its aim is to create meaningful objects. The detection of objects during the 

segmentation phase exhibit multi-scale behavior, where a number of small objects can be 

aggregated to form large objects constructing a semantic hierarchy. Likewise, a large 

object can be split into a number of smaller objects which basically leads to two main 

approaches to object-based image analysis: A top-down and a bottom-up approach (Oruc 

et al, 2006). Segmentation tests between SPRING and eCognition have shown no 

notable differences between the ability of the software packages to derive image objects 

from land-cover types (Meinel and Neubert, 2004; US Fish and Wildlife, 2006). 

After the segmentation is performed, the software takes advantage of innovative 

algorithms based on region-based classification by neural networks (Bins et al, 1993). 

These classifiers include the Isoseg algorithm used for non-supervised data grouping, the 

Bhattacharya algorithm, which requires user interaction through training, and the ClaTex 

algorithm that uses regions texture attributes from a segmented image. Both region 

classifiers not only use the spectral information of each pixel, but also the spatial 

information involving the relationship of pixels to their neighbors. As a result, region 



classifiers attempt to simulate the behavior of a photo-interpreter, when recognizing 

homogeneous areas in the images, based on spectral and spatial image properties 

(Brazil's National Institute for Space Research, 2006). 

Study Area 
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The Gee Creek Watershed occupies a 10,700-acre basin located 10 miles north of 

the Portland metropolitan area in Clark County, Washington (Figure 1). Elevations 

within the watershed range from 300 feet to less than 8 feet at the Columbia River. The 

Gee Creek, a perennial stream tributary of the Columbia River, runs approximately 10 

miles in total length. The creek originates on the gently sloping topography along 

Interstate 5, flows west through canyons and the City of Ridgefield, and then into a series 

of Columbia River floodplain lowland lakes and ponds on the Ridgefield National 

Wildlife Refuge (RNWR), before reaching the Columbia River (Clark County Public 

Works, 2004). The majority of the land within the Gee Creek Watershed is privately 

owned (Clark County Assessment and GIS, 2007). 

The upland portions of the Gee Creek Watershed were historically dominated by 

native conifer forest (Bureau of Land Management, 2007). Patches of oak woodland 

were also historically present in the watershed and are still found on the Gee Creek 

lowlands, associated with rock outcroppings and floodplain shoreline bluffs (Cornelius, 

2006). A number of oak groves can also be found in the upper watershed where small 

woodland and prairie patches may have occurred historically. 

The Gee Creek watershed has been subject to early and direct land uses for the 

past 169 years (Cornelius, 2006). The early town of Union Ridge was incorporated and 



Figure 1: The Gee Creek Watershed located in southern Washington (Image Source: USDA 
NAIP, 2006) 

10 

renamed as the City of Ridgefield in 1909 (Fort Vancouver Historical Society, 1961-

1965). During this time, rural and farm land uses were predominate across the 

watershed, with dairy industry and potato farming leading the watershed's agricultural 

use (Columbian Newspaper, 1953). Over the past few decades, commercial farming has 

given way to rural-residential land uses. Most recently, rapid conversion to industrial, 

suburban and urban land uses has occurred, as a result of the annexation and growth of 

the City of Ridgefield along the middle and upper portions of the watershed (City of 



Ridgefield, 2006). Recent housing developments, new rural residences, and industrial 

development can be seen near the I-5 corridor in the upper portion of the watershed. 

Ridgefield's population is estimated to grow nearly 10 fold over the next 20 years to 

approximately 24,000 by 2024 (Cornelius, 2006). 
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In recent years a surge in restoration and preservation efforts within the watershed 

has occurred. These efforts are largely in response to the negative impacts due to recent 

vegetation clearing and development directly associated with the growth of the city of 

Ridgefield. However, historical land use management practices ( e.g., forest clearing) 

have also attributed to the poor health of the watershed's streams. Organizations 

involved in ongoing restoration efforts include the US Fish and Wildlife, the Washington 

State Department of Ecology, the Washington State University Clark County Extension, 

Portland State University, Friends of Ridgefield National Wildlife, and the Friends of 

Gee Creek. 

Accurately and timely compilation of land-cover maps of the Gee Creek 

Watershed will help support the US Fish and Wildlife's efforts in determining areas 

along the watershed's creeks that lack adequate conifer and deciduous land-cover and 

primarily consist of urban and bare land. The presence of tree canopy cover and 

vegetated landscaping within the watershed are important, for they provide shade, wood 

debris, and litter, which help regulate stream temperature and provide necessary debris 

for aquatic habitat. The main result of the study is to identify which classification 

methods are better. Land-cover maps derived from satellite or aerial imagery, coupled 

with additional topographic and land use data, will ultimately support efforts at targeting 

watershed landowners for preservation and restoration. 
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Image Data & Methodology 

Pixel-based Classification 

A Landsat ETM+ image from September 22, 1999 was used to conduct the pixel-

based classification (Figure 2). The 30-meter resolution Landsat image was obtained via 

a free download from the Landsat.org website. The software product ERDAS IMAGINE 

V9.1 was utilized for all phases of processing for the pixel-based classification 

procedures. In preparation for classification, spectral bands 1-5 and 7 were layer stacked. 

The thermal and panchromatic bands, 6 and 8 respectively, were not used in 

classification. The detection characteristics of the Landsat ETM+ bands used in the 

analysis are provided in Table 1. The second and final phase of image preprocessing 

consisted of masking the layer stacked Landsat image to the boundaries of the Gee Creek 

Figure 2: September 22, 1999 Landsat ETM+ image 



Watershed. This procedure was completed to ensure that the classification algorithms 

would not detect the spectral properties of pixels outside the watershed's boundary, 

thereby complicating the classification process. 

Table 1: Landsat 7 ETM+ band detection characteristics (Oruc et al, 2006) 

Band Wavelength Detection Characteristics 

1 0.45 -0.52 Blue: penetrate water 

2 0.52 -0.60 Green: healthy vegetation 

3 0.63 - 0.69 Red: photosynthetic activity 

4 0.76 - 0.90 Near IR: plant vigor 

5 1.55 - 1.75 Mid IR: water in plants 

7 2.08 - 2.35 Shortwave IR: mineral/rock types 

Table 2: Classification schemes of pixel-and object-based classification 

Land-Cover Classes 

Pixel-Based Object-Based 

Water Water 

Coniferous Coniferous 

Deciduous Deciduous 

Shrub Shrub 

Ag/Grass 
Agriculture 

Reed Canary Grass 

Urban/Bare Soil 
Urban 

Bare Soil 
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An initial classification scheme was created identifying the 10 most relevant land­

cover types within the watershed. Anderson's land-use land-cover classification system 

(Anderson et al, 1976) was utilized as a guide for determining the Level 1 and II land­

cover types. However, it became clear early on in the classification analysis that the 30-

meter resolution of the Landsat ETM+ image would inhibit the use of 10 classes. This 

limitation is primarily due to the high variability of land-cover types present in the Gee 



Creek Watershed over relatively short distances (e.g., <30m). As a result, the initial 10 

land-cover classes were reduced to 6 general land-cover types (Table 2, left column). 
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Figure 3: Band combinations utilized during training site selection in supervised classification 
(the box delineates the area shown in Figure 4) 

RGB = 321 RGB = 432 RGB = 453 

Figure 4: A subset of training sites used in the supervised classification 

A. Water 
B. Deciduous 
C. Conifer 
D. Shrub 
E. Ag/Grass 
F. Urban/Bare Soil 

B. 

E. 

F. 
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Using 60 classes, unsupervised classification was performed prior to the 

supervised classification in order to familiarize myself with the spectral reflectance 

patterns present within the image, and to help guide in choosing appropriate training 

sites. Several band combinations, including, 321, 432, and 453 for red, green, and blue 

display channels were utilized in determining appropriate training sites for the supervised 

classification (Figure 3 ). Reference datasets were also employed during the classification 

procedure, including an August I 5th 2000 US Geological Survey (USGS) grayscale 

orthophoto and personal knowledge concerning the study area. Once training sites were 

Legend 

- Water 

Figure 5: Supervised classification resuits 

- Coniferous 

- Deciduous 

Shrub 

Ag/Grass 

- Urban/Bare soil 
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determined (Figure 4), land-cover signatures were then extracted and supervised 

classification was completed using the maximum likelihood classification algorithm. 

Initial accuracy's were checked by calculating the thresholds, which determines the 

variation of signatures, for each class and viewing their subsequent histograms. Initial 

classification results exhibited classes with off-mean or polymodal histogram 

distributions. As a result, the training sites used for the land-cover class in question were 

adjusted and the supervised classification procedure was repeated. After several 

iterations, acceptable thresholds were obtained, allowing for the accuracy assessment to 

Figure 6: Unsupervised classification of transformed Tasseled Cap bands results 

Legend 

- Water 

- Coniferous 

- Deciduous 

I ] Shrub 

D Ag/Grass 

- Urban/Bare soil 



be conducted. The results of the supervised classification performed on the Gee Creek 

Watershed are shown in Figure 5. 

To compare the results of the supervised classification with an alternative pixel­

based classification method, unsupervised classification of transformed TC bands was 

performed on the 1999 Landsat ETM+ image. For this analysis, the 6 ETM+ bands 

utilized in the supervised classification method were layer stacked with transformed TC 

bands 1 and 2 from the 1999 Landsat ETM+ image; TC band 1 to measure brightness 

(measure of soil) and band 2 to measure greenness (measure of vegetation). The 

combined bands were used as inputs to the ISODATA unsupervised classification to 

generate 20 spectral classes. Each class was then visually interpreted and categorized 

into one of the 6 general land-cover classes, followed by an accuracy assessment. The 

result of the unsupervised classification of transformed Tasseled Cap bands is shown in 

Figure 6. 

Object-based Classification 
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A USDA Multi-resolution Seamless Image Database (MrSID) natural color image 

from July 2006 was used for the object-based classification (Figure 7). The I-meter 

resolution natural color image was obtained via a free download from the USDA 

Geospatial Data Gateway website. Environmental Systems Research Institutes (ESRI) 

ArcGIS desktop product ArcView 9.2 was utilized for pre- and post-processing of the 

object-based classification. The software product SPRING 4.3 was used to conduct the 

segmentation and object-based classification on the 2006 image. 

Using Arc View, the I-meter color image was masked to the boundaries of the 

Gee Creek Watershed. The 2006 image was then imported into SPRING and varying 
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levels of segmentation were applied using the Region Growing method 1• In order to 

determine the appropriate level of segmentation hierarchy that should be applied to the 

image, various values were used for Similarity and Area size2
• The goal in doing so was 

to choose a level of hierarchy that captured the smallest feature size desired in the land­

cover classification (a result of the Area value), while limiting over-segmentation due to 

choosing too low of a Similarity value. Figure 8 shows examples of the three levels of 

segmentation hierarchy considered for object-based classification in this analysis. 

Through experimentation and visual interpretation, it was determined that a Similarity 

Figure 7: USDA July 2006 orthophoto 

I 
I 



19 

Figure 8: Three levels of segmentation hierarchy considered in analysis 

(a) Similarity Value= 10, Area Value= 150 

(b) Similarity Value= 35, Area Value= 150 

(c) Similarity Value= 60, Area Value= 150 



value of 35 and an Area size of 150 were most appropriate for use in classifying the 

image (Figure 8.b ). 

In preparation for classification, the land-cover scheme used in the pixel-based 

approach was utilized. However, since the object-based approach utilized high­

resolution imagery, two land-cover classes used in the pixel-based approach were split 

into two, separating urban and bare land and differentiating between agricultural and 

large areas of Reed Canary grass located on the standing water portions of the RNWR. 

The eight land-cover classes utilized in the object-based approach are shown in Table 2 

(right column). 

· Figure 9: Object-based classification results 

Legend 
- Water 

- Coniferous 

- Deciduous 

J Shrub 

D Agriculture 

- Reed Canary Grass 

Urban 

Bare Land 
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Similar to pixel-based supervised classification, the object-based classification 

approach used in this study also requires the selection of training sites. Once training 

sites were established for each of the eight classes, the region classifier Bhattacharya was 

applied3
. The classified land-covers (Figure 9) were exported from SPRING and into the 

ArcGIS environment for conducting the accuracy assessment and calculating summary 

statistics. 

Accuracy of Classification Results 

To determine the accuracy of the pixel-based supervised classification, a stratified 

random sampling scheme including 180 pixels was applied and their agreement with 

ground truth was analyzed through the visual interpretation of the 1999 Landsat ETM+ 

and August 15th 2000 USGS grayscale orthophoto. A minimum of 20 points were 

applied to each class to assure that all land-cover classes were included in the accuracy 

assessment. The stratified random sampling method was chosen for overcoming the 

shortcomings of random sampling, which tend to over-represent abundant classes that 

cover more area and have a higher probability of containing sample sites (Goodchild et 

al, 1994). The results of the accuracy assessment (Table 3) show that deciduous and 

shrub land-cover classes had the lowest combined producer and user accuracy's. Overall, 

an accuracy of 73% was obtained for the supervised classification approach. 

To assess the accuracy of the unsupervised classification using transformed TC 

bands, the stratified random sampling method employed on the supervised classification 

was used. The results of the accuracy assessment (Table 3) show that urban/bare land 

and coniferous land-cover classes had the lowest combined producer and user accuracy's. 



Table 3: Accuracy results using the pixel- and object-based classification approaches 

Supervised Tasseled Cap Object-Based 

Class Name Producer's User's Producer's User's Producer's User's 
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

% % % % % % 

Water 90 90 77.78 87.5 98.7 96.5 
Coniferous 66.67 69.57 65 76.47 99.96 67.3 
Deciduous 69.05 76.32 85.54 72.15 100 100 
Shrub 58.28 70 60.18 79.76 89.17 68.8 

Agriculture 
90 67.92 90.64 80.63 

99.32 100 
Grass (Reed Canary) 85.03 100 
Urban 

76 73.08 66.67 72.22 
85.44 67.67 

Bare Land 93.32 100 
Overall Accuracy 73% 76% 88% 

An overall accuracy of 7 6% was obtained for the unsupervised classification of 

transformed TC bands approach. 
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Table 4 shows that both pixel-based classification approaches yielded 

considerably different values for the total area of land-covers classified. The largest 

discrepancies between the two pixel-based approaches are between the shrub, 

agriculture/grass, and water land-cover classes. Such a large variance in total areas for 

the land-cover classes puts the appropriateness of the Landsat ETM+ imagery resolution 

and pixel-based methodologies in question. 

Table 4: Total area of classified land-covers using the pixel- and object-based approaches 

Area (in acres) 
Class Name Supervised Tasseled Object-

Classification Cap Based 
Water 246 456 490 
Coniferous 762 611 1211 
Deciduous 2914 2175 2230 
Shrub 258 1742 1563 
Agriculture 

Grass (Reed Canary) 
5266 4278 

3145 
647 

Urban 
1220 1404 

972 
Bare Land 408 
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To assess the accuracy of the object-based approach, an accuracy assessment 

similar to the pixel-based approach was utilized. A stratified random sampling scheme 

including 180 pixels was applied. Unfortunately, to ensure that all land-covers classes in 

the object-based approach were incorporated into the accuracy assessment, the 180 

sample locations used in the pixel-based approach could not be replicated. The results of 

the object-based approach are shown in Table 3, which shows both the producer's and 

user's accuracy values. The object-based classification approach yielded much higher 

accuracy results, with an overall accuracy of 88% being obtained. 

The total areas of land-covers produced in the object-based classification are 

provided in Table 4. Noticeable difference between the pixel- and object-based 

classification results are the object-based reporting significantly greater coniferous forest 

and less overall agriculture (including Reed Canary grass). However, given the 

differences in the overall accuracy's obtained and in imagery resolution and acquisition 

dates, comparing total areas of land-covers classified by each approach is not appropriate 

as a basis for determining classification accuracy. Most important, the pixel-based 

approaches utilize a 1999 image, whereas the object-based approach utilizes a 2006 

image. A seven year difference in imagery will clearly have differences in total land­

covers due to changes in land-use. 

The total area of water classified by the object-based classification is larger area 

than that classified by the pixel-based approaches. This can be explained in part by the 

July acquisition date of the USDA imagery used for the object-based approach (versus 

the September image used in the pixel-based approach), which corresponds to mid­

summer when larger expanses of standing water are present on the RNWR. In addition, 



the classified Reed Canary grass land-cover is vegetation that exists only on the refuge 

and can be associated with shallow standing water from spring to mid-summer (Figure 

l 0). In contrast, the Landsat ETM+ imagery has an acquisition date of September, 

corresponding to late summer when standing water has receded on the refuge. 
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A second explanation for differences in the total area of water classified between 

the pixel- and object-based approaches can be explained by the multispectral bands 

Figure 10: Comparing pixel- and object-based classification methods on the RNWR: a) 1999 
Landsat (band combination 453), b) 1999 supervised classification, c) 1999 TC, d) 2006 USDA 

NAIP, e) 2006 object-based classification 

Legend 
- Water 

- Coniferous 

- Deciduous 

LJ Shrub 

CJ Agriculture 

- Reed Canary Grass 

- Urban 

- Bare Land 
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available in the Landsat ETM+ image during classification. A visual comparison of the 

results of the classification approaches for the RNWR is shown in Figure 10. As shown, 

the use of the Landsat ETM+ Band 1 (blue) in the pixel-based approaches appear to have 

an easier time at classifying water bodies located on the RNWR, even with the coarser 

resolution satellite imagery. In contrast, the object-based approach had a more difficult 

time distinguishing between water, dark vegetation, and Reed Canary grass during the 

classification process, due to the absence of near infrared bands. As a result, it appears 

that the pixel-based approach utilizing Landsat ETM+ imagery may be as a minimum 

comparable in terms of accuracy to the object-based approach in classifying water. 

In general, the effectiveness of the object-based approach over the pixel-based 

approaches is evident in areas of the Gee Creek Watershed that exhibit highly variable 

landscapes over short distances. For example, Figure 11 provides a visual comparison of 

a section of the watershed's landscape that exhibits coniferous, deciduous, shrub, 

agriculture, and urban land-covers over a distance of approximately 0.5 miles. As shown, 

the pixel-based approaches over generalized these areas due to the coarse 30-meter 

resolution inherent in the Landsat ETM+ imagery. In contrast, the use of the object­

based approach allowed for accurate differentiation between the highly diversified 

landscapes, as shown in Figure 11. Note the recent development in the center of the 2006 

USDA NAIP image and the ability of the object-based approach to differentiate between 

the bare soils and urban streets within the new development. The higher accuracy is in 

part the result of using I-meter resolution imagery which allows for the classification of 

finer detailed objects in the image. In fact, the use of I-meter aerial imagery results in 
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approximately 812 pixels to cover the same area covered by one pixel in the 30-meter 

Landsat imagery. 

Figure 11: Comparing pixel- and object-based classification methods on the RNWR: a)l999 
Landsat (band combination 453), b) 1999 supervised classification, c) 1999 TC, d) 2006 USDA 

NAIP, e) 2006 object-based approach 

a) b) c) 

d) e) 

Conclusion 

Legend 
- Water 

- Coniferous 

- Deciduous 

L:J Shrub 

C Agriculture 

Reed Canary Grass 

Urban 

- Bare Land 

Using the Gee Creek Watershed as a case study, this paper examined and 

compared two traditional pixel-based land-cover detection methods with the object-based 

approach. Due to resolution limitations inherent in the Landsat imagery, the pixel-based 

approach resulted in limited accuracy on six general land-cover classes. The 30-meter 

] 
I 
I 



27 

resolution Landsat imagery can be utilized for watershed studies, however when dealing 

with highly variable land-cover types, as with the Gee Creek Watershed, only general 

land-covers should be classified. One potential suggestion for improving the pixel-based 

approach in distinguishing between coniferous and deciduous land-covers would be to 

acquire satellite imagery that corresponds to 'leaf-off times of the year. For example, 

satellite imagery with an acquisition date of January could be utilized, allowing for 

potentially easier differentiation and classification of coniferous and deciduous land-

covers. 

The use of Landsat imagery also over generalized the watershed's landscape, 

making the establishment of reliable training sites and conducting the accuracy 

assessment through visual interpretation very difficult. Higher resolution satellite 

imagery, such a Quickbird, would be required in order to properly classify a larger range 

of land-cover classes at a finer spatial scale. The object-based analysis method ( e.g. 

segmentation) is more effective for classifying land-cover types within the Gee Creek 

Watershed using high-resolution imagery. 

The object-based approach to classifying land-covers using high-resolution 

imagery resulted in the distinction of additional land-cover types and a higher overall 

accuracy. The high classification accuracy obtained is primarily a function of image 

resolution. However, as this study shows, the object-based approach may prove to be a 

reliable method for classifying land-covers using imagery with differing resolutions. 

More importantly, the highly detailed land-covers classified using the object-based 

approach has far greater utility, enabling its use with high-resolution ancillary data for 

further mapping and analysis. 

..., 
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The results of this analysis suggests that Landsat imagery is only suitable for 

determining general land-cover types, such as combining urban and bare land into one 

land-cover class. In contrast, the use of object-based classification resulted in increased 

accuracy and ultimately led to a higher number of land-cover classes being distinguished, 

including the differentiation between agriculture and Reed Canary grass and between 

bare land and urban land-covers. As a result, when mapping spatially complex 

landscapes with high-resolution aerial imagery, object-based classification methods 

utilizing image segmentation and region-based classifiers are expected to be more 

suitable than traditional pixel-based classification approaches. Future studies in the Gee 

Creek Watershed will include change detection between historical and current land uses 
' 

which further suggests that the use of an object-based classification approach will 

ultimately lead to better change detection results. 
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Notes 

1. The Region Growing method is a data grouping technique that allows only spatially 
adjacent regions to be grouped. Initially, the segmentation process labels each pixel 
as a distinct region. The similarity criteria are then computed for each spatially 
adjacent region, which is based on a statistical hypothesis test that checks the average 
among regions (Brazil's National Institute for Space Research, 2006). The image is 
then divided into a set of sub images and a union operation is performed, following an 
aggregation limit based on the user defined Similarity value. 

2. The Similarity measure is based on the Euclidean distance between the average 
values of gray levels for each region (Brazil's National Institute for Space Research, 
2006). As a result, two regions are considered different if the distance between their 
averages is greater than the similarity value chosen. Regions with areas smaller than 
the minimum Similarity value are absorbed by more similar adjacent regions. The 
second user defined value, the Area, represents the minimum size, in pixels, that 
comprises a segmented region. 

3. The Bhattacharya classification algorithm calculates the statistical probability 
between a pair of spectral classes by measuring the average distance between the 
spectral classes' probability distributions (Brazil's National Institute for Space 
Research, 2006). 
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