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How does neural activity represent information
about stimuli from the environment?




Summary of important features
of neural codes

The “same” stimulus has to be recognized as such ...

Given a stimulus (e.g., sound waves), we and the organism observe the response
associated with it (here, spike trains):

Stimulus |
X(7)

TSN W S
WL

e
is




... but the dictionary is not deterministic!

Given a stimulus, we observe many slightly different neural responses
(noisy spike trains):
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Neural coding is stochastic!!
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... and the response is seemingly not consistent!

The “same” response (sequence of spikes), may be associated with many different
sensory stimuli:
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Neural Coding and Decoding

The Problem: Determine a coding scheme: How does
neural activity represent information about
environmental stimuli?

Summary of code feature we consider important:

* Any animal perceives its environment only by observing
its own internal representation through neural activity.

« The code must deal with uncertainties introduced by the
environment and neural architecture. Activity is by
necessity stochastic at this finer scale.

* An animal needs to recognize the same object on
repeated exposures. Failures at this stage may
endanger its well-being. Coding has to be mostly
deterministic at this level.

» Ecological reasons for uncertainty — what if the code
was deterministic? Somebody else can break it!

Recovering a coding scheme

Goal: find P(X,Y).

Strategy: Determine the correspondence, P*, between reproductions ( X, Y,)
of few elements, such that P* preserves as much "relevant” P as possible.
Discard details of P that “don't matter”.
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Optimal quantization

We define “relevant” as preserving the
mutual information /(X;Y) in between
stimulus and response.

New Goal: Find the quantizers g° that
minimize

=10XY) = 1(X; YY)
for fixed M and N. The same as minimizing
effective distortion D = -1(X,,, Yy )-

Information Theory

The Foundation of the Model

» The structure underlying information theory is a probability measure space
(source, random variable). An expectation Eyis an integral over the
probability measure.

* Asignal x is produced by a source (r.v.) X with a probability p(X=x). A
signal y is produced by another source Y with probability p(Y=y).

« A communication channel is a relation between two r.v.'s Xand Y. It is
described by the conditional probability Q(Y | X).

Entropy: the uncertainty, or self information of ar. v.

H(X)=E (Iogﬁjz j(l g%} (X)ax

Conditional Entropy: the reduced uncertainty of one r.v, if another is

observed. 1
H(X| Y)EEXY(Iog j
' o(X1Y)
Mutual Information: the amount of information that one r.v. contains about
another p(X, Y)

= E[ 0




Transmission of information

Consider the encoding process in a probabilistic framework.
Information theory makes a few important statements on how
messages can be transmitted.

* A ssignal xeXis produced by a source with a probability
p(x). A source is characterized by its entropy H(X). it
can be described completely using no more than
H(X)+1 bits per symbol on the average.

» A channel is a relation between two random variables
Xand Y. Itis completely described by the conditional
probability q(y|x). A channel is characterized by its

capacity C =max I(X;Y)

» Sending data tﬁ)r(gbgh noisy channels: the joint source
channel coding theorem. A finite alphabet process with
entropy rate H(X) can be transmitted through a
channel with capacity C with vanishingly small
probability of error iff H(X) < C.

The structure of a communication channel.

The total number of possible (high probability; typical) output sequences
is about 2nH(),

For each input sequence x" there are about 2"H(YIX) possible sequences
inY.

So that no two X-s produce the same Y, the output should be divided in
subsets of size about 2"H(YX), corresponding to different input X-s.

The total number of disjoint sets then is about 2nH(Y) - H¥IX) = 2ni(X,Y),
Hence we can transmit about 2"'*.Y) distinguishable X sequences.

xn  ~2") input sequences

~2nH(XY) pairs of sequences.
5 RN
2 7
3 & T .
s £ Size of a class:
I S
N g 20(HXIY) + HYIX) sequence pairs
I »n

~2nX.Y) distinguishable classes of pairs : I
(codeword classes) No metric yet'




Quantization

A quantization example

« Rate coding
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Quantization

A source Y can be related to another random variable Y, through
the process of quantization (lossy compression). Yy, is referred 10
as the reproduction of Y . The process is defined by a map
qV\Y) Y=Y
called a quantizer. In general, quantizers can be stochastic:
q assigns to y e Y the probability that the response y belongs to
an abstract class yy, € Y. 4 deterministic quantizer (Simple
function) is a special case in which ¢ takes the values of 0 or 1
only. It can be shown that the mutual information /(X; Y ) is the
least upper bound of I(X,,; Y,) over all possible reproductions
(X, Y of (X; Y ). Hence, the original mutual information can
be approximated with arbitrary precision using carefully chosen
reproduction spaces.

Rate Distortion Theory

Rate distortion theory is concerned with reduced representations
of random variables (lossy compression). The quality of reproduction
(fidelity) is assessed through a distortion function.
Consider the quantization X — X,
Definition 3. 4 (pointwise) distortion function, or distortion measure
IS a mapping

d: X xXy—R"
from the set of source/reproduction pairs into the set of nonnegative
reals. The distortion is a measure of the “error’ made by
representing the symbol x € X with x, € X,
Example 3 (Squared error distortion). d(x; x,) = (x - x,)°.




Definition 4 (Expected (mean) distortion function).

D(X;Xy) = E . d(x; X,)

Definition 5 (Rate distortion problem). The information rate-
distortion function R(D) for a source X with a distortion measure

d(x; x,) is defined as
R(D)= min  I(X;X,)

q(x,Ix}D(X; Xy )<D

where the minimization is over all conditional probabilities
q(x,|x) for which the joint distribution p(x; x,) = q(x,|x)p(x)
satisfies the expected distortion constraint. Equivalently, one may
consider the distortion-rate problem

D(R)= min  D(X;X,)

q(x, [} (XX )<R

Quantization theory.

The quantized information quantities in Y, are (Gray '94)

M p(x.,y)) M
I(X,;Y,)= x,y)In——"— H(X, )= Pl
o ) ;p( 2 np(xi)p(yj) (X) ;p(x) "

1
p(x,)

If a quantizer 4 refines f then

h /
Y—Y, —Y, (Markov relation)

H(,) = H(,)

H(X,1Y,) < H(X,|Y)

1(x.:v,) = I1(x,;7,)
I(X:Y) = sup I(X,, ;Y.

The way we build up measures in measure spaces.




Approaches

Constrained optimization: Search for the
quantizers (conditional probabilities, 2 g=1)
{a°(X1X) , q°(YnY) } that maximize the entropy,

max H(X,, Yy |X)Y)
X Yn) <1,
Ioﬁlmax

constrained by
and let

Annealing: | above is a parameter anyway, so
maximize the parametric cost function

max H + g1, vary p.
S =0, purely max H; f — «, max .

Simulations
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The sensory system challenge:
dealing with complex stimuli.

I(X,, Yn) cannot be estimated directly for high-dimensional stimulus sets —
P(X,Y) not known. Use a model. This produces an upper bound to the
distortion (Data processing theorem). Better model = tighter bound.

Here we use a Gaussian estimate of the stimulus:

pest(x|m):N(‘x;lum’Cm)

where (4, C,,) are the stimulus mean and covariance, conditioned on class
m. The estimate of the stimulus probability then is the Gaussian mixture

del
o pest(x): meN(x’lle’Cm)

m=1..M

pmN(x’mm’Cm)
pest(x)

The parametric quantizer is p(m | x) =

I This model imposes a distance on the input space: it defines when
stimuli are close to each other.

The cricket cercal system

(a low-frequency, near field extension of the auditory system)




The Cricket Cercal System

Neural Responses (sequences of spikes, T=10 ms) caused by a
white noise wind stimulus (Gaussian distribution, 5-500 Hz).

100§
o0}
Y73
Neural
o Responses
X|y-5 < (these are all
patterns of
length 10 ms
\ . . . : , 30
-15 -10 5 0 5 10
Time, {ms) 20%
Some of the air current stimuli 10§
preceding spike pattern #73 (first

spike at Time = 0 ms).




Quantization for inter-spike
intervals .
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Applying the algorithm to cricket sensory data.

Single cell, unidirectional GWN.

A sequence of refinements in a single cell, along with the class conditioned
mean stimuli.

3 The class conditioned mean
( ) is superimposed on
the stimulus density around
spike patterns from class 10.
The result from linear

® stimulus reconstruction is
shown in red. This cell is
not linear. The trace
=~ is the linear stimulus
reconstruction of the same
class with ISI reduced by
0.4ms.
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Are responses linear?
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Discussion
* model a set of neurons as a communication channel.

« define a coding scheme through equivalence classes of
stimulus/response pairs.
- Coding is probabilistic on codewords.
- Coding is almost deterministic on codeword classes.
- The number of classes is ~ 2!(%Y),

» propose a new method to quantify neural spike trains.
- Quantize the response patterns to a smaller space.
- Use an information-based distortion measure.
- Minimize the information distortion for a fixed size reproduction.

 present results with cricket sensory data.
- Use temporal patterns of spikes across a few neurons.

- Recover the stimulus reconstruction kernel at the coarsest
quantization.

- Demonstrate the presence of additional structure at finer
quantizations.

- Demonstrate non-linear processing in several cells.
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