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Neural Coding and Decoding
Alexander Dimitrov

Department of Mathematics and Science ProgramsDepartment of Mathematics and Science Programs

How does neural activity represent information 
about stimuli from the environment?



Summary of important features 
of neural codes

The “same” stimulus has to be recognized as such …

Given a stimulus (e.g., sound waves), we and the organism observe the response 
associated with it (here, spike trains):

Stimulus 
X(τ)

Neural response
Yi(t)| X(τ)
i = 1, 2, 3, 4



… but the dictionary is not deterministic!

Given a stimulus, we observe many slightly different neural responses , y g y p
(noisy spike trains):

X(τ)

Yi(t)| X(τ)
i = 1, 2, 3, 4

Neural coding is stochastic!!

… and the response is seemingly not consistent!

The “same” response (sequence of spikes), may be associated with many different p ( q f p ), y y
sensory stimuli:



Neural Coding and Decoding

The Problem: Determine a coding scheme: How does 
l ti it t i f ti b tneural activity represent information about 

environmental stimuli?

Summary of code feature we consider important:  
• Any animal perceives its environment only by observing 

it i t l t ti th h l ti itits own internal representation through neural activity.
• The code must deal with uncertainties introduced by the 

environment and neural architecture. Activity is by 
necessity stochastic at this finer scale.

• An animal needs to recognize the same object on 
repeated exposures Failures at this stage mayrepeated exposures. Failures at this stage may 
endanger its well-being. Coding has to be mostly 
deterministic at this level.

• Ecological reasons for uncertainty – what if the code 
was deterministic? Somebody else can break it!

Recovering a coding scheme
Goal: find P(X,Y).
Strategy: Determine the correspondence, P*, between reproductions ( XM,YN )
of few elements, such that P* preserves as much ”relevant” P as possible. , p p
Discard details of P that “don't matter”.

P(X,Y)
X

environmental
stimuli

Y

neural
responses

YN

q*(YN |Y)

P*(XM ,YN)
XM

q*(XM |X)

quantized
neural responses

( M , N)
quantized 

stimuli
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Optimal quantization

We define “relevant” as preserving the p g
mutual information  I(X;Y) in between 
stimulus and response.

New Goal:  Find the quantizers q* that 
minimize

DI = I(X;Y) – I(XM;YN)
for fixed M and N. The same as minimizing 
effective distortion Deff= -I(XM,YN ).

• The structure underlying information theory is a probability measure space 
(source, random variable). An expectation EX is an integral over the 
probability measure.

Information Theory
The Foundation of the Model

probability measure.

• A signal x is produced by a source (r.v.) X with a probability p(X=x).   A 
signal y is produced by another source Y with probability p(Y=y).

• A communication channel is a relation between two r.v.’s X and Y. It is 
described by the conditional probability Q(Y | X).

• Entropy: the uncertainty, or self information of a r. v.y y

• Conditional Entropy: the reduced uncertainty of one r.v, if another is 
observed.
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• Mutual Information: the amount of information that one r.v. contains about 
another 
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Transmission of information
Consider the encoding process in a probabilistic framework. 
Information theory makes a few important statements on how 
messages can be transmitted

• A signal x∈X is produced by a source with a probability 
p(x). A source is characterized by its entropy H(X): it 
can be described completely using no more than 
H(X)+1 bits per symbol on the average.

messages can be transmitted.

• A channel is a relation between two random variables 
X and Y. It is completely described by the conditional 
probability q(y|x). A channel is characterized by its 
capacity 

S di d t th h i h l th j i t
( ).;max
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• Sending data through noisy channels: the joint source 
channel coding theorem. A finite alphabet process with 
entropy rate H(X) can be transmitted through a 
channel with capacity C with vanishingly small 
probability of error iff H(X) < C.

The structure of a communication channel.
• The total number of possible (high probability; typical) output sequences 

is about 2nH(Y).

For each inp t seq ence n there are abo t 2nH(Y|X) possible seq ences• For each input sequence xn there are about 2nH(Y|X) possible sequences 
in Y.

• So that no two X-s produce the same Y, the output should be divided in 
subsets of size about 2nH(Y|X), corresponding to different input X-s. 

• The total number of disjoint sets then is about 2n(H(Y) - H(Y|X)) = 2nI(X,Y). 
H t it b t 2nI(X Y) di ti i h bl XHence we can transmit about 2nI(X,Y) distinguishable X sequences.

yn
xn ~2nH(X) input sequences

ou
tp
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es

~2nH(X,Y) pairs of sequences.

~2
nH

(Y
)
o
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ce

~2nI(X,Y) distinguishable classes of pairs
(codeword classes)

Size of a class: 

2n(H(X|Y) + H(Y|X)) sequence pairs

No metric yet!



Quantization

X YX Y

• •

A quantization example

• Rate coding

4 2 3 62 2



A source Y can be related to another random variable Y through

Quantization
A source Y can be related to another random variable YN through 
the process of quantization (lossy compression). YN is referred to 
as the reproduction of Y . The process is defined by a map

q(YN|Y ) : Y → YN
called a quantizer. In general, quantizers can be stochastic: 

i Y h b bili h h b lq assigns to y ∈ Y the probability that the response y belongs to
an abstract class yN ∈ YN. A deterministic quantizer (simple
function) is a special case in which q takes the values of 0 or 1
only. It can be shown that the mutual information  I(X; Y ) is the
least upper bound of I(XM; YN) over all possible reproductionsM N
(XM; YN) of (X; Y ). Hence, the original mutual information can
be approximated with arbitrary precision using carefully chosen
reproduction spaces.

Rate Distortion Theory
Rate distortion theory is concerned with reduced representations
of random variables (lossy compression). The quality of reproduction
(fidelity) is assessed through a distortion function.
Consider the quantization X → XN.q N
Definition 3. A (pointwise) distortion function, or distortion measure 
is a mapping

d : X × XN → R+

from the set of source/reproduction pairs into the set of nonnegative
reals The distortion is a measure of the “error” made byreals. The distortion is a measure of the error  made by 
representing the symbol x ∈ X with xn ∈ XN.
Example 3 (Squared error distortion). d(x; xn) = (x - xn)2.



Definition 4 (Expected (mean) distortion function).
D(X;XN) = Ep(x;xn)d(x; xn)

Definition 5 (Rate distortion problem) The information rate-Definition 5 (Rate distortion problem). The information rate-
distortion function R(D) for a source X with a distortion measure
d(x; xn) is defined as
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where the minimization is over all conditional probabilities 
q(xn|x) for which the joint distribution p(x; xn) = q(xn|x)p(x) 
satisfies the expected distortion constraint. Equivalently, one may 
consider the distortion-rate problem
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Quantization theory.

The quantized information quantities in YN are (Gray ’94)

If a quantizer h refines f then

∑≡
NM

ji ji

ji
jiNM ypxp

yxp
yxpYXI

,

, )()(
),(

ln),();( ( ) ∑
=

≡
M

i i
iM xp

xpXH
1 )(

1ln)(

( ) ( )
( ) ( )
( ) ( )

NLML

NM

N

f

M

h

YXHYXH
YHYH

YYY

||

relation)  (Markov   

≤
≥

→→

I(X ;Y) = sup I(XM ;YN). 
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The way we build up measures in measure spaces.



Approaches
Constrained optimization: Search for the 
quantizers (conditional probabilities, Σ q=1) 
{q*(XM|X) , q*(YN|Y) } that maximize the entropy,

max H(XM,YN |X,Y) constrained by 
I(XM,YN ) ≤ Io and let 
Io→Imax

Annealing: Io above is a parameter anyway, so 
maximize the parametric cost function p

max H + β I, vary β. 
β = 0, purely max H; β → ∞, max I. 

Simulations



• I(XM;YN) cannot be estimated directly for high-dimensional stimulus sets –

The sensory system challenge: 
dealing with complex stimuli.

P(X,Y) not known. Use a model. This produces an upper bound to the 
distortion (Data processing theorem). Better model = tighter bound.

• Here we use a Gaussian estimate of the stimulus: 

h ( C ) th ti l d i diti d l
( ) ( )mmest CxNmxp ,;| μ=

where (μm,Cm) are the stimulus mean and covariance, conditioned on class 
m. The estimate of the stimulus probability then is the Gaussian mixture 
model 
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The parametric quantizer is

• !!! This model imposes a distance on the input space: it defines when 
stimuli are close to each other.
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The cricket cercal system
(a low-frequency, near field extension of the auditory system)



The Cricket Cercal System

X
(t)

Y
(t)

| X
(t)

X

Neural Responses (sequences of spikes, T=10 ms) caused by a 
white noise wind stimulus (Gaussian distribution, 5-500 Hz). 

y73

X|y73

Neural 
Responses
(these are all 
patterns of 
length 10 ms

Some of the air current stimuli 
preceding spike pattern #73 (first 
spike at Time = 0 ms).
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Quantization for inter-spike
intervals .

Ve
lo

ci
ty

 (m

Induced clustering of stimuli
Time after 1st spike, ms

Induced clustering of responses | 5ms |

Code features consistent between 
individuals



Applying the algorithm to cricket sensory data.
Single cell, unidirectional GWN.

A sequence of refinements in a single cell, along with the class conditioned 
mean stimuli.

The class conditioned mean 
(green) is superimposed on  
the stimulus density around 
spike patterns from class 10. 
The result from linear 
stimulus reconstruction is 
shown in red. This cell is 
not linear. The yellow trace 
is the linear stimulus 
reconstruction of the same 
class with ISI reduced by 
0.4ms.

(Zane, Travis)

Are responses linear?

Why do we care:
Linear systems are 
easier to characterize 
and there is more 
d f h i

Aldworth et.al. 2010 (under review)

data for their 
characterization.



Which responses are linear?
A, C: single 
vs doublet 
models

B, D: 
doublet vs 
2-spike 
linear model

Top: cell;
Bottom:Bottom: 
population

How are responses non-linear?



Discussion
• model a set of neurons as a communication channel.
• define a coding scheme through equivalence classes of 

stimulus/response pairsstimulus/response pairs.
- Coding is probabilistic on codewords.
- Coding is almost deterministic on codeword classes.
- The number of classes is  ~ 2I(X,Y).

• propose a new method to quantify neural spike trains.
Q ti th tt t ll- Quantize the response patterns to a smaller space. 

- Use an information-based distortion measure.
- Minimize the information distortion for a fixed size reproduction.

• present results with cricket sensory data.
- Use temporal patterns of spikes across a few neurons.
- Recover the stimulus reconstruction kernel at the coarsest 

quantization.
- Demonstrate the presence of additional structure at finer 

quantizations.
- Demonstrate non-linear processing in several cells.

THE END
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