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ABSTRACT 

Several studies provide evidence that algal photosynthetic rates depend on various 

changing factors such as light attenuation, temperature, and nutrient limitation (Chapra, 1997). 

However, recent papers show that turbulence and photosynthetic rate dynamics is also important 

(Ross, 2006). In this study, the photosynthetic rate model used is the one proposed by Chapra 

(1997), where it depends directly on temperature, nutrient and light limitation factors. At the 

same time, the effect of turbulence or random-walk of algae particles in the water column was 

also introduced in this model. To account for this factor, the model added was that proposed by 

Ross (2006), in which the random movement of an algae particle depends on an initial position, a 

sinking or swimming velocity, an advective term and a random term related to probability. An 

example test is proposed to evaluate the model and all the parameters and variables are pre-

established to show a natural example commonly found in nature. The values of photosynthetic 

rate were obtained on average and point by point, the photosynthetic rate evolution with time 

was evaluated. Simulations results are consistent with literature, specifically the photosynthetic 

rate dynamic behavior, and wereas compared with the results obtained by Harris (1977), Marra 

(1978), and Ross (2006). Some aspects of the dynamic effect of light attenuation and turbulence 

on photosynthetic rate are investigated through the model. 
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1.0 Introduction 

Modeling algae is one of the most important analyses that can be done on waterbodies to 

study the equilibrium of ecosystems. As Wehr et al (1975) states, algae are the starting point for 

many trophic chains and provide good knowledge about the state of the system. In this way, it is 

common in water quality modeling to focus on algae known as phytoplankton, they consist of a 

variety of species, such as dinoflagellates, diatoms, and cyanobacteria. In a balanced marine 

ecosystem, phytoplankton provide food for a wide range of aquatic life including whales, shrimp, 

snails, and jellyfish (NOAA 2014). Similarly, algae provide water quality information on non-

marine systems such as lakes, ponds and rivers. Some of the data that can be found by analyzing 

algae on lakes vary from nutrients such as phosphorus or nitrogen to information on optimal 

temperature in the system.  

The phytoplankton production, photosynthetic rate, and biomass in most lentic systems are 

controlled by P (phosphorus) supply (Van den Hoek, 1995). However, other factors such as 

grazing, light availability (irradiance), and temperature also affect phytoplankton. 

Therefore, it is well known that phytoplankton distribution modeling depends on nutrients, 

light, and temperature as main factors. But recent studies indicate that the effect of turbulence is 

also crucial to simulate correctly such distributions in a water column. As Goshal et al. (2000) 

explains, phytoplankton productivity is strongly constrained by the need for light which is only 

available in the upper layers, and the need for mineral nutrients. Vertical upwelling and turbulent 

transport to dredge up nutrients from the deeper waters is also an important process for algae 

growth. 

Several models have been developed to simulate the behavior of algae, photosynthetic 

rates and algae production. These models take as a main factor the relationship between 

photosynthetic rate and irradiance (Steele, 1962; Platt and Jassby, 1976; Kiefer and Mitchell, 

1983; Olson et al., 1996). However, some issues arise when applying these models to simulate 

algae behavior. First, most of the models take the irradiance in a static way (Han et al., 2000). 

The water systems are often affected by non-constant physical factors (e.g. mixing process, 

turbulence) and weather factors (e.g. cloudiness or precipitation) that lead phytoplankton to 
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experience important changes on irradiance. In consequence, a taking in the variance on 

irradiance is necessary for such simulations (Steeman-Nierlsen et al., 1962; Harris, 1978).  

Other factors involved in simulating algae growth are temperature and nutrients 

availability (Chapra, 1997). Temperature affects algae at the cellular scale (Van den Hoek, 

1995). At the same time, inclusion of temperature in water-quality models is necessary to 

determine their effect on competition among groups (e.g. what type of algae is developing). In 

the same way, nutrient limitation is also important since it contributes to algae growth (Wehr, 

1975).  

Turbulence or randomness also affect algae simulations. Most of the models used take 

algae particles movement as a predictable function along depth (Goshal et al., 2000). However, 

some studies provides good evidence that random-walk of algae particles in the water column 

may affect such simulation at the same level as light, nutrients and temperature (Visser, 1997; 

Ross, 2006).  Several approaches for random-walk have been developed (Goodwin, 2001; Guha, 

2007), most of them use particle tracking theory to develop the models tracking algae particle 

position along the water column at each time iteration.  

In the present study, a model to simulate photosynthetic growth is developed to investigate 

the dynamic effect of irradiance and turbulence. In the same way, the effects of temperature and 

nutrients limitation are also included. First, the limits to phytoplankton growth are outlined, 

providing the equations and models to simulate algae, growth rate, temperature, and nutrients. 

Secondly, the models to predict the effect of light on phytoplankton growth is computed for both, 

an approximation to a point and to the averaged water column depth. Then, the main relations for 

primary production and photosynthetic rate are used to compute the growth rate. Also, a random-

walk model is used to simulate the vertical movement of algae particles. Finally, the results are 

compared with the data obtained by Ross (2006). 
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2.0 Limits to phytoplankton growth 

The development of models for phytoplankton growth is often used to predict the behavior 

of algae (Chapra, 1997; Ross, 2006). The framework of these models includes nutrient 

limitation, effects of light, and temperature. Chapra (1997) states that the first step to 

characterize algae is similar as the one in the approaches of characterizing organic matter and 

microorganisms. For a batch system, with a first order decay reaction, the mass balance can be 

written as 

𝑑𝑎

𝑑𝑡
= 𝑘𝑔𝑎 

where a is the concentration of algae (mgChla m-3), and kg is the first order growth rate (d-1). 

Applying initial conditions of ao = 0 at t = 0, then Equation 1 has the analytical solution 

𝑎 = 𝑎0𝑒𝑘𝑔𝑡 

By inspection of Equation 2, it is evident that at long times the concentration of algae will 

be extremely high. Thus, along with the growth there must be a process that limits growth of 

algae (Chapra, 1997). In consequence, to incorporate this effect 2 new processes are added to 

Equation 1. First, the growth rate is expanded by showing that is a function of temperature, 

nutrients, and light limitation. Later it will be shown that light limitation is also affected by 

turbulence. Secondly, a loss rate term is added to Equation 1, which in the present study is 

considered as a constant. This rate represents the losses by respiration, excretion, and predatory 

losses (Chapra, 1997). Now the governing equation for algae growth takes the form 

𝑑𝑎

𝑑𝑡
= 𝑘𝑔(𝑇, 𝑁, 𝐼)𝑎 −  𝑘𝑑𝑎 

Where kg(T, N, I) is the growth rate as a function of temperature T, nutrients N, and light I, 

and kd is the loss rate. Now expanding the term of growth (Chapra, 1997), the expression now 

takes the following form 

𝑘𝑔(𝑇, 𝑁, 𝐼) = 𝑘𝑔,𝑇𝜙𝑁𝜙𝐿 

(3) 

(4) 

(2) 

(1) 
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Where kg,T is the maximum growth rate at a particular temperature (d-1), φN is the 

attenuation factor for nutrients limitation, and φL is the attenuation factor for light limitation. The 

attenuation factors are dimensionless, and they can take values from 0 (total limitation) to 1 (no 

limitation). In the next section of the study, each of these terms are explained. 

2.1 Temperature effect 

Including the effect of temperature in a water-quality model is necessary to determine the 

influence of this characteristic on the different groups of algae (Van den Hoek, 1995). The 

temperature defines if a certain group of algae is favored among others in the water system. 

Different types of algae have different optimal temperatures at which the growth rate is higher. 

Several models have been proposed to represent the effect of temperature on 

phytoplankton growth (Epply, 1972; Vogel, 1974; Chapra, 1997). The simplest is explained by 

Chapra (1997), which is a linear model with minimum temperatures below which growth does 

not occur 

𝑘𝑔,𝑡 = 𝑘𝑔,𝑟𝑒𝑓

𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑟𝑒𝑓 − 𝑇𝑚𝑖𝑛
 

Where kg,t is the growth rate (d-1) at a temperature T (Celsius), kg,ref is the growth rate(d-1) 

at a reference temperature Tref (Celsius), and Tmin is the temperature below which growth ceases. 

However, the most common model used is also stated by Chapra (1997), commonly known 

as the theta model. This is also the approach used in the present study. This model is expressed 

by 

𝑘𝑔,𝑇 = 𝑘𝑔,20𝜃𝑇−20 

where kg,T is the growth rate (d-1) at T (oC), kg,20 is the growth rate (d-1) at 20 oC, and based 

on literature (Epply, 1972) a value of ϴ = 1.066 is often used. This value is based on a large 

number of studies involving many species of phytoplankton. 

(5) 

(6) 
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2.2 Nutrients limitation effect 

Nutrients also impact the growth rate of algae. The main nutrients used by phytoplankton 

on their process are phosphorus, nitrogen, and silica (Van den Hoek, 1995). Nutrient limitation 

affects algae on providing or limiting resources that develop the algae growth rate. The most 

common approach for handing nutrient limitation is the Michaelis-Menten equation (Chapra, 

1997), described by 

𝜙𝑁 =
𝑁

𝑘𝑠𝑁 + 𝑁
 

Where N is the concentration of the limiting nutrient, and ksN is the half-saturation 

constant. Chapra 1997, states that some typical values for ksN are for phosphorus 1-5 μP L-1, for 

nitrogen 5-20 μN L-1, and for silica 20-80 5-20 μSi L-1. The values for the half saturation 

constant may vary depending on the form of the nutrient that is limiting. In the same way, this 

equation is linearly proportional to concentration at low nutrient levels and approaches a constant 

value of one at high levels. 

In any water system there will usually be more than one type of nutrient that is at some 

level limiting the growth rate (Walker, 1983). In this case, there are multiple approaches that 

may be used, such as multiplicative approach, the minimum approach, and the harmonic mean 

approach (Chapra, 1997). However, in this study the most commonly accepted method will be 

used, the minimum limitation nutrient approach. This method states that when there is more than 

one nutrient that is affecting growth rate, the nutrient in shortest supply controls growth 

𝜙𝑁 = 𝑚𝑖𝑛{𝜙𝑝, 𝜙𝑛} 

where the minimum between P and N is taken as the nutrient that controls growth, in this 

example we will be using just phosphorus or nitrogen even though other nutrients could also 

limit growth.   

 

(7) 

(8) 
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2.3 Light limitation effect 

The effect of light on phytoplankton growth is always difficult to estimate by the fact that 

several factors have to be taken in consideration to come up with the total effect (Chapra, 1997). 

The main factors impacting light limitation effect are surface-light variation, light attenuation 

with depth, dependence of the growth rate on light, and at some level that will be stated below, 

turbulence present in the water column. 

According to Chapra (1997), one of the most used methods to estimate the light limitation 

on algae modeling is the Steele (1965) approach. This model states that growth is inhibited at 

high light levels, and is given by 

𝐹(𝐼) =
𝐼

𝐼𝑠
𝑒

−
𝐼
𝐼𝑠

+1
 

where I is the light level and Is is the optimal light level (ly d-1). Now, the spatial variation of 

light down through the water column can be modeled by the well-known Beer-Lambert law, 

which says 

𝐼(𝑧) = 𝐼0𝑒−𝑘𝑒𝑧 

where I0 is the solar radiation at the surface (ly d-1) and ke is the extinction coefficient (m-1). The 

extinction coefficient can be related to more fundamental quantities (Riley, 1956) by 

𝑘𝑒 = 𝑘𝑒
. + 0.0088𝑎 + 0.54𝑎2/3 

Where ke’ is the light extinction due to factors other than phytoplankton. These values are 

often found on literature (Di Toro, 1978; Chapra, 1997). At this point, Equations 9 and 10 can be 

coupled to express the general equation for the light limitation factor at any depth “z” along the 

water column, this will be the model used to estimate the light limitation factor in the present 

study. The equation on discussion is given by 

𝐹(𝐼) =
𝐼𝑎𝑒−𝑘𝑒𝑧

𝐼𝑠
𝑒

−
𝐼𝑎𝑒−𝑘𝑒𝑧

𝐼𝑠
+1

 

(9) 

(10) 

(11) 

(12) 
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The above Equation 12 is evaluated at a point, i.e. it is estimating the light attenuation 

factor for a given depth in the water column. However, in the present study the averaged light 

attenuation factor for the entire water body will also be calculated. According to Chapra (1997), 

Equation 12 can now be integrated over depth and time to develop the mean value for the light 

attenuation factor. The integration is expressed as 

𝜙𝐿 =
1

𝐻
∫

1

𝑇𝑝
∫

𝐼𝑎𝑒−𝑘𝑒𝑧

𝐼𝑠
𝑒

−
𝐼𝑎𝑒−𝑘𝑒𝑧

𝐼𝑠
+1

𝑑𝑡 𝑑𝑧
𝑓𝑇𝑝

0

𝐻2

𝐻1

 

Evaluating this double integral and taking as H1 the water surface and H2 the depth of the 

water column, it is obtained the mean value for the light attenuation factor. After evaluating and 

applying the integration limits, the resulting equation is  

𝜙𝐿 =
2.718 𝑓

𝑘𝑒𝐻
(𝑒−𝛼1 − 𝑒−𝛼0) 

Where f is the photoperiod (fraction of day), and  

𝛼0 =
𝐼𝑎

𝐼𝑠
𝑒−𝑘𝑒 𝐻1  

𝛼1 =
𝐼𝑎

𝐼𝑠
𝑒−𝑘𝑒 𝐻2  

where Ia is the average light over the daylight hours (ly d-1), Is is the optimal light level (ly d-1), 

and H1 and H2 depend on the reference system used (H is the total height). The above Equations 

13 is used in the model to estimate the averaged light attenuation factor. Also, it is important to 

address that the light values used in all preceding equations are visible, photosynthetically 

available light (Chapra, 1997). This value is typically about 40% to 50% of the energy in the 

complete standard spectrum used in this type of calculations. 

(15) 

(14) 

(12) 

(13) 
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3.0 Growth rate model 

Now with every term stated, the complete model of phytoplankton growth rate can be 

developed. Equation 16 is the model applied to a point “z” in the water column, and Equation 17 

is applied to the averaged water column depth. The two mentioned equations are respectively 

given by 

𝑘𝑔 = 𝑘𝑔,201.066𝑇−20 [
𝐼𝑎𝑒−𝑘𝑒𝑧

𝐼𝑠
𝑒

−
𝐼𝑎𝑒−𝑘𝑒𝑧

𝐼𝑠
+1

] 𝑚𝑖𝑛(𝜙𝑁 , 𝜙𝑝) 

𝑘𝑔 = 𝑘𝑔,201.066𝑇−20 [
2.718 𝑓

𝑘𝑒𝐻
(𝑒−𝛼1 −  𝑒−𝛼2)] 𝑚𝑖𝑛(𝜙𝑁 , 𝜙𝑝) 

Where kg is the growth rate as a function of temperature, light limitation, and nutrient 

limitation. At this point, it can be also calculated the primary production and the oxygen 

produced by photosynthesis (Chapra, 1997), these equations are respectively 

𝑃𝑟 =  𝑎𝑐𝑎𝑘𝑔𝐻 𝑎 

𝑃 =  𝑟𝑜𝑐𝑎𝑐𝑎𝑘𝑔𝑎 

Where Pr is the primary production (gC m-2 d-1), aca is the rate of milligrams of carbon by 

μg of Chla (1/20 mgC μgChla-1), P is the oxygen produced (gO m-2 d-1), and roc is the rate of 

grams of oxygen by grams of carbon (2.69 gO gC-1). However, for showing the results on graphs 

and plots, the photosynthetic rate from Equation 19 is reduced to   

𝑃 =  𝑟𝑜𝑐𝑎𝑐𝑎𝑘𝑔 

With Equation 20 the model is now able to estimate the photosynthetic rate with units of 

molO2 mgChla-1 h-1, which is the most used unit to express photosynthetic rate when plotting 

against time and light (Ross, 2006). 

(19) 

(18) 

(16) 

(17) 

(20) 
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4.0 Turbulence effect on the growth rate model  

Turbulence takes a meaningful role on the simulation of phytoplankton behavior. Particles 

of algae in the water column will tend to a random movement through the system. This random 

movement impact then the light attenuation factor at each point “z” along the water column, and 

therefore, the photosynthetic rate. (Visser, 1997). To address this effect, several models have 

been proposed to simulate the vertical random-walk of particles in water systems (Dimou, 1993; 

Visser, 1997; Goodwin, 2001; Ross, 2006; Guha, 2008). However, in the present study the model 

proposed by Visser (1997) and then modified by Ross (2006) was used.   

Random walks techniques or the computer simulation of the movement of individual 

particles in a turbulent environment is becoming a much used tool in investigating environmental 

processes (Visser, 1997). In this way, the distribution of planktonic cells is just one of the 

processes that can be simulated by using random walk models. 

Most authors researching in this area state that the most crucial question to be addressed in 

such simulations is how individual particles move in response to turbulent diffusion. The random 

walk model is often used to address this question. Visser (1997) explains that the main premise 

of a random walk simulation is that, given a diffusivity K (m2 s-1), the ensemble average of the 

square of the particle displacement Z is given by   

𝑑

𝑑𝑡
〈𝑍2〉 = 2𝐾 

Equation 1 is given for a 1-dimensional process. In consequence, for an individual particle, 

this can be translated to a change in position with time, from Zn to Zn+1, over a finite time step δt, 

given by 

𝑍𝑛+1 = 𝑍𝑛 + 𝑅(2𝑟−1𝐾𝛿𝑡)1/2 

Where R is a random process with mean < R2 > = 0, and standard deviation r, if R is a 

uniform distribution between +1 and -1, then r = 1/3. Equation 22 is also known as the naïve 

random walk formulation. 

 

(21) 

(22) 
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In this way, Ross (2006) seeks to simulate with a random walk model that two cases can be 

reproduced with the same approximation. These cases are when the diffusivity term is taken to 

be a constant and when is not. The random walk scheme used was very similar to the model used 

by Visser (1997), but now a new particle sinking term is introduced, the equation is given by 

𝑍𝑛+1 = 𝑍𝑛 − 𝑤𝑝𝛿𝑡 + 𝐾′(𝑍𝑛)𝛿𝑡 +  𝑅{2𝑟−1𝐾[𝑍𝑛 + 1
2⁄ 𝐾′(𝑍𝑛)𝛿𝑡]𝛿𝑡}

1/2
 

Where the new term wpδt is the sinking term, and wp is the vertical sinking/swimming 

velocity. The rest of the variables and coefficients are treated as in the model of Visser (1997). In 

the same hand, Ross (2006) also compared the results of this equation with the same model, but 

now taking the diffusivity term K’ as a constant, the model then takes the form 

𝑍𝑛+1 = 𝑍𝑛 − 𝑤𝑝𝛿𝑡 +  𝑅{2𝑟−1𝐾[𝑍𝑛]𝛿𝑡}1/2 

which is the naive random walk formulation with the extra sinking term. This model will 

be one of the most used in the present study to represent turbulence in the model of light 

attenuation factor. Furthermore, the diffusivity profile used by Ross (2006), and also used in this 

model has the form 

𝐾(𝑍) = 𝐾𝑏𝑔 +
𝐾𝑚

2
[1 − cos (

2𝜋𝑍

𝐻
)] 

Where Kbg is a background diffusivity which quantifies the amount of turbulent mixing in 

the thermocline and near the surface, and Km is the maximum diffusivity at the center of the 

mixed layer.  

(23) 

(24) 

(25) 
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5.0 Simulation and results 

Parameterization 

Several studies can be used to determine the parameters in the model expressed by the 

equations stated above. Values for an example test of the model will be stated to verify validity. 

The main model are equations 16 and 17, which are the point and averaged growth rate 

respectively, and also equation 20 which represents the photosynthetic rate. Most of the 

parameters are estimated indirectly in the literature (Chapra, 1997; Visser, 1997; Ross, 2006). In 

consequence, their exact meaning and dimensions are easily confused. The parameters used in 

this study and their possible ranges are listed on Table I. 

As suggested by Chapra (1997), the value used for the optimal light (Is) was picked from 

the range proposed, this value is 300 ly d-1. The values for light at the surface (Ia) were stated at 3 

cases, 100, 500, and 800 ly d-1 respectively, since they are common values found on optimal 

weather conditions (Chapra, 1997), as well as they provide different cases to contrast. Also, the 

values for Kg,20, ϴ, T, N, KSN, k'e, a, and f were all used by taking the most common values found 

in literature as stated by Chapra (1997) and Ross (2006), as well as to describe a common 

situation of a water system. 

Table 1. Parameters values and ranges used in the model 

Parameter Unit Range/Value Explanation 

Ia Ly d-1 500 Irradiance 

Is Ly d-1 100-500(300) Optimal Irradiance 

Kg,20 d-1 2 Growth rate at 20 oC 

ϴ Dimensionless 1.066 Theta coefficient 

T oC 25 Water temperature 

N mg m-3 3 Concentration of limiting nutrient 

KSN mg m-3 2 
Half saturation constant for limiting 

nutrient 

k'e m-1 0.3 Extinction coefficient 

a mgChla m-3 4 Chlorophyll a concentration 

f Dimensionless 0.5 Photoperiod 

H m 30 Water Column depth 

aca mgC μgChla-1 1/20 Carbon-to-chlorophyll ratio 

roc mgO mgC-1 2.69 Oxygen-to-carbon ratio 

wp m s-1 10-3 Sinking velocity 

δt s 0.1 Time step 

Kbg m s-1 10-6 Experimental constant for diffusivity 

Km m s-1 0.9 x 10-6 Experimental constant for diffusivity 
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Furthermore, a standard water column depth of 30 m was selected to fix in the model. This 

value was in concordance with the previous parameters stated above. As it is to express a 

common example of a water column with typical values at normal weather, physical, and 

chemical conditions. In the same way, the values for the constants aca, roc, were selected in 

agreement with the values stated by Chapra (1997). Finally, the values for the random walk 

model were selected by following the common values found on literature (Visser, 1997; Ross, 

2006), the values on discussion are wp, δt, Kbg, and Km. 

The model was developed by writing a code in Haskell, an emergent programing language 

widely used in research (see www.haskell.org to find more information about the language), and 

Fortran90, a well-used language in the engineering field. The script of it along with the functions 

constructed can be seen in the Appendix. 

Description of the example experiment used to test the model 

The model consists on equations 16 and 17 which predict the punctual and averaged 

growth rate respectively. Equation 20 that estimates the photosynthetic rate. And equation 24 

that is the random walk model to predict the particle movement along the water column.  

 

 

 

 

 

 

 

 

 

Figure 1. Movement prediction for the algae particle along the vertical axis. Note that the 

display was reduced to a quadrant of 0.1 meters x 0.3 hours to illustrate the turbulence effect. 
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The example experiment to test the model is the release of one algae particle at the top of a 

30 meters deep pool. The vertical movement was predicted with equation 24, and the behavior of 

the particle can be seen on Figure 1. The whole model was run with a time step of 0.1 seconds 

for 12 hours.  

As stated earlier, Visser (1997) and Ross (2006) explain that turbulence plays an important 

role on particle movement along a water column. Visser (1997) describes that particles under the 

influence of turbulence can either accelerate or retard their sedimentation rate as a consequence 

of the randomness of turbulence. The turbulent eddies provides friction forces on particles that 

affect directly their settling. Ross (2006) developed a model to prove that both cases, 

acceleration and retardation of particles can be predicted by using the same random walk model, 

the results obtained by this author satisfied the theory that turbulence has a direct impact on 

particle movement along the water column. 

Photosynthetic rate evolution with constant irradiance 

The time course of photosynthesis under constant irradiance can show decay of the 

photosynthetic rate when photoinhibition occurs (Ross, 2006). Thus, to show this the model was 

run at 3 constant irradiance levels: 100, 500, and 800 ly d-1. The first value corresponds to the 

low boundary of Is and the second to the high boundary of the same range (See Table 1). The 

third value is chosen to test the model prediction outside this range, at normal weather conditions 

and with the same parameters values stated at Table 1. The photosynthetic rate evolution at all 

three irradiances levels are shown in Figure 2.  
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Figure 2. Photosynthetic rate evolution under constant light intensity, turbulent field, and at 

three light levels, (1) 100, (2) 500, and (3) 800 ly d-1 respectively. Note: on segment 1 the effect 

of photoinhinition is showed.  

 

Diurnal change on photosynthetic rate 

The daily change of light has also an effect on photosynthetic rate. To represent this, the 

daily light course was set to be expressed by the function   

IpSin3(πt/12) ly d-1                                       

Being the peak light intensity (Ip) of 100, 500, and 800 ly d-1, to represent three example 

cases and contrast the results for a period “t” of 12 hours. The model was run to simulate diurnal 

change in photosynthetic rate, all the parameters used were the pre-established for the example 

test (See Table 1), with the exception of light intensity, which was simulated by the sinusoidal 

function stated above.  

(26) 
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The change in photosynthetic rate from morning to afternoon is symmetrical, being the 

peak at noon. In natural aquatic environments, light intensity experienced by phytoplankton is 

usually coupled with physical processes, according to Ross (2006) some processes such as 

mixing and weather conditions may also affect the water column. The diurnal change on 

photosynthetic rate can be seen on Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Photosynthetic rate evolution when the light function is defined as Ipsin3(πt/12) ly d-1. 

Being Ip (1) 100, (2) 500, and (3) 800 ly d-1.  

Photosynthetic rates measured with a succession of increasing irradiance levels are often 

higher than the rates measured with a series of decreasing irradiance (Ross, 2006). This is 

commonly known as the hysteresis effect. How hysteresis is developed depends on various 

factors such as algae cell type, turbulence in the system, and fluctuating weather conditions.  

Now the model was run to contrast the point and the averaged approach. The equations and 

parameters values stated above, including the equations for random-walk movement were used 

as described earlier, the irradiance used to contrast the approaches was 500 ly d-1. The 

photosynthetic rate evolution was obtained and then plotted in these 2 cases. The first case was 

to show the photosynthetic rate evolution with time (the point approach or equation 16). The 

second case was the averaged approach to estimate the photosynthetic rate (equation 17). With 
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this, it is possible to contrast both approaches and see the correlation that arises. In the following 

Figure 4, both approaches are showed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Photosynthetic rate evolution with time obtained by running the whole model. The 

curve (1) is obtained by the “point” approach, and the straight line (2) corresponds to the 

averaged approach (~4.5 x 10-4 moleO2 mgChla-1 h-1), with irradiance of 500 ly d-1.  
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6.0 Discussion and conclusions 

The validity of the model 

It has to be stated that dynamics of photosynthetic rate or more specifically algae dynamics 

are more complicated than described by the present model. In reality, there are several more 

factor to take in consideration, such as photoadaptation. Thus, in order to contrast the model 

developed in the present study, the structure and the results of it were compared to the models 

developed by Harris (1977), Marra (1978), and Ross (2006). The results from Ross (2006) were 

the main focus since from this study several equations were used. 

In this way, Harris (1977) developed a series of experiments to detail the time course of net 

photosynthetic rate over a period of 4 hours. The irradiances used in this study varied from 90 to 

5000 μE m-2 s-1, and the model had a similar structure to the one in this study. The model of 

Harris (1977) shows that the photosynthetic rate rises to a maximum at 5 minutes. Afterwards, 

the net photosynthetic rate declines until a steady-state value is reached. Also, similar results 

were obtained by Marra (1978), in this study the time course of photosynthetic rate was 

measured at six irradiances from 5 to 100% the value of the incident irradiance on the water 

surface. The photosynthetic rates were decaying over time for all irradiances, and the sharpest 

decay occurred at the highest irradiance. Finally, the model by Ross (2006) shows similar results 

to the models briefly described above. In this model, the same structures were used as the ones in 

the present study, with the only exception of the random-walk function. Ross (2006) ran the 

model for 12 hours and obtained similar behaviors, the photosynthetic rate rose at the beginning 

and then declined again after 6 hours. In this study were also used different combinations of 

irradiances and growth rates to compare results. 

In the present study, the structure followed in the model was very similar to the one used 

by Ross (2006), also it had some common items with Harris (1977) on light attenuation function 

used and with Marra (1978) on the averaged values. It is important to note that actual numbers or 

values of the results are difficult to compare since each study used different constants on each 

equation and the experiments developed had different characteristics. However, since the 

structure of each model is very similar to the one used in the present study, it is possible to 
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compare and contrast the behavior obtained in photosynthetic rate. That is the main goal of this 

study. 

The time course of photosynthetic rate can be seen on Figure 2 for constant irradiances and 

on Figure 3 with the sinusoidal function. In the case with constant irradiances, on Figure 2, the 

behavior was in concordance to the ones obtained by Harris (1977), Marra (1978), and Ross 

(2006). The photosynthetic rate evolution presented a decay as the time increases (for Ia values 

of 500 and 800 ly d-1), this behavior is exactly as the tendency obtained by Ross (2006). 

However, when the irradiance was set to be 100 ly d-1 the model shows the inhibition, since it 

starts at a low photosynthetic rate and then a peak at 0.2 h takes place, decreasing the rate 

afterwards, this can be due to the fact that at low irradiances the equations lose validity, also it is 

important to note that an irradiance of 100 ly d-1 is the smaller value in the range showed on 

Table 1. 

Another difference with the values obtained by Ross (2006) was on the maximum values 

of photosynthetic rate (for the case when the irradiances are constant), the maximum 

photosynthetic rates obtained in the present study were 5.7 x 10-4, 4.8 x 10-4, and 2.8 x 10-4 

moleO2 mgChla-1 h-1, for the values of Ia of 100, 500 and 800 ly d-1 respectively. The maximum 

values obtained by Ross (2006) varied around 7 x 10 -4 moleO2 mgChla-1 h-1. The values obtained 

in the present study were on the same order of magnitude, and the behavior obtained was similar. 

For the second case when the irradiance varies as a sinusoidal function (see Figure 3), the 

photosynthetic rate behavior is also very similar to the one obtained by Ross (2006). The 

photosynthetic rate starts low and then has a peak, then decreasing until it approaches zero. The 

peaks obtained for when Ip has values of 100, 500 and 800 ly d-1, were 5.7 x 10-4, 5.6 x 10-4, and 

1.5 x 10-4 moleO2 mgChla-1 h-1 respectively. These results were in concordance with the ones 

obtained by Ross (2006). However, when the Ip is set to be 800 ly d-1 the model seems to 

underestimate the photosynthetic rate, because comparing this behavior with the other two for 

when the peak irradiance is 100 and 500 ly d-1 the maximum values were higher in comparison 

with 800 ly d-1. This can be the effect of setting a high irradiance, since 800 ly d-1 is beyond the 

range recommended in the literature, at the end this help to address the ranges in which the 

model is valid, irradiance ranges for this case. 
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The results obtained with the averaged approach when the values of Ia are 100, 500 and 

800 ly d-1, were 3.2 x 10-4, 4.5 x 10-4, and 0.8 x 10-4 moleO2 mgChla-1 h-1 respectively. This result 

represent an under prediction by using the average approach instead of the point approach. Such 

values can be due to the fact that in the average approach the random-walk of particles is not 

considered. Finally, based in the above comparisons between the results in the present study and 

the results obtained by Harris (1977), Marra (1978), and Ross (2006), the behaviors obtained 

with the present model are in good direction, therefore, the present study proves to be acceptable 

to express the dynamics of photosynthetic rate when the parameters and conditions are set 

similar to the ones used in the literature and on this project. 

The effect of temperature, nutrient limitation, light attenuation, and random-walk of particles on 

photosynthetic rate 

In equation 4, it is stated that the growth rate depends directly on temperature, nutrient 

limitation, and light attenuation factors. Thus, if any of these variables increase the growth rate 

will be higher and then the photosynthetic rate will show increased values. This is also explained 

by Ross (2006), who showed examples, by increasing light, nutrient, or temperature factors. 

However, the effect of random-walk of algae particles in the water column is more difficult to 

address, the turbulence or chaotic behavior of particles may produce different path movements 

each time, which can affect other factors such as light. According to Ross (2006), more models 

have to be developed to be able to compare and contrast the effect of turbulence on 

photosynthetic rate evolution. The lack of models on phytoplankton growth dealing directly with 

random-walk of particles is the main issue. 

Limitation of the model  

There are some items that can be addressed as main goals to improve the model. First, the 

temperature and nutrient limitations factors. The water column was assumed to be well-mixed, 

but in reality this could not be the case. Fluctuations on temperature along the water column and 

variable concentration can be found on many natural water systems. In consequence, the model 

can be improved by introducing terms to express temperature and nutrient variations. Second, 

using different random-walk models is also viable, since the comparison of different results 
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using different approaches to count for the factor of turbulence can be essential to find the 

extension of its impact on photosynthetic rate. 

Finally, the results obtained with the model for the example test developed in the present 

study must be compared to a real laboratory test, or with a real controlled water column with its 

own characteristics and parameters. This is essential since the model used in the present study 

was tested only working with pre-established parameters and variables functions. The contrast 

between the efficiency of the model with the example test and with a real water column can 

provide another item validation of the model, and at the same time, it can bring facts about which 

parts of the model needs to be improved.   
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7.0 Appendix 

Code in Haskell 

module Program.Types where 
 

type Z = Double 

 

data SimData = SimData 

  { irradiance :: Double -> Double 

  , optIrradiance :: Double 

  , growRate :: Double 

  , theta :: Double 

  , waterTemp :: Double 

  , nutrientConcentration :: Double 

  , saturation :: Double 

  , extinctionCoefficient :: Double 

  , chlorophyll :: Double 

  , photoperiod :: Double 

  , waterDepth :: Double 

  , carbonToChloroRatio :: Double 

  , oxygenToCarbonRatio :: Double 

  , sinkingVelocity :: Double 

  , timeStep :: Double 

  , diffusivity0 :: Double 

  , diffusivity1 :: Double } 

 

module Main where 
 

import Data.Maybe 

import System.IO 

import Program.Types 

import Program.Equations 
 

-- Base test data for all test cases 

testDataBase :: SimData 

testDataBase = SimData 

  { irradiance = const 100 

  , optIrradiance = 300 

  , growRate = 2 

  , theta = 1.066 

  , waterTemp = 25 

  , nutrientConcentration = 3 

  , saturation = 2 
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  , extinctionCoefficient = 0.3 

  , chlorophyll = 4 

  , photoperiod = 0.5 

  , waterDepth = 30 

  , carbonToChloroRatio = 1 / 20 

  , oxygenToCarbonRatio = 2.69 

  , sinkingVelocity = 10 ** (-3) 

  , timeStep = 1 

  , diffusivity0 = 10 ** (-6) 

  , diffusivity1 = 0.9 * 10 ** (-6) } 

 

-- Test cases 0 - 5 (total 6) 

testData0, testData1, testData2, testData3, testData4, testData5 :: SimData 

 

testData0 = testDataBase { irradiance = const 100 } 

testData1 = testDataBase { irradiance = const 500 } 

testData2 = testDataBase { irradiance = const 800 } 

testData3 = testDataBase { irradiance = \t -> 100 * (sin $ (pi * t) / 12) ** 3 } 

testData4 = testDataBase { irradiance = \t -> 500 * (sin $ (pi * t) / 12) ** 3 } 

testData5 = testDataBase { irradiance = \t -> 800 * (sin $ (pi * t) / 12) ** 3 } 

 

-- 

-- IGNORE FROM HERE 

-- 

 

data StepData = StepData { stepZ :: Double, stepP :: Double } 

 

simStep :: Int -> SimData -> Z -> IO [(Double, Double)] 

simStep 0 _  _ = return [] 

simStep hours simData z = do 

  newZ <- zStep simData z 

  xs <- simStep (hours - 1) simData newZ 

  return $ (p simData z, z) : xs 

 

simulation :: String -> SimData -> Int -> Maybe Handle -> IO () 

simulation name simData time mhandle = do 

  let handle = fromMaybe stdin mhandle 

  hPutStrLn handle ">> SIMULATION" 

  hPutStrLn handle $ "Name: " ++ name 

  hPutStrLn handle $ "Ia (irradiance):" ++ show (irradiance simData $ timeStep simData) 

  hPutStrLn handle $ "Timestep: " ++ show (timeStep simData) 

  hPutStrLn handle $ "Time (seconds): " ++ show time ++ " seconds" 

  hPutStrLn handle $ "Time (hours): " ++ show (time `quot` 3600) ++ " hours" 

  hPutStrLn handle "" 

  hPutStrLn handle $ "Average Kg: " ++ show (kgAvg simData) 

  hPutStrLn handle "" 
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  hPutStrLn handle $ ">> Starting simulation..." 

  hPutStrLn handle $ "P    Z" 

 

  res <- simStep time simData 0 

 

  hPutStrLn handle . unlines . map (\(p, z) -> show p ++ "    " ++ show z) $ res 

 

  return () 

 

main :: IO () 

main = do 

  let time = 12 * 3600 

  withFile "out/data0.txt" WriteMode (\h -> simulation "Sim 0" testData0 time (Just h)) 

  withFile "out/data1.txt" WriteMode (\h -> simulation "Sim 1" testData1 time (Just h)) 

  withFile "out/data2.txt" WriteMode (\h -> simulation "Sim 2" testData2 time (Just h)) 

  withFile "out/data3.txt" WriteMode (\h -> simulation "Sim 3" testData3 time (Just h)) 

  withFile "out/data4.txt" WriteMode (\h -> simulation "Sim 4" testData4 time (Just h)) 

  withFile "out/data5.txt" WriteMode (\h -> simulation "Sim 5" testData5 time (Just h)) 

 

module Program.Equations where 
 

import Control.Arrow 

import Program.Types 

import System.Random 
 

e :: Double 

e = exp 1 

 

pr :: SimData -> Z -> Double 

pr simData z = 

  let 
    aca = carbonToChloroRatio simData 

    kg' = kg simData z 

    h = waterDepth simData 

    a = chlorophyll simData 

  in 
    aca * kg' * h * a 

 

p :: SimData -> Z -> Double 

p simData z = 

  let 
    roc = oxygenToCarbonRatio simData 

    aca = carbonToChloroRatio simData 

    kg' = kg simData z 

  in 
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    roc * aca * kg' 

 

zStep :: SimData -> Z -> IO Z 

zStep simData z = do 

  rand <- 

    (\x -> fromIntegral x / fromIntegral (maxBound :: Int)) 

    <$> randomRIO (minBound :: Int, maxBound :: Int) :: IO Double 

  let 
    wp = sinkingVelocity simData 

    deltaTime = timeStep simData 

    r = 1 / 3 

  return $ z - wp * deltaTime + rand * (2 * r ** (-1) * k simData z * deltaTime) ** (1 / 2) 

 

k :: SimData -> Double -> Double 

k simData z = 

  let 
    kbg = diffusivity0 simData 

    km = diffusivity1 simData 

    h = waterDepth simData 

  in 
    kbg + (km / 2) * (1 - cos ((2 * pi * z) / h)) 

 

kg :: SimData -> Z -> Double 

kg simData z = 

  let 
    kg20 = growRate simData 

    temp = waterTemp simData 

    ia = irradiance simData $ (timeStep simData) 

    is = optIrradiance simData 

    ke' = ke simData 

    -- Formula simplications 

    iek = (ia * e ** (-(ke simData * z))) / is 

  in 
    kg20 * 1.066 ** (temp - 20) * (iek * e ** (- iek + 1)) * omegaN simData 

 

kgAvg :: SimData -> Double 

kgAvg simData = 

  let 
    kg20 = growRate simData 

    temp = waterTemp simData 

    f = photoperiod simData 

    h = waterDepth simData 

    ke' = ke simData 

    a0 = alpha0 simData 

    a1 = alpha1 simData 

    -- Formula simplications 
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    frac = (2.718 * f) / (ke' * h) 

    subs = e ** (-a0) - e ** (-a1) 

  in 
    kg20 * 1.066 ** (temp - 20) * (frac * subs) * omegaN simData 

 

ke :: SimData -> Double 

ke simData = 

  let 
    ke' = extinctionCoefficient simData 

    a = chlorophyll simData 

  in 
    ke' + 0.0088 * a + 0.54 * a ** (2 / 3) 

 

alpha0 :: SimData -> Double 

alpha0 simData = 

  let 
    ia = irradiance simData $ (timeStep simData) 

    is = optIrradiance simData 

    ke' = ke simData 

    h = waterDepth simData 

  in 
    (ia / is) * e ** (-ke') 

 

alpha1 :: SimData -> Double 

alpha1 simData = 

  let 
    ia = irradiance simData $ (timeStep simData) 

    is = optIrradiance simData 

    ke' = ke simData 

    h = waterDepth simData 

  in 
    (ia / is) * e ** (-(ke' * 30)) 

 

omegaN :: SimData -> Double 

omegaN simData = 

  let 
    n = nutrientConcentration simData 

    ksn = saturation simData 

  in 
    n / (ksn + n) 
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Code in Fortran90 

module Init 

 

    integer, parameter :: dp = kind(0.d0) ! double precision 

    real(dp) :: pi = 3.14159265359 

 

    ! Simulation data structure 

    type :: SimData 

        real(dp) :: irradiance 

        real(dp) :: optIrradiance 

        real(dp) :: growRate 

        real(dp) :: theta 

        real(dp) :: waterTemp 

        real(dp) :: nutrientConcentration 

        real(dp) :: saturation 

        real(dp) :: extinctionCoefficient 

        real(dp) :: chlorophyll 

        real(dp) :: photoperiod 

        real(dp) :: waterDepth 

        real(dp) :: carbonToChloroRatio 

        real(dp) :: oxygenToCarbonRatio 

        real(dp) :: sinkingVelocity 

        real(dp) :: timeStep 

        real(dp) :: diffusivity0 

        real(dp) :: diffusivity1 

    end type SimData 

 

contains 
 

    !! 

    !! Utility functions 

    !! 

 

    ! Initialize random numbers 

    subroutine init_random_seed() 

        integer :: i, n, clock 

        integer, dimension(:), allocatable :: seed 

 

        call random_seed(size = n) 

        allocate(seed(n)) 

 

        call system_clock(count=clock) 

 

        seed = clock + 37 * (/ (i - 1, i = 1, n) /) 

        call random_seed(put = seed) 
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        deallocate(seed) 

    end 
 

    ! Gets random real numbers in the given range 

    real(dp) function nextReal(lower, upper) 

        real(dp), intent(in) :: lower, upper 

        real(dp) :: r 

 

        call random_number(r) 

 

        nextReal = lower + (upper - lower) * r 

    end function nextReal 

 

    !! 

    !! Equations 

    !! 

 

    real(dp) function pr(env, z) 

        type(SimData), pointer, intent(in) :: env 

        real(dp), intent(in) :: z 

        real(dp) :: aca, kgprime, h, a 

 

        aca = env%carbonToChloroRatio 

        kgprime = kg(env, z) 

        h = env%waterDepth 

        a = env%chlorophyll 

 

        pr = aca * kgprime * h * a 

    end function pr 

 

    real(dp) function p(env, z) 

        type(SimData), pointer, intent(in) :: env 

        real(dp), intent(in) :: z 

        real(dp) :: roc, aca, kgprime 

 

        roc = env%oxygenToCarbonRatio 

        aca = env%carbonToChloroRatio 

        kgprime = kg(env, z) 

 

        p = roc * aca * kgprime 

    end function p 

 

    real(dp) function zStep(env, z) 

        type(SimData), pointer, intent(in) :: env 

        real(dp), intent(in) :: z 
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        real(dp) :: wp, deltaTime, r, kprime 

 

        wp = env%sinkingVelocity 

        deltaTime = env%timeStep 

        r = 1 / 3.0_dp 

        kprime = k(env, z) 

 

        zStep = z - wp * deltaTime + rand * (2 * r ** (-1) * kprime * deltaTime) ** (1 / 2.0_dp) 

    end function zStep 

 

    real(dp) function k(env, z) 

        type(SimData), pointer, intent(in) :: env 

        real(dp), intent(in) :: z 

        real(dp) :: kbg, km, h 

 

        kbg = env%diffusivity0 

        km = env%diffusivity1 

        h = env%waterDepth 

 

        k = kbg + (km / 2.0_dp) * (1 - cos((2 * pi * z) / h)) 

    end function k 

 

    real(dp) function kg(env, z) 

        type(SimData), pointer, intent(in) :: env 

        real(dp), intent(in) :: z 

        real(dp) :: kg20, temp, ia, is, keprime, iek 

 

        kg20 = env%growRate 

        temp = env%waterTemp 

        ia = env%irradiance 

        is = env%optIrradiance 

        keprime = ke(env) 

        ! Formula simplification 

        iek = (ia * exp(1.0) ** (-(keprime * z))) / is 

 

        kg = kg20 * 1.066_dp ** (temp - 20) * (iek * e ** (-iek + 1)) * omegaN(env) 

    end function kg 

 

    real(dp) function kgAvg(env) 

        type(SimData), pointer, intent(in) :: env 

        real(dp) :: k20, temp, f, h, keprime, a0, a1, frac, subs 

 

        k20 = env%growRate 

        temp = env%waterTemp 

        f = env%photoperiod 

        h = env%waterDepth 
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        keprime = ke(env) 

        a0 = alpha0(env) 

        a1 = alpha1(env) 

        ! Formula simplifications 

        frac = (2.718_dp * f) / (keprime * h) 

        subs = e ** (-a0) - e ** (-a1) 

 

        kgAvg = kg20 * 1.066_dp ** (temp - 20) * (frac * subs) * omegaN(env) 

    end function kgAvg 

 

    real(dp) function ke(env) 

        type(SimData), pointer, intent(in) :: env 

        real(dp) :: keprime, a 

 

        keprime = env%extinctionCoefficient 

        a = env%chlorophyll 

 

        ke = keprime + 0.0088_dp * a + 0.54_dp * a ** (2 / 3_dp) 

    end function ke 

 

    real(dp) function alpha0(env) 

        type(SimData), pointer, intent(in) :: env 

        real(dp) :: ia, is, keprime, h 

 

        ia = env%irradiance 

        is = env%optIrradiance 

        keprime = ke(env) 

        h = env%waterDepth 

 

        alpha0 = (ia / is) * e ** (-keprime) 

    end function alpha0 

 

    real(dp) function alpha1(env) 

        type(SimData), pointer, intent(in) :: env 

        real(dp) :: ia, is, keprime, h 

 

        ia = env%irradiance 

        is = env%optIrradiance 

        keprime = ke(env) 

        h = env%waterDepth 

 

        alpha1 = (ia / is) * e ** (-(keprime * 30)) 

    end function alpha1 

 

    real(dp) function omegaN(env) 

        type(SimData), pointer, intent(in) :: env 
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        real(dp) :: n, ksn 

 

        n = env%nutrientConcentration 

        ksn = env%saturation 

 

        omegaN = n / (ksn + n) 

    end function omegaN 

 

    !! 

    !! Program logic 

    !! 

    subroutine simulate(env, timeSeconds) 

        type(SimData), pointer, intent(in) :: env 

        integer, intent(in) :: timeSeconds 

        real(dp) :: z, pVal 

        integer :: timeMs, elapsedTimeMs, timeStepMs, currentTimeMs 

 

        z = 0 

        pVal = 0 

 

        timeMs = timeSeconds * 1000 

        elapsedTimeMs = 0 

        timeStepMs = env%timeStep * 1000 

 

        open(unit = 1, file = "out/data0.txt") 

 

        do currentTimeMs = 0, timeMs, timeStepMs 

            z = zStep(env, z) 

            pVal = p(env, z) 

            write(1, *), pVal 

        end do 

 

        close(1) 

    end 

 

 

 

end module Init 

 

program Simulation 

 

    use Init 

    implicit none 
    ! Simulation test-case 

    type(SimData), pointer :: testData0 

    allocate(testData0) 
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    testData0%irradiance = 500 

    testData0%optIrradiance = 300 

    testData0%growRate = 2 

    testData0%theta = 1.066 

    testData0%waterTemp = 25 

    testData0%nutrientConcentration = 3 

    testData0%saturation = 2 

    testData0%extinctionCoefficient = 0.3 

    testData0%chlorophyll = 4 

    testData0%photoperiod = 0.5 

    testData0%waterDepth = 30 

    testData0%carbonToChloroRatio = 1 / 20.0 

    testData0%oxygenToCarbonRatio = 2.69 

    testData0%sinkingVelocity = 1E-3 

    testData0%timeStep = 1 

    testData0%diffusivity0 = 1E-6 

    testData0%diffusivity1 = 0.9E-6 

 

    ! Initialize 

    call init_random_seed() 

 

    ! Program Logic 

    call simulate(testData0, 12 * 3600) 

 

    ! Deallocate resources 

    deallocate(testData0) 

end program Simulation 
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