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Dynamical theory for modeling dipole-dipole interactions in a microcavity:
The Green dyadic approach

R. L. Hartman and P. T. Leung
Department of Physics, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751

~Received 29 May 2001; published 19 October 2001!

A dynamical theory for modeling the dipole-dipole interaction in a microcavity is formulated using the
Green dyadic approach. To our knowledge, this theory is one of the most general in many aspects of modeling
the phenomenon. It accommodates an arbitrary number of layers adjacent to the cavity, constant but arbitrary
dielectric properties within each layer, inclusion of retardation effects, arbitrary dipole orientations, and an
unlimited number of interacting dipoles. Numerical results for the emission properties of interacting molecular
dipoles in a microcavity are presented to illustrate the capability of the method.

DOI: 10.1103/PhysRevB.64.193308 PACS number~s!: 41.20.2q, 42.50.Fx

I. INTRODUCTION

It has been well known that molecular emission properties
can be significantly modified in the vicinity of a surface or
inside a microcavity.1 For example, recent studies have
shown that significant control of spontaneous emission2 and
Raman-scattering enhancement3 can be achieved from emit-
ting dipoles confined in planar metallic and semiconducting,
as well as dielectric microcavities. Theoretical studies of this
phenomenon have been extensive, including both classical
and quantum mechanical modeling, for both well-defined
~planar, spherical, etc.! and arbitrary geometrical
boundaries.4–8 Moreover, these modeling studies have con-
sidered most of the time a single~molecular! dipole interact-
ing with the multistack ‘‘environment.’’

Besides modified dipolar emission characteristics, recent
experimental studies have also shown significant surface or
cavity-induced effects on the dipole-dipole interaction be-
tween the molecules or particles confined to such a proxim-
ity. These studies include the observation of the surface-
mode-modified dipole-dipole interaction among adsorbed
silver nanoparticles,9 that of the enhanced energy-transfer
process between donors and acceptors,10 and that of the un-
ambiguous confirmation of enhanced nonradiative Forster
transfer between molecules confined in planar
microcavities.11 As Barnes and Andrew explained in their
commentary,12 such control of energy transfer is of high sig-
nificance and may lead to many and varied applications in
areas as diversified as photochemistry and optoelectronics.

There has also been a large number of theoretical works
on the modeling of dipole-dipole interaction for molecules
confined in the vicinity of planar surface or microcavities.
However, due to the complexity of the dynamics and geo-
metrical boundaries, most of these previous works were lim-
ited in some aspects. These limitations include, for example,
~i! the assumption of perfect conducting13 or realistic ~but
symmetrical! boundaries14 for the microcavity,~ii ! the limi-
tation to a single medium~of infinite extent! on each side of
the microcavity,13,14and~iii ! the modeling of a single pair of
interacting dipoles.13,14In addition, as pointed out in Ref. 10,
the total dynamical~retarded! dipole-dipole interaction has
not been fully accounted for in these previous works.

It is the purpose of this work to present a relatively pow-
erful method for the modeling of the interaction among the
molecular dipoles confined in a planar microcavity or photo-
nic band-gap material structure. This method will allow the
modeling in principle to incorporate any number of interact-
ing dipoles in arbitrary orientations, any number of ‘‘adja-
cent layers’’ of realistic dielectric properties on each side of
the microcavity, and the full incorporation of retardation ef-
fects. We will present the method and demonstrate its appli-
cability via numerical computations with respect to the ge-
ometry used in the experiment in Ref. 10. Though our
following theory is based on a classical phenomenological
approach, yet it is well known that this approach is as accu-
rate as a quantum-mechanical approach as long as one is
interested only in emission properties normalized to the free
decay rates of the molecules.4

II. THEORY

Let us refer to the geometry of Ref. 10 as depicted in Fig.
1, where a number of molecular dipoles are embedded in a
microcavity which is formed by a multistack reflector at the
bottom and a metallic superstrate at the top. Our approach is
to use the Green dyadic for solving Maxwell’s equations for
such a multilayer system which has been derived
previously.15 The calculation of the Green dyadic for a
multilayer system is a problem of high significance and has
been investigated extensively in the literature.16 The work we
base on has reformulated this problem in a slightly simpler
fashion, leading to more efficient numerical implementation.
Briefly, the dyadic for a multilayer system can be expressed
as follows:15

G~R,R8!5d~ j ,s!Gso~R,R8!1Gj~R,R8!, ~1!

whereR is contained in slabj, the current source atR8 is
contained in slabs, andd( j ,s) is the Kronecker delta. The
source termGso(R,R8) for a source in slabs takes the well-
known form17
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where the prime indicatesR8 dependence, the absence of a prime indicatesR dependence, andt indicates matrix transpose.
The functionshj5Akj

22l2, and thatM andN are defined as before,4,17 wherekj5vAm j« j denotes the wave number. In the
previous approach to calculate the scattering part ofG in Eq. ~1!, we have carried out the expansion by reassociating it with
the source current as follows:15
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Cl ,n,l, j[Fcl ,n,l, j
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f l ,n,l, j8 G ,
and the radiation boundary condition requires that, at the
slabsj 50 and j 5N,

cl ,n,l,05cl ,n,l,N8 5 f l ,n,l,05 f l ,n,l,N8 50. ~4!

Note that square-brackets will be used to exhibit matrices in
terms of their entries and that Eq.~3! contains products of
334 and 431 matrices. Also note that the vectorsM andN
in Eq. ~3! are functions ofR, whereasCl ,n,l, j and Fl ,n,l, j
depend on bothR andR8. By matching the boundary con-

ditions for the transverse fields, i.e., the continuity ofẑ
3E(R) and ẑ3“3E(R) at each interface, the coefficients
@Fl ,n,l, j

Cl ,n,l, j # can be obtained through some recursion relations.15

Note that the arbitrary current sourceJ is also contained in
@Fl ,n,l, j

Cl ,n,l, j # so thatGj can be extracted from Eq.~3!.

To apply the above result for the dyadic to our modeling
of the dipole-dipole interaction in the geometry of Fig. 1, let
us focus on one of the emitting molecular dipoles~dipoleX!
in the cavity. According to the classical phenomenological
approach,4 the frequency shift and decay rate of this dipole,
normalized to the free decay value, can be obtained in terms
of the real and imaginary parts of the total~excluding its
own! field E acting at the dipole site as~in SI units!:

Dv

g0
52

3p«0qns
2

p0ks
3 Re~E!, ~5!

g

g0
511

6p«0qns
2

p0ks
3 Im~E!, ~6!

whereq is the intrinsic quantum yield andks5nsv/c, with
ns the real refractive index of the medium containing the
dipole. Note thatp0 andv are the dipole moment and emis-
sion frequency of the molecule, and the only quantity needed
to be calculated in this model is the field acting onX, which
can be obtained from the Green dyadic equations~1!–~3! of
the problem as follows:

E~Rx!5 ivmE G~Rx ,R8!J~R8!dV~R8!, ~7!

wherem is the magnetic permeability for the vacuum, where
we have restricted ourselves to nonmagnetic media. To
model our problem as described in Fig. 1, we write the cur-
rent density in Eq.~7! in the form

J52(
i

ivpid~R82Ri !, ~8!

wherepi is the molecular dipole moment located atRi . Note
that a time dependence of the forme2 ivte2gt/2 has been

FIG. 1. Geometry of the multistack planar microcavity accord-
ing to Ref. 10. The cavity dimensionL and the designated dipoleX
are as labeled.
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assumed in Eqs.~7! and ~8!. Thus, using Eqs.~1!–~8! and
excluding the ‘‘self-field’’@i.e. contribution fromG0(Rx ,Rx)
in Eq. ~2!#, we can simulate the emission properties of the
specific dipoleX in the microcavity. Note that this coopera-
tive decay rate in Eq.~6! is directly linked to the energy-
transfer rate ofX to the other molecules as well as to the
cavity environment, and the frequency-shift in Eq.~5! re-
veals the interaction energy betweenX and the other mol-
ecules as well as the environment, when they are all confined
by the microcavity geometry.18 Furthermore, Eq.~8! implies
that this approach is very general and can include in prin-
ciple an arbitrary number of interacting dipoles randomly
oriented inside the microcavity.

III. NUMERICAL RESULTS

To demonstrate the capability of the above method, we
have computed Eqs.~5! and ~6! for the cases of two and
three dipoles interacting in the microcavity~Fig. 1!, respec-
tively. For each case, the emission properties of the desig-
nated dipoleX are calculated as a function of cavity dimen-
sion ~L! with all other parameters fixed. The emission
wavelength~612 nm! and the values for the dielectric con-
stants for various materials of the cavity are used in accord
with Ref. 10. Figures 2 and 3 show the results for the cases
when the two dipoles are parallel and perpendicular to the
cavity boundaries, respectively. From the results, the
‘‘cavity-resonance effect’’ can be clearly seen, and it is most
obvious in the parallel dipole case.13 In addition, the fre-
quency shifts of the designated dipoleX, which reveals the
dipole-dipole interaction within the cavity, are seen to de-
pend drastically on the dipole orientations. In this case we
obtain mostly blueshifts for parallel dipoles and redshifts for
perpendicular dipoles. This happens sinceX remains close to
one of the boundaries and the result is dominated by its own

image fields from this boundary~recall that a parallel dipole
has its image opposite while a perpendicular dipole has its
image along its own orientation18!. The result, however, is
sensitive to the location of this dipoleX relative to the cavity
boundary as well as to the other dipoles in the cavity. For
example, Fig. 4 shows the results for three parallel dipoles
with the X dipole located at the middle of the cavity and off
the axis joining the other two dipoles. In this case, we see
that even for dipoles oriented parallel to the cavity bound-
aries, redshifts in their emission frequencies can result upon
interaction with the other dipoles in the same cavity. We
want to remark that while the incorporation of a large num-
ber of dipoles is rather straightforward~though computation-
time consuming! in our present formalism, it is not clear if

FIG. 2. Results for two parallel dipoles located at (x,z)
5@0,(L1d)/2# and @0,(L2d)/2#, respectively, where d
5(emission wavelength in the PC medium)/2p. The one at@0,(L
1d)/2# is our designated dipoleX.

FIG. 3. Results for two perpendicular dipoles located at (0,L/2)
and (d,L/2), respectively, withX located at (d,L/2).

FIG. 4. Results for three parallel dipoles located at@0,(L
1d)/2#, @0,(L2d)/2#, and (d,L/2), respectively, withX located at
(d,L/2).

BRIEF REPORTS PHYSICAL REVIEW B 64 193308

193308-3



the same is true in the previous approaches appeared in the
literature.

IV. CONCLUDING REMARKS

We have thus in the above demonstrated how the Green
dyadic solution for a multilayer system can be applied to
model the interaction of a system of dipoles confined in a
planar microcavity. In particular, we have illustrated how a
complicated multistack structure and collection of dipoles
can be systematically simulated in this approach. As is clear
from the above, the results for the cooperative decay and
frequency shift are very sensitive to the presence of the cav-
ity and the other dipoles, consistent with the observations
reported previously in the literature.10–14Apparently, the re-
sponse function approach of Agarwal and Gupta14 can also
be generalized to such an extent for simulating an arbitrary

multilayer of planar geometry and a collection of arbitrary
dipoles, but it has yet to be carried out. At the completion of
our work, it came to our attention that in a very recent
paper,19 Bennettet al. have also applied the Green dyadic
approach to simulate interacting dipoles~up to two dipoles!
in a planar microcavity. However, their superlattice geometry
is restricted to a periodical system of infinitely many layers,
whereas our present formulation can accommodate a finite
number of stratified layers of irregular thickness. Hence we
believe our present approach has some usefulness in the
modeling of actual experimental situations such as those in
the experiment of Hopmeieret al.10
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