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ABSTRACT 
 
Fourier methods used in 2- and 3-dimensional image 
reconstruction can be used also in reconstructability analysis 
(RA).  These methods maximize a variance-type measure 
instead of information-theoretic uncertainty, but the two 
measures are roughly colinear and the Fourier approach 
yields results close to those of standard RA.  The Fourier 
method, however, does not require iterative calculations for 
models with loops.  Moreover the error in Fourier RA 
models can be assessed without actually generating the full 
probability distributions of the models; calculations scale 
with the size of the data rather than the state space.  State-
based modeling using the Fourier approach is also readily 
implemented.  Fourier methods may thus enhance the power 
of RA for data analysis and data mining. 
 
I. INTRODUCTION 
 
In reconstructability analysis (RA) applied to probabilistic 
systems, probability distributions for subsets of variables 
specified by a model are joined together to calculate a 
probability distribution for the full set of variables (Klir 
1985; Krippendorff 1986).  Similarly, in image 
reconstruction (IR) used in electron microscopy, 
tomography, and other areas, lower-dimensionality 
projections are combined to yield a full-dimensionality 
density function (Zwick & Zeitler, 1973).  This paper will 
show that Fourier techniques used in IR can be applied also 
to RA (and thus to log-linear modeling (Bishop et al 1978; 
Knoke & Burke 1980) which closely resembles RA). 
 
There are important differences between IR and RA.  IR 
treats continous density functions defined on interval scale 
variables in 2 or 3 spatial dimensions.  Projections arise 
from rotations of the object or of the imaging source, and 
are not mutually orthogonal.  RA, by contrast, considers 
probability distributions, defined on a discrete, in fact 
nominal, domain of higher dimensionality, and the 
projections are all mutually orthogonal.  Despite these 
differences, essentially the same task, namely composition 
of lower-dimensional projections to obtain a higher 
dimensional function, is accomplished in both areas. 

 
The Fourier method used in IR is as follows.  Since the 
Fourier transform of a projection of a distribution is a 
central section (a section passing through the origin) of the 
transform of the function, measured projections can be 
combined by calculating their transforms, collecting these 
sections together in Fourier space, and doing an inverse 
transform to obtain a function which has these projections. 
 
For a compact review of reconstructability analysis, see 
(Zwick, 2001).  RA comprises two problem types: 
reconstruction and identification.  Identification is the 
simpler of the two and closely resembles IR: the task is 
composition of a set of projections into a higher 
dimensionality distribution.  This is done by the “iterative 
proportional fitting” (IPF) algorithm, in which projections 
are sequentially imposed on a calculated distribution 
initialized as uniform.  Iterations of such impositions 
eventually converge on a distribution consistent with all 
projections.  Actually IPF is needed only for models with 
loops, since for models without loops algebraic (non-
iterative) solutions are available.  But most models, and 
virtually all complex models, have loops. 
 
Reconstruction, however, is the problem most commonly 
encountered in RA and is the focus of this paper.  The task 
here is to represent and approximate a distribution with a set 
of its lower dimensional projections.  Reconstruction thus 
consists of three steps: (a) projection, (b) composition, and 
(c) evaluation.  Projection yields the lower dimensionality 
distributions whose adequacy is being explored.  
Composition is done as in identification.  Evaluation 
assesses the difference between the computed IPF 
distribution and the observed distribution. 
 
The projection and evaluation steps of RA do not pose 
serious computational problems, as they scale with the size 
of the data and not the state space.  It is the composition step 
which poses the primary challenge, and this challenge is 
two-fold: (i) Many iterations are sometimes needed for IPF 
to converge, and (ii) IPF calculates probabilities for the 
entire state space, even when data are sparse.  The computer 
time and space requirements of IPF restricts the 
applicability of RA by severely limiting the number and 
cardinalities of the variables which can be considered. 
 
What motivates this paper is the observation that in IR, 
composition is accomplished in a single iteration: one 
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simply takes the Fourier transforms of all projections, 
collects together the resulting sections in frequency space, 
and performs the inverse Fourier transform.  (Computations 
are done efficiently by using the fast Fourier transform.)  If 
such a single-iteration method for composing projections 
were available in RA, it would enhance the power of RA for 
exploratory modeling.  It will be shown below that this is 
indeed possible.  Specifically, IR-type composition provides 
a single-iteration approximation to IPF, which can be used 
for rough searches through the lattice of possible models. 
 
This addresses only the first of the two difficulties posed by 
IPF, since Fourier composition also involves the entire state 
space.  It turns out, however, that back projection, a 
procedure equivalent to the Fourier approach, allows a 
“reduced” composition step to be done that calculates 
probabilities only for observed states.  If the IR 
approximation to standard RA is adequate, exploratory 
modeling with the IR approach can thus bypass both the 
time and space limitations of IPF. 
 
The IR approach also allows the easy implementation of 
state-based modeling, a variant of RA pioneered by Jones 
(1985a,b) and currently under further development (Johnson 
and Zwick 2000; Zwick and Johnson 2002).  This 
implementation however still scales with the state space and 
not the data. 
 
II. A SIMPLE 2-D FOURIER RA EXAMPLE 
 
To investigate whether the IR Fourier approach might be 
applied to RA, consider the 2-dimensional RA problem, for 
which there are only two possible models: AB, the 
“saturated” model (the data), and A:B, the “independence 
model.”  The simplest case occurs where variables are 
dichotomous (binary) and the AB distribution is a 2x2 
contingency table, as illustrated in Table 1(a).  This table 
requires 3 parameter values for its specification, which is 
the degrees of freedom (df) of AB; this is suggested by the 
shading of 3 (arbitrarily chosen) cells. 

Table 1. (a) Observed probability distribution, AB, and 
(b) independence model, A:B 

  B    B  
  0 1    0 1  
A 0 .1 .2 .3  0 .12 .18 .3 

 1 .3 .4 .7  1 .28 .42 .7 
  .4 .6    .4 .6  
   (a)     (b)  
 
The independence model, A:B, is the distribution, which is 
the product of the margins of AB, as shown in Table 1(b).  
Only 2 parameters (arbitrarily chosen and shown shaded), 
one in each projection, are needed to specify this model. 

The A:B distribution is the solution to the maximization of 
information-theoretic uncertainty subject to model 
constraints, i.e., to the problem: 
 
maximize U = - ΣΣ q(i,j) log q(i,j)   subject to 
 

Σ q(0,j)  = p(0,•) = .3  Σ q(1,j)  =  p(1,•) = .7 
Σ q(i,0)  = p(•,0) = .4 Σ q(i,1)  =  p(•,1) = .6 
ΣΣ q(i,j)  =  1 

 
where p(j,•) =  Σk p(j,k) and p(•,k) =  Σj p(j,k), and where p 
and q refer to the observed (AB) and calculated (A:B) 
distributions, respectively.  Although there are four 
projection equations, given the fifth equation which sets the 
sum of the probabilities to 1, there are only two linearly 
independent equations of constraint (one for each 
projection) hence df(A:B)=2.  As noted above, Table 1(b) is 
the maximum uncertainty distribution subject to the 
constraints of the A:B model.  It can also be generated 
directly as an algebraic function (here, the simple product) 
of the projections of the original distribution of Table 1(a).  
In general, however, and specifically for models with loops, 
one cannot derive the model distribution algebraically, and 
the IPF algorithm must be used. 
 
The IR Fourier method is applied to this problem as follows.  
The discrete 2-dimensional Fourier transform of p(j, k), 
where j=1,2,...Nj and k=1,2,...Nk) and where(J,K) are the 
indices in Fourier space corresponding to (j,k), is: 
 
P(J, K) =  Σj Σk p(j, k) exp [  2πi ( j J / Nj  + k K / Nk ) ] 
 
Extension to higher dimensions is straightforward.  From 
the theorem that the Fourier transform of a projection is a 
central section, the projections, p(j,•) and p(•,k) have for 
their Fourier transforms the central sections P(J,0) and 
P(0,K), respectively, as follows. 
 
Equation(1) Calculating central sections from projections 
 
P(J,0) = Σ p(j,•)  exp [ 2πi (  j J  / Nj ) ] 
P(0,K) = Σ p(•,k) exp [ 2πi ( k K / Nk ) ] 
 
The Fourier transform of p(j,•) ={.3, .7} is {1.0, -0.4}, since 
 
P(0,0) = .3 exp [2πi (0)(0)/ 2]  + .7 [exp 2πi (1)(0)/2]= 1.0 
P(1,0) = .3 exp [2πi (0)(1)/ 2]  + .7 [exp 2πi (1)(1)/2]= -0.4 
 
and the transform of p(•,k) = {.4, .6} is P(0,K) = {1.0, -0.2}.  
If one collects together these two central sections, one has in 
Fourier space the transform shown in Table 2 (the central 
sections are shaded). 
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Table 2. Central Fourier sections of Table 1(a) 

 0 1 
0 1.0 -0.2 
1 -0.4 0.0 
 
In the Fourier approach to RA, after collecting together the 
central sections dictated by the model, one then does an 
inverse Fourier transform to obtain the q distribution 
corresponding to these projections, as follows: 
 
Equation (2) Inverse transform of set of central sections: 
 
q(j,k)= ΣΣ[P(J,0)+P(0,K)]exp[-2πi (jJ/Nj+kK/Nk)]   – P(0,0) 
 
It would be natural to presume that the inverse transform of 
Table 2 would yield the independence model distribution of 
Table 1(b).  The origin term, 1.0, of the Fourier distribution 
corresponds to ΣΣ p(j,k) = 1.  By itself, this term generates 
the uniform distribution.  If one adds to this term the 
sections corresponding to the two projections, one might 
expect the result to be the maximally uniform distribution 
subject to the projections as constraints, i.e., Table 1(b). 
 
This expectation is not correct.  The inverse transform of 
Table 2 is Table 1(a) and not Table 1(b).  Table 2 is actually 
the full transform of Table 1(a), i.e., the non-central part of 
the transform of Table 1(a) is 0.  Table 1(a), the AB 
distribution which in standard RA exhibits non-zero 
constraint is fully specified in the Fourier approach by its 
projections.  By contrast, the Fourier transform of Table 
1(b), the independence model in standard RA, is shown in 
Table 3.  Its non-central Fourier coefficient is non-zero 
(0.08).  Thus, Table 2, the transform of a distribution with 
constraint seems to have df=2, while Table 3, the transform 
of a distribution without constraint seems to have df=3. 

Table 3. Fourier transform of Table 1(b) 

 0 1 
0 1.0 -0.2 
1 -0.4 0.08 
 
This anomaly is the result of the particular distribution 
chosen for analysis.  This example was in fact chosen to 
highlight the differences between the Fourier approach and 
standard RA.  Because the Fourier transform is a linear 
operation, the inverse transform of the collected sections 
yields, not the product of the projections as in standard RA, 
 
q(j,k)standard RA = p(j,•) p(•,k) 
 
but a scaled sum of them, sometimes referred to as the 
operation of “back-projection” (BP) 
 

Equation (3) Back-projection: 
 
q(j,k)Fourier RA  = p(j,•) / Nj   +   p(•,k) / Nk   -   1 / NjNk 
         A projection    B projection    origin correction 
 
Back projection is equivalent to implementing Equations (1) 
and (2) in one step by operating on the projections directly 
without actually doing any transform.  Note that if data were 
sparse, this equation could be used to evaluate q(j,k) only 
for those (j,k) which were actually observed; the entire state 
space of (j,k) would not have to be generated.  Applying BP 
to Table 2 yields Table 1(a), as follows: 

Table 4. Fourier composition of Table 1(a) from 
projections using BP (Equation (3)) 

.1 .2 = .15 .15 + .20 .30 - .25 .25 

.3 .4  .35 .35  .20 .30  .25 .25 
   p(j,•) / Nj  p(•,k) / Nk  1 / NjNk 
 
By contrast, the inverse transform of Table 3 yields Table 
1(b)  because of the extra contribution of the non-central 4th 
term (0.08) to the calculated distribution.  This contribution, 
 
  B 
  0 1 
A 0 +.02 -.02 

 1 -.02 +.02 
 
when added to Table 1(a), gives Table 1(b).  Consider Table 
5, which has the same projections as Table 1(a) and (b).  
Fourier reconstruction of Table 5 also yields Table 1(a). 

Table 5. A 2nd distribution with identical margins 

  B  
  0 1  
A 0 .30 .00 .3 

 1 .10 .60 .7 
  .4 .6  
 
The point of all this is that Table 1(a) and not Table 1(b) is 
the A:B “independence model” for the Fourier approach.  
The reason the Fourier method gives results different from 
standard RA is that while RA composition maximizes the 
uncertainty, - Σ q log q , the Fourier approach minimizes 
Σq2 , or, equivalently maximizes, - Σ q2.  Table 1(a) is the 
independence model in the Fourier approach because it is 
the maximum - Σ q2 distribution for the {.3, .7} and {.4, .6} 
margins.  Because of this, it is the reconstructed distribution 
when the data is Table 1(a) or Table 1(b) or Table 5.   
 
That the Fourier method minimizes Σ q2 subject to the 
model constraints can be seen more directly from the fact 
that, for Q the Fourier transform of q (and with proper 
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scaling), Σ |Q|2 =  Σ q2.  The model constraints give Q the 
central sections of P, which are the transforms of the 
projections included in the model, with all other coefficients 
in Q being 0.  Q thus embodies nothing beyond the model 
constraints and thus generates the minimum Σ q2. 
 

Figure 1. 1 - Σq2 is roughly linear with - Σ q log q.  The 
measures are plotted for all 114 models for the Ries Smith 
data (top) and linguistic data (bottom). 

Ries Smith data: 1 - & q^2   vs. -& q log q 
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Lingustic data: 1 - & q^2   vs.   - & q log q
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Although the Fourier approach does not maximize -Σq log q 
it might be usable for RA because the - Σ q2 it maximizes is 
roughly colinear with uncertainty.  This shown in Figure 1 
above which plots 1 - Σ q2 vs. - Σ q log q for all possible 4-
variable models for the Ries-Smith marketing data (Bishop 
et al 1978) and some linguistic data currently under 
investigation (Zwick and McCall 2002). 

A linear relationship is evident for both data sets, although 
the relationship is obviously stronger for the first data set 
(r=.99) than for the second (r=.84).  The generality and the 
factors which affect the strength of this colinearity need to 
be investigated further, both empirically and analytically.  
However, there are reasons to expect that this result is 
robust since 1 - Σ q2 is used in economics and ecology as an 
alternative to uncertainty to quantify diversity.  In 
economics the sum-squared measure is known as the 
Herfindahl index (Jacquemin & Berry, 1979).  Intuitively, if 
the total probability of 1 is divided into many small terms, 
the sum of their squares will be small, so 1 - Σq2 is a 
plausible measure of diversity (uncertainty).  Because of the 
rough colinearity of - Σ q log q and - Σ q2 , maximizing the 
latter expression is likely to give results close to maximizing 
the former expression when both maximizations have the 
same constraints.  So the Fourier approach has distinct 
promise for RA. 
 
III. METHODOLOGY OF FOURIER RA 
 
Structure Specification 
 
So far only a 2-dimensional example has been discussed.  
Consider the case of three variables, where the existence of 
structures (sets of relations) first arises, and where the 
Lattice of Relations and the Lattice of Structure are shown 
in Figure 2 and Figure 3, respectively.  (A “model” might be 
defined as a “structure” applied to data, but the distinction is 
subtle and this paper does not always insist on it.) 

Figure 2. Lattice of Relations for a 3-variable system 

 ABC  
   

AB AC BC 
   

A B C 
   
 Φ  

Figure 3. Lattice of Structures for 3-variable system 

ABC  
 

AB:AC:BC  
 

AB:AC AB:BC BC:AC 
 

AB:C AC:B BC:A 
 

A:B:C  
 
The Fourier model of ABC is its full 3-dimensional 
transform.  Next in the Lattice of Structures is AB:AC:BC.  
Its transform, Q, consists of sections, which are the 
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transforms of the AB, AC, and BC projections.  If the AB 
projection is written as p(A,B) and its Fourier transform as 
P(A,B), then the central section QAB:AC:BC(A,B,0) = P(A,B) 
contains the information on AB.  Similarly, the sections 
QAB:AC:BC(A,0,C) = P(A,C) and QAB:AC:BC(0,B,C) = P(B,C) 
contain the information on the AC and BC projections.  
Thus QAB:AC:BC(A,B,C) consists of a subset of coefficients 
from the full P(A,B,C) transform, namely those for which 
either A=0 or B=0 or C=0.  Thus 
 
QAB:AC:BC(A,B,C) = {P(A,B,0)}∪{P(A,0,C)}∪ {P(0,B,C)}. 
 
One can list the Fourier components for a model in terms of 
a “dual,” which indicates which central sections are to be 
included.  For example, the dual of AB:AC:BC is C:B:A, 
written in italics, which summarizes the condition that this 
model includes Fourier coefficients where C=0 or B=0 or 
A=0.  (The colon in C:B:A means this inclusive “or”.)   
Applying this to the full Lattice of Structures yields Table 6.  
The table is read as follows: a coefficient P(A,B,C) is 
included in a structure if the indicated zero condition 
defined by the dual holds for that coefficient. 
 
To show this in greater detail, Figure 4 represents P(J,K,L), 
the Fourier transform of the ABC distribution, p(j,k,l).  
Using the labels from this figure, the Fourier coefficients 
included in all structures are tabulated in Table 6.  The 
degrees of freedom for these structures are also listed.  

Figure 4. Fourier coefficients as model parameters. The 
numbers 0 to 7 label the Fourier coefficients, P(J,K,L), 
where variables are binary, i.e., J=0,1 and similarly for K 
and L.  For example, point 6 is P(1,1,1) and point 0 is 
P(0,0,0).  P(0,K,L), the central section which transforms 
p(•,k,l), contains points 0,1,2,3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fourier reconstruction is additive in a way that conventional 
RA is not.  A model is a set of relations.  If relation 1 has 
coefficient set s1 and relation 2 has coefficient set s2, then a 
model including both relations has coefficient set s1 ∪ s2.  
By virtue of this additivity models with loops do not require 
an iterative procedure to derive the calculated distribution. 

Table 6. Conditions for inclusion of P(A,B,C) coefficients 
in models.  A variable in the dual must be 0 for a 
coefficient to be included in the model. 

    coefficients included 
level structure dual df 0 1 2 3 4 5 6 7
0 ABC Φ 7 + + + + + + + +
1 AB:AC:BC C:B:A 6 + + + + + +  +
2.1 AB:AC C:B 5 + +  + + +  +
2.2 AB:BC C:A 5 + + + + + +   
2.3 AC:BC B:A 5 + + + + +   +
3.1 AB:C C:AB 4 + +   + +   
3.2 AC:B B:AC 4 +   + +   +
3.3 BC:A A:BC 4 + + + +     
4.1 A:B:C BC:AC:AB 3 + +  + +    
 
 
Degrees of Freedom 
 
Table 6 suggests that the degrees of freedom of a Fourier 
model is the number of coefficients in all of the central 
sections defined by the model minus 1, to omit the origin 
term which corresponds to the sample size for frequency 
distributions or to the sum of probabilities being 1.  
Actually, the calculation of df is a little more complicated.  
Fourier coefficients are in general complex, which suggests 
that the real and imaginary parts should contribute 2 degrees 
of freedom for each coefficient.  However, coefficients for 
transforms of real functions come in conjugate-symmetric 
pairs, where P(J) = P*(-J), where * means complex 
conjugate and J is in general a vector, so a pair of 
coefficients contributes 2 degrees of freedom.  When J = -J 
coefficients occur in singletons, which because of conjugate 
symmetry must be real, again contributing 1 degree of 
freedom per coefficient.  In Table 6 above, all coefficients 
are singletons, so the df calculation is trivial, but in general 
both pairs and singletons will occur. 
 
 
Model Error 
 
When the Fourier approach is used as an alternative RA 
framework, modeling any specific structure generates zero 
conditions from the dual of the structure.  These allow one 
to construct Q, the transform of the model, which, inverse-
transformed, yields q.  q can be assessed using either (a) the 
standard RA transmission, T(q) = Σ p log p/q or (b) the sum-
squared-error SSE = Σ ( p - q )2 = Σ ( P - Q )2, an error 
measure more naturally associated with the Fourier method.  
Only the coefficients absent in the model generate error, i.e., 
SSE = Σ ( P – Q )2 = Σomitted in Q  P2.  This means that SSE 
can be evaluated without generating q by taking the sum of 
squares of the omitted Fourier coefficients.  A Fourier-based 
RA search, using SSE to evaluate models, does not need to 
inverse transform Q into q. 

4 

0 

J 

K 1 

2 3 

5 

6 7 

L 
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Further, since contributions of missing coefficients to the 
error are mutually independent one from another, these 
errors do not have to be generated anew for every different 
model.  Instead, errors can be calculated and stored for 
every relation in the Lattice of Relations.  The error in any 
model can then be generated algebraically from these stored 
relation-SSEs.  Refer again to Figure 4 where the numbers 
0-7 represents the Fourier coefficients, P. The model 
AB:AC:BC includes all coefficients where A=0 or B=0 or 
C=0; its error is thus represented above by “6”, i.e., 
P(1,1,1).  This can be derived from the errors of the model’s 
component relations as follows: 
 
SSE(AB:AC:BC) = SSE(AB) +SSE(AC) +SSE(BC)  

  -SSE(A)-SSE(B)-SSE(C) +SSE(Φ) 
 

=+(2 3 6 7)+(1 2 5 6)+(4 5 6 7) 
   -(1 2 3 5 6 7)-(2 3 4 5 6 7)-(1 2 4 5 6 7)+(1 2 3 4 5 6 7) = 6 
 
where Φ is the uniform distribution model, generated from 
only the origin coefficient of the transform.  It seems likely 
(no proof is offered here), for relations in a model written as 
R1, R2, ..., where Rj ∩ Rk is the relation defined by variables 
common to Rj and Rk, that SSE can be written as follows: 
 
SSE(R1:R2:...) = Σ SSE(Rj)  

         - ΣΣ SSE(Rj ∩ Rk)+ΣΣΣ SSE(Rj∩Rk∩Rl) -... 
 
Model information computed from SSE is closely related to 
transmission-defined information, as follows: 
 
IFourier RA   = [SSE(A:B:C:D) - SSE(model)] / SSE(A:B:C:D) 
Istandard RA = [T(A:B:C:D)     - T(model) ]     / T(A:B:C:D) 
 
This is shown in Figure 5 which is based on the data used 
for Figure 1(top).  The figure shows, for every value of df, 
Istandard RA (circles) and IFourier RA (squares) for the highest 
information model using standard RA.  The Fourier results 
approximate the standard results, especially at high 
information.  This plot is closely related to Figure 1, since T 
is linear with U and SSE with Σq2: 
 
T(model) = U(model) – U(data) 
SSE(model) = Σomitted in Q  P2 = Σp2 -Σq2(model) 
 
Sparse data 
 
Defining parameters in Fourier space is an approach to RA 
model construction whose practicality depends on the data.  
In all the examples considered in this paper, the contingency 
table is full, in that each cell has a frequency greater than 1.  
This accords with the Chi-square rule of thumb that the 
sample size should ideally be at least about 5 times the 

number of states.  Where the data is sparse, however, 
Fourier transformation will spread the data throughout 
Fourier space.  For example, the transform of a gaussian is a 
gaussian, and if the gaussian gets narrower in distribution 
space, it gets broader in Fourier space.  Thus, Fourier 
representation of sparse data is likely to have higher df, 
which may defeat the goal of compression.  This issue is 
being investigated further.  Possibly, wavelet, as opposed to 
Fourier, transforms might be an alternative approach to 
modeling sparse data, since for sparse data, the global 
character of Fourier transforms may be disadvantageous, 
while the local character of wavelet transforms may be 
useful.  A wavelet approach to sparse data may need 
variable states to be relabeled and thus reordered to 
concentrate the data locally. 

Figure 5. Information of models using standard and 
Fourier RA (Ries Smith data) (A:B:C:D has df=5.) 
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Back Projection as an Alternative to IPF 
 
All this presumes that the Fourier coefficients, P, are the RA 
model parameters and that composition is done with 
Equation (2).  However, a “reduced” composition can be 
done with Back-Projection Equation (3), which operates on 
distributions (not Fourier coefficients).  If one wants only to 
screen models by evaluating T and thus needs only q values 
for observed states, this can be done with BP, which 
approximates IPF in a single iteration and, used for this 
purpose, scales with the data, not the state space. 
 
Note that Equation (3) can yield negative q values.  If the 
Fourier approach is used in RA only for model evaluations 
in exploratory searches, and not as a source of full q 
distributions, this may not be a problem; also, correctives 
are imaginable.  Still, this possibility is one which requires 
further theoretical and computational exploration. 
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IV. STATE-BASED MODELING 
 
The Fourier components need not be restricted to central 
sections.  One could choose, for a df = n model, the n 
biggest Fourier coefficients from the original transform.  
This amounts to the Fourier equivalent of the “state-based” 
modeling approach (Johnson and Zwick 2000; Zwick and 
Johnson 2002) derived from the “k-systems analysis” of 
Jones (1985a,b).  In state-based, as opposed to variable-
based, modeling, an RA model does not need to be defined 
in terms of complete projections (margins), but can instead 
be defined in terms of the probabilities of an arbitrary set of 
states (as long as the probabilities are linearly independent).  
Applying this notion to the Fourier approach to RA, models 
need not consist only of central sections but can be any set 
of Fourier coefficients. 
 
State-based modeling has a Lattice of Structures enormously 
greater than variable-based RA.  This poses the problem of 
how to search this lattice.  Jones (1985c) proposed a path-
dependent procedure: one selects the most information-rich 
state, the 2nd most information-rich given the prior selection 
of the 1st state, and so on.  Because of the path dependence 
of this algorithm, one cannot be sure that a state-based 
model, involving n states actually consists of the n most 
informative states.  This uncertainty disappears in the 
Fourier approach to state-based modeling in which a model 
is defined, not from central sections but by selecting Fourier 
coefficients from anywhere in the transform in descending 
order of magnitude.  For a model with df = n, one simply 
selects the n biggest coefficients.  The information content 
of such a state-based model will always be equal or superior 
to a df = n variable-based RA model.  
Figure 6. Fourier transform variable- and state-based 
models, compared to standard variable-based models. 
(Ries Smith data) 
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This is shown in Figure 6 which shows, for every df, the I 
for standard variable-based RA for the highest information 
model (diamonds).  On the same scale, I from transmissions 
of variable- and state-based models using Fourier transforms 
are also plotted.  Clearly, IVB-ft ≈ IVB-std but ISB-ft > IVB-std . 
 
While state-based modeling achieves greater compression 
than variable-based modeling, it has the disadvantage that 
Fourier coefficients are not as interpretable as a distribution 
and its projections.  This is especially so since the values of 
these coefficients depends upon the specific ordering of the 
states of the variables, but this ordering is arbitrary. 
 
The Fourier approach thus constitutes an alternative 
framework for doing state-based RA.  State-based RA, like 
variable-based RA, can also use Fourier ideas just by using 
Equation (3) of BP as an efficient approximation to IPF. 
 
V. SUMMARY 
 
This paper demonstrates that the Fourier approach of Image 
Reconstruction can be applied to Reconstructability 
Analysis.  Although Fourier reconstruction maximizes - Σq2, 
while standard RA maximizes - Σ q log q, the two objective 
functions are roughly colinear.  The Fourier approach can be 
used in a variety of ways: 
 

• This approach provides an alternative framework 
for RA.  Projections can be collected in Fourier 
space and composition done in a single inverse 
transform.  Calculated distributions can be 
evaluated with the standard T measure. 

 
• The search through the Lattice of Structures does 

not need to generate model distributions.  If SSE is 
used instead of T, model error can be assessed 
without inverse transformation by computing the 
error resulting from the omitted transform 
coefficients.  This can be generated directly from 
the set of relations included in the model. 

 
• One can use the Fourier approach more narrowly 

by simply replacing IPF with BP which is non-
iterative and, when used for the evaluation of a 
model statistic like T, does not rquire operations on 
the whole state space.  (Using BP to obtain a full q 
distribution, however, scales with the state space.) 

 
• State-based models, which can capture more 

information than variable based models of the same 
df, are also easily implemented.  There is no path-
dependence in Fourier state-based modeling, and 
the best model can easily be selected for every df 
value.  Alternatively, state based modeling can be 
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done in the usual way, but models might be fitted 
by BP, as an efficient approximation to IPF. 

 
Only a proof-of-concept of the Fourier approach to RA is 
provided here.  Theoretical and computational issues are 
still being explored.  This project is part of a larger effort in 
“discrete multivariate modeling” (Zwick, 2002), i.e., RA, 
which includes software development Willett and Zwick 
2002) that will eventually encompass the Fourier approach.  
Work so far, however, has demonstrated clearly that 
reconstructability analysis can be approached with Fourier 
techniques.  This is not surprising.  Walsh, Haar, and other 
transforms are routinely used in logic design and machine 
learning, and methods in these fields overlap set-theoretic 
(crisp possibilistic) reconstructability analysis.  Roughly 
speaking, the use proposed here of Fourier transforms in 
probabilistic RA parallels the use of the above discrete 
transforms in crisp possibilistic RA. 
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