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Abstract

Due to its wide range of applications, the topic of the distribution theory of convolutions of

Gamma random variables has attracted the attention of many researchers. In this paper we review

some of the latest developments on this problem.

Keywords Convolution; dispersive order; majorization; right spread order; skewness; star order.

1 Introduction

The convolution of independent random variables has attracted considerable attention in the literature
due to its typical applications in many applied areas. For example, in reliability theory, it is used to
study the lifetimes of redundant standby systems with independent components (cf. Bon and Pǎltǎnea
[6]); in actuarial science, it is used to model the total claims on a number of policies in the individual
risk model (cf. Kaas, et al. [10]); in nonparametric goodness-of-fit tests, the limiting distributions of
U-statistics are the convolutions of independent random variables (cf. Serfling [25], Section 5.2). As
another example, let Xi denote the random value of ith shock on a system, then if the convolutions of a
number of Xi’s exceed the threshold of the system, then the system fails (cf. Marshall and Olkin [23]).
Therefore, study of lifetime of an standby system or a cumulative damage threshold model is based on
stochastic properties of convolutions of random variables.

The gamma distribution is one of the most popular distributions in statistics, engineering and reli-
ability applications. In particular, gamma distribution plays a prominent role in actuarial science since
most total insurance claim distributions have roughly the same shape as gamma distributions: skewed
to the right, non-negatively supported and unimodal (cf. Furman [9]). As is well known, the gamma
distribution includes exponential and chi-square, two important distributions, as special cases. Due to
the complicated nature of the distribution function of gamma random variable, most of the work in the
literature discusses only the convolutions of exponential random variables. Some relevant references are
Khaledi [12], Boland, et al. [5], Kochar and Ma [15], Bon and Pǎltǎnea [6], Zhao and Balakrishnan [29]
and Kochar and Xu [17].
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Let X1, . . . , Xn be a random sample from a gamma distribution with shape parameter a > 0, scale
parameter λ > 0 and with density function

f(x) =
λa

Γ(a)
xa−1 exp {−λx} , x ≥ 0.

We are interested in studying the stochastic properties of statistics of the form

W = θ1X1 + θ2X2 + . . . + θnXn,

were θ1, . . . , θn are positive weights (constants). Bock, et al. [4] showed that for n = 2, if

t ≤ a(θ1 + θ2)
λ

,

then P (W ≤ t) is Schur-convex in (θ1, θ2); and if

t ≥ (a + 1/2)(θ1 + θ2)
λ

,

then P (W ≥ t) is Schur-convex in (θ1, θ2). For general n > 2, P (W ≤ t) is Schur-convex in the region{
θ : min

1≤i≤n
θi ≥ tλ

na + 1

}
,

where θ is the vector of (θ1, . . . , θn), and P (W ≥ t) is Schur-convex in θ for

t ≥ (na + 1)(θ1 + θ2 + . . . + θn)
λ

.

Diaconis and Perlman [7] further studied the tail probabilities of convolution of gamma random
variables. They pointed out that if

(θ1, · · · , θn)
m� (θ′1, · · · , θ′n) (1.1)

then

Var

(
n∑

i=1

θiXi

)
≥ Var

(
n∑

i=1

θ′iXi

)
,

where
m� means the majorization order (see Definition 3.1).

This property states that if the weights are more dispersed in the sense of majorization, then the
convolutions are more dispersed about their means as measured by their variances. Diaconis and Perlman
[7] also wondered whether

∑n
i=1 θiXi is more dispersed than

∑n
i=1 θ′iXi as measured by the stronger

criterion of their tail probabilities. They tried to answer this question by proving that under the condition
(1.1), the distribution functions of

∑n
i=1 θiXi and

∑n
i=1 θ′iXi have only one crossing. However, they only

proved this result for n = 2. For n ≥ 3, they required further restrictions. Hence, this problem has been
open for a long time, which is also known as Unique Crossing Conjecture.

The rest of paper is organized as follows. In Section 2, we first review some stochastic orders and
majorization orders. In Section 3, we investigate the crossing properties of two convolutions of gamma
random variables under various conditions on the parameters for n = 2. In Section 4, we establish the
right spread ordering between two convolutions of independent gamma random variables for arbitrary n.
We conclude our discussion with some remarks in the last Section.
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2 Preliminaries

In this section, we will review some notions of stochastic orders and majorization orders.

Assume the positive random variables X and Y have distribution functions F and G, survival functions
F̄ = 1−F and Ḡ = 1−G, density functions f and g, and failure rate functions rX = f/F̄ and rY = g/Ḡ,
respectively. The following orders are usually used to compare the magnitude of random variables.

Definition 2.1 X is said to be smaller than Y in the

(i) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x;

(ii) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x;

(iii) stochastic ordering (denoted by X ≤st Y ) if F (x) ≤ G(x) for every x.

(iv) mean residual life order, denoted by X ≤mrl Y , if∫ ∞

t

F̄ (x)dx

F̄ (t)
≤

∫ ∞

t

Ḡ(x)dx

Ḡ(t)
.

It is known that (cf. Shaked and Shanthikumar [26]),

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y ⇒ EX ≤ EY,

and

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ EX ≤ EY.

The following order, called the dispersive order, is used to compare the variabilities of two random
variables.

Definition 2.2 X is said to be less dispersed than Y (denoted by X ≤disp Y ) if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α)

for all 0 < α ≤ β < 1.

A weaker order called the right spread order has also been proposed to compare the variabilities of
two distributions (cf. Fernández-Ponce, et al. [8]).

Definition 2.3 X is said to be less right spread than Y (denoted by X ≤RS Y ) if∫ ∞

F−1(p)

F̄ (x) dx ≤
∫ ∞

G−1(p)

Ḡ(x)dx, for all 0 ≤ p ≤ 1.

It is known that
X ≤disp Y =⇒ X ≤RS Y =⇒ Var(X) ≤ Var(Y ).

Bagai and Kochar (1986) proved the following result.

Theorem 2.1 If X ≤disp Y and F or G is IFR (increasing failure rate), then X ≤hr Y .
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Definition 2.4 X is said to be smaller than Y in the star order, denoted by X ≤� Y (or F ≤� G) if
G−1F (x)/x is increasing in x on the support of X, where G−1 is the right continuous inverse of G.

It is known that if X ≤� Y , then F (x) crosses G(θx) at most once and from above as x increases
from 0 to ∞, for each θ > 0. If X ≤� Y , then Y is more skewed than X as explained in Marshall and
Olkin [23]. The star order is also called more IFRA (increasing failure rate in average) order in reliability
theory for reason explained below. The average failure of F at x is

r̃X(x) =
1
x

∫ x

0

rX(u)du =
− ln F̄ (x)

x
.

Thus F ≤� G can be interpreted in terms of average failure rates as

r̃X(F−1(u))
r̃Y (G−1(u))

=
G−1(u)
F−1(u)

being increasing in u ∈ (0, 1). A random variable X is said to have an IFRA distribution if its average
failure rate r̃X(x) is increasing. Note that X has an IFRA distribution if and only if F is star-ordered
with respect to exponential distribution.

Definition 2.5 X is said to be more NBUE (new better than used in expectation) than Y or X is
smaller than Y in the NBUE order (written as X ≤NBUE Y ) if

1
μF

∫ ∞

F−1(u)

F̄ (x)dx ≤ 1
μG

∫ ∞

G−1(u)

Ḡ(x)dx, for all u ∈ (0, 1],

where μF (μG) denotes the expectation of X(Y ).

It has been shown in Kochar [14] that

X ≤� Y =⇒ X ≤NBUE Y =⇒ X ≤Lorenz Y,

where ≤Lorenz means the Lorenz order, a well-known order in economics. It is also known that (Marshall
and Olkin [23], p. 69),

X ≤Lorenz Y =⇒ γX ≤ γY ,

where γX =
√

Var(X)/E(X) denotes the coefficient of variation of X. A good discussion of those orders
can be found in Barlow and Proschan [3], Marshall and Olkin [23] and Shaked and Shanthikumar [26].

When E(X) = E(Y ), the order ≤RS is equivalent to the order ≤NBUE. However, they are distinct
when E(X) �= E(Y ). For more details, please refer to Kochar et al. [16].

We will also use the concept of majorization in the following discussion. Let {x(1), x(2), · · · , x(n)}
denote the increasing arrangement of the components of the vector x = (x1, x2, · · · , xn).

Definition 2.6 The vector x in R
+n is said to majorize the vector y in R

+n (denoted by x
m� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i)

for j = 1, · · · , n − 1 and
∑n

i=1 x(i) =
∑n

i=1 y(i).

Relaxing the equality condition gives the following weak majorization order.
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Definition 2.7 The vector x in R
+n is said to weakly submajorize the vector y in R

+n (denoted by
x�wy) if

j∑
i=1

x[i] ≥
j∑

i=1

y[i]

for j = 1, · · · , n, where {x[1], x[2], · · · , x[n]} denotes the decreasing arrangement of the components of the
vector x = (x1, x2, · · · , xn).

For extensive and comprehensive details on the theory of the majorization order and its applications,
please refer to Marshall and Olkin [22].

Another interesting weaker order related to the majorization order introduced by Bon and Pǎltǎnea
[6] is the p-larger order.

Definition 2.8 A vector x in R
+n is said to be p-larger than another vector y in R

+n (denoted by

x
p

� y) if
j∏

i=1

x(i) ≤
j∏

i=1

y(i), j = 1, · · · , n.

Zhao and Balakrishnan [29] introduced the following order of reciprocal majorization.

Definition 2.9 A vector x in R
+n is said to reciprocally majorize the another vector y in R

+n (denoted

by x
rm� y) if

j∑
i=1

1
x(i)

≥
j∑

i=1

1
y(i)

, j = 1, · · · , n.

It has been pointed out in Kochar and Xu [17] that,

x
m� y =⇒ x

p

� y =⇒ x
rm� y.

3 Magnitude and dispersive orderings between convolutions of

gamma random variables

Let X1, . . . , Xn be independent exponential random variables with Xi having hazard rate λi, i = 1, . . . , n,
and Y1, . . . , Yn be another set of independent exponential random variables with Yi having hazard rate λ′

i,
i = 1, . . . , n. Boland, El-Neweihi and Proschan [5] showed that under the condition of the majorization
order,

(λ1, · · · , λn)
m� (λ′

1, · · · , λ′
n) =⇒

n∑
i=1

Xi ≥lr

n∑
i=1

Yi.

Under the same condition, Kochar and Ma [15] proved that

(λ1, · · · , λn)
m� (λ′

1, · · · , λ′
n) =⇒

n∑
i=1

Xi ≥disp

n∑
i=1

Yi. (3.1)

This topic has been extensively investigated by Bon and Pǎltǎnea [6]. They pointed out that, under the
p-larger order, which is a weaker order than the majorization order,

(λ1, · · · , λn)
p

� (λ′
1, · · · , λ′

n) =⇒
n∑

i=1

Xi ≥hr

n∑
i=1

Yi.
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This result has been strengthened by Khaledi [12] as

(λ1, · · · , λn)
p

� (λ′
1, · · · , λ′

n) =⇒
n∑

i=1

Xi ≥disp

n∑
i=1

Yi. (3.2)

More recently, Zhao and Balakrishnan [29] proved that, under the condition of reciprocal order,

(λ1, · · · , λn)
rm� (λ′

1, · · · , λ′
n) =⇒

n∑
i=1

Xi ≥mrl

n∑
i=1

Yi. (3.3)

The result (3.1) of Kochar and Ma [15] can be immediately extended to convolutions of Erlang random
variables as follows.

Theorem 3.1 Let Xλ1 , . . . , Xλn
be independent random variables such that for i = 1, . . . , n, Xλi

has
gamma distribution with scale parameter λi and a common shape parameter a which is an integer such
that a ≥ 1. Then

λ
m� λ∗ =⇒

n∑
i=1

Xλi
≥disp

n∑
i=1

Xλ∗
i
. (3.4)

Korwar [21] generalized Theorem (3.1) to the case of a ≥ 1. Khaledi and Kochar [13] strengthened this
result with majorization replaced by p-larger ordering in (3.1).

Theorem 3.2 Let Xλ1 , . . . , Xλn
be independent random variables such that Xλi

has gamma distribution
with shape parameter a ≥ 1 and scale parameter λi, for i = 1, . . . , n. Then,

λ
p

� λ∗ ⇒
n∑

i=1

Xλi
≥disp

n∑
i=1

Xλ∗
i
. (3.5)

The following result is an immediate consequence of Theorem 3.2, Theorem 2.1 and the fact that
convolutions of IFR distributions are IFR.

Corollary 3.1 Let Xλ1 , . . . , Xλn
be independent random variables such that Xλi

has gamma distribu-
tion with shape parameter a ≥ 1 and scale parameter λi, for i = 1, . . . , n. Then,

λ
p

� λ∗ ⇒
n∑

i=1

Xλi
≥hr

n∑
i=1

Xλ∗
i
. (3.6)

Since (λ1, λ2, . . . , λn)
p

� (λ̃, λ̃, . . . , λ̃), where λ̃ is the geometric mean of the λi’s, the following lower
bounds on various quantities of interest associated with convolutions of gamma random variables are
given next.

Corollary 3.2 Let Xλ1 , . . . , Xλn
be independent random variables such that Xλi

has gamma distribu-
tion with shape parameter a ≥ 1 and scale parameter λi, for i = 1, . . . , n. Then,
(a)

∑n
i=1 Xλi

≥disp

∑n
i=1 Yi

(b)
∑n

i=1 Xλi
≥hr

∑n
i=1 Yi which implies

(c)
∑n

i=1 Xλi
≥st

∑n
i=1 Yi,

where Y1, · · · , Yn is a random sample from a Gamma distribution with shape parameter a ≥ 1 and scale
parameter λ̃, the geometric mean of λi’s.
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This result leads to better bounds for measures of variability for
∑n

i=1 Xλi
by replacing λ’s by their

geometric mean. On the other hand the bounds given by Korwar [21] uses arithmetic mean λ =
∑n

i=1 λi

instead of the geometric mean on the right hand sides of the above inequalities.
In Figures 2.2.1 and 2.2.2, we plot the distribution functions of convolutions of two independent gamma

random variables along with the bounds given by Corollary 3.2 (c) and by Korwar (2002). In Figures
2.2.3 and 2.2.4, we plot the hazard functions of convolutions of two independent gamma random variables
along with the bounds given by Corollary 3.2 (b) and by Korwar (2002). The vector of parameters in
Figures 2.2.1 and 2.2.3 is λ1 = (1, 2) and that in Figures 2.2.2 and 2.2.4 is λ2 = (0.25, 2.75). Note that

λ2

m� λ1. It appears from these figures that the improvements on the bounds are relatively more if λi’s
are more dispersed in the sense of majorization. The fact that this is true follows because the geometric
mean is Schur concave whereas the arithmetic mean is Schur constant and the distribution (hazard rate)
of convolutions of i.i.d. gamma random variables with common parameter λ̃ is decreasing (increasing) in
λ̃.
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Figure 2.2.1. Graphs of distribution functions of S(λ1, λ2)
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Figure 2.2.2. Graphs of distribution functions of S(λ1, λ2)
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Figure 2.2.3. Graphs of hazard rates of S(λ1, λ2)
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Figure 2.2.4. Graphs of hazard rates of S(λ1, λ2)

The following result due to Amiri, Khaledi and Samaniego [1], is a generalization of Theorem 4.1 of
Zhao and Balakrishnan [29] and Corollary 3.8 in Kochar and Xu [17] from convolutions of independent
exponential distributions to convolutions of gamma distributions with common shape parameters a ≥ 1.

Theorem 3.3 Let Xλ1 , . . . , Xλn
be independent random variables such that Xλi

has gamma distribution
with shape parameter a ≥ 1 and scale parameter λi, for i = 1, . . . , n. Then,

(λ1, . . . , λn)
rm� (λ∗

1, . . . , λ
∗
n) =⇒

n∑
i=1

Xλi
≥mrl

n∑
i=1

Xλ∗
i
.

Corollary 3.3 Let Xλ1 , . . . , Xλn
be independent random variables such that Xλi

has gamma distribu-
tion with shape parameter a ≥ 1 and scale parameter λi, for i = 1, . . . , n and Y1, . . . , Yn be a random
sample from a gamma distribution with shape parameter a ≥ 1 and scale parameter λH , where λH is
harmonic mean of λi’s. Then,

(λ1, . . . , λn)
rm� (λ∗

1, . . . , λ
∗
n) =⇒

n∑
i=1

Xλi
≥mrl

n∑
i=1

Yi.

This corollary provide a computable lower bound on mrl function of convolutions of gamma random
variables which is sharper than those that can be obtained from Theorem 3.4 of Korwar [21] in terms
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of arithmetic mean and from Corollary 2.2 of Khaledi and Kochar [13] in terms of geometric mean of
λi’s. To justify these observations, in Figures 2.3.1 and 2.3.2 we plot the mean residual life functions
of convolutions of two independent gamma random variables with bound given in terms of arithmetic
mean, geometric mean and harmonic mean of λi’s. In Figure 2.3.1, we plot the mean residual functions
for λ1 = 3.6 and λ2 = 0.4.

0 1 2 3 4

1

2

3

4

5

6

m�t;.72,.72�

m�t;1.2,1.2�

m�t;2,2�

m�t;3.6,.4�

Figure 2.3.1. Mean residual function of convolutions of gamma random variables

We also plot the mean residual life functions of convolutions independent gamma random variables for
different sets of λi’s

(2, 6)
rm� (5.2, 2.4)

rm� (3, 6)
rm� (4, 4)

that shows that how rm ordering between λi’s will affect the mean residual life function of convolutions
of gamma random variables.
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Figure 2.3.2. Mean residual function of convolutions of gamma random variables

Mi, Shi and Zhou [24] studied linear combinations of independent gamma random variables with
different integer shape parameters (i.e., Erlang random variables). They established likelihood ratio
ordering between two linear combinations of Erlang random variables under some restrictions on the
coefficients and shape parameters. It is interesting to note that Yu [27] proved that

n∑
i=1

βiXi ≥st

n∑
i=1

βXi ⇐⇒
n∏

i=1

βai
i ≥

n∏
i=1

βai , (3.7)

where β, βi ∈ R+, and Xi’s are gamma random variables Γ(ai, λ) for i = 1, . . . , n, respectively.

Kochar and Xu [20] gave the following equivalent characterization of stochastic ordering between two
linear combinations of independent gamma random variables.

Lemma 3.1 Let X1 and X2 be independent gamma random variables Γ(a1, λ) and Γ(a2, λ), respectively.
If β(2)/β(1) ≥ β′

(2)/β′
(1), then the following statements are equivalent:

(a) βa1
(1)β

a2
(2) ≥ β′a1

(1)β
′a2
(2);

(b) β(1)X1 + β(2)X2 ≥st β′
(1)X1 + β′

(2)X2.

They also proved following result, which recovers Theorem 3.3 in Zhao [28]

Theorem 3.4 Let X1, . . . , Xn be independent gamma random variables Γ(a1, λ), . . . ,Γ(an, λ), respec-
tively. If 1 ≤ a1 ≤ a2 ≤ . . . ≤ an, then

(log(β1), · · · , log(βn))�w (log(β′
1), · · · , log(β′

n)) =⇒
n∑

i=1

β(i)Xi ≥disp

n∑
i=1

β′
(i)Xi.
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4 Star ordering between convolutions of gamma random vari-

ables

Kochar and Xu [17] proved the following result on convolutions of exponential random variables.

(
1
λ1

, . . . ,
1
λn

)
m� (

1
λ∗

1

, . . . ,
1
λ∗

n

) ⇒
n∑

i=1

Eλi
≥�

n∑
i=1

Eλ∗
i
, (4.1)

where Eλi
, i = 1, . . . , n is exponential random variable with hazard rate λi and 
 order stands for NBUE

and Lorenz order. For more details of Lorenz order the reader is referred to section 3.A. in Shaked and
Shanthikumar (2007).

Let Xθ1 , Xθ2 , Xθ′
1

and Xθ′
2

be independent gamma random variables with a common shape parameter
a and scale parameters θ1 = 1/λ1, θ2 = 1/λ2, θ′1 = 1/λ′

1 and θ′2 = 1/λ′
2, respectively. Proposition 2.1 of

Diaconis and Perlman [7] shows that if

(λ1, λ2)
m� (λ′

1, λ
′
2),

then the distribution function of Xθ1 + Xθ2 crosses that of of Xθ′
1
+ Xθ′

2
exactly once.

In this section, it will be shown that under various conditions on the scale parameters, one can
establish star ordering between convolutions of gamma random variables .

Recently, Kochar and Xu [18] studied the problem of comparing the skewness of linear combinations
of independent gamma random variables. Let X1 and X2 be independent and identically distributed
gamma random variables Γ(a, λ). They proved that for (βi, β

′
i) ∈ R

2
+, i = 1, 2, if either

(β1, β2)
m� (β′

1, β
′
2) (4.2)

or (
1
β1

,
1
β2

)
m�
(

1
β′

1

,
1
β′

2

)
(4.3)

then
β1X1 + β2X2 ≥� β′

1X1 + β′
2X2, (4.4)

where ≥� denotes the star order, and
m� denotes the majorization order. Amiri, et al. [1] also indepen-

dently proved the above results when a ≥ 1. These results are closely related to a result of Yu [27], who
proved that, for βi ∈ R+,

n∑
i=1

βiXi ≥�

n∑
i=1

Xi, (4.5)

where Xi’s are gamma random variables Γ(ai, λ) for i = 1, . . . , n, respectively. These results reveal that
if the coefficients are more dispersed, then the linear combinations are more skewed as compared by star
ordering.

This topic is further pursued by Zhao [28] who extended the results of Eqs (4.2) - (4.4) to the case of
independent gamma random variables with different shape parameters. More precisely, let X1 and X2 be
independent gamma random variables Γ(a1, λ) and Γ(a2, λ). Zhao (2011) proved that, for β1 ≤ β2 and
β′

1 ≤ β′
2,

(β1, β2)
m� (β′

1, β
′
2) =⇒ β1X1 + β2X2 ≥� β′

1X1 + β′
2X2, (4.6)

11



and if β1 ≤ β2, β′
1 ≤ β′

2, and a1 ≤ a2, then,(
1
β1

,
1
β2

)
m�
(

1
β′

1

,
1
β′

2

)
=⇒ β1X1 + β2X2 ≥� β′

1X1 + β′
2X2. (4.7)

Kochar and Xu [19] gives a different sufficient condition on the scale parameters of the convoluting
gamma random variables for star ordering to hold.

Theorem 4.1 Let Xθ1 , Xθ2 , Xθ′
1
, Xθ′

2
be independent gamma random variables with a common shape

parameter a and scale parameters θ1 = 1/λ1, θ2 = 1/λ2, θ′1 = 1/λ′
1 and θ′2 = 1/λ′

2. Then,

(λ1, λ2)
m� (λ′

1, λ
′
2) =⇒ Xθ1 + Xθ2 ≥� Xθ′

1
+ Xθ′

2
.

Remark: Theorem 4.1 implies that the distribution function of Xθ1 + Xθ2 crosses that of Xθ′
1
+ Xθ′

2

at most once, no matter how Xθ1 + Xθ2 is scaled. As a special case, they have exactly one crossing when
both sides have the same mean which strengthens Proposition 2.1 in Diaconis and Perlman [7].

Recently Kochar and Xu [20] has given a new sufficient condition for ordering the skewness of linear
combinations of two independent gamma random variables with arbitrary shape parameters and this
result unifies the previous results on this topic as given above.

Theorem 4.2 Let X1 and X2 be independent gamma random variables Γ(a1, λ) and Γ(a2, λ), respec-
tively. Then,

β(2)

β(1)
≥

β′
(2)

β′
(1)

=⇒ β(1)X1 + β(2)X2 ≥� β′
(1)X1 + β′

(2)X2,

where {β(1), β(2)} denotes the increasing arrangement of the components of the vector (β1, β2) ∈ R
2
+.

Remark 1: The condition given in the Theorem 4.2 is very general. It is weaker than any of the following
conditions, which are commonly used in the literature:

(a) (β1, β2)
m� (β′

1, β
′
2);

(b) (log(β1), log(β2))
m� (log(β′

1), log(β′
2));

(c) (1/β1, 1/β2)
m� (1/β′

1, 1/β′
2).

Remark 2: Conditions (a) and (c) have been used to prove Theorems 4.2 and 4.3 in Zhao [28] (see
also Eqs. (4.6) and (4.7)). The proof of Theorem 4.2 of Zhao [28] is quite involved. However, it follows
immediately from Remark 1.

5 Right spread order between linear combinations of gamma

random variables

Amiri et al [1] proved the following result on RS ordering between convolutions of gamma random
variables with a common shape parameter.

Theorem 5.1 Let Xλ1 , . . . , Xλn
be independent random variables such that Xλi

has gamma distribution
with shape parameter a ≥ 1 and scale parameter λi, for i = 1, . . . , n. Then,

(λ1, . . . , λn)
rm� (λ∗

1, . . . , λ
∗
n) =⇒

n∑
i=1

Xλi
≥RS

n∑
i=1

Xλ∗
i
.
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Theorem 5.1 generalizes Corollary 3.9 of Kochar and Xu [17] from convolutions of independent Erlang
distributions to convolutions of gamma distributions with common shape parameters a ≥ 1.

Now we consider the case when the shape parameters of the Gamma random variables are not neces-
sarily equal. The first result (cf. Kochar and Xu [20]) gives the following characterization of right spread
order for linear combinations of two gamma random variables.

Lemma 5.1 Let X1 and X2 be independent gamma random variables Γ(a1, λ) and Γ(a2, λ), respectively.
If β(2)/β(1) ≥ β′

(2)/β′
(1), then the following statements are equivalent:

(a) β(1)a1 + β(2)a2 ≥ β′
(1)a1 + β′

(2)a2;

(b) β(1)X1 + β(2)X2 ≥RS β′
(1)X1 + β′

(2)X2.

Proof: It follows from Theorem 4.3 in Fernández-Ponce, et al. [8] that for two nonnegative random
variables X and Y , if X ≤� Y , then

EX ≤ EY ⇐⇒ X ≤RS Y.

It follows from Theorem 4.2 that under the given assumption

β(1)X1 + β(2)X2 ≥� β′
(1)X1 + β′

(2)X2.

Hence,
β(1)X1 + β(2)X2 ≥RS β′

(1)X1 + β′
(2)X2

is equivalent to
E
(
β(1)X1 + β(2)X2

) ≥ E
(
β′

(1)X1 + β′
(2)X2

)
.

So, the required result follows.

Remark: Theorem 4.5 in Zhao [18] states that if 1 ≤ a1 ≤ a2, then

(β1, β2)�w (β′
1, β

′
2) =⇒ β(1)X1 + β(2)X2 ≥RS β′

(1)X1 + β′
(2)X2.

Lemma 5.1 removes the restriction on the shape parameters.

As a direct consequence, we have the following result.

Corollary 5.2 Let X1 and X2 be independent gamma random variables Γ(a1, λ) and Γ(a2, λ), respec-
tively. Then,

(β1, β2)
m� (β′

1, β
′
2) =⇒ β(1)X1 + β(2)X2 ≥RS β′

(1)X1 + β′
(2)X2.

The following result of Zhao [18] immediately follows from Corollary 5.2, Theorem 3.C.7 of Shaked
and Shanthikumar [26] and similar argument to Theorem 3.4.

Corollary 5.3 Let X1, . . . , Xn be independent gamma random variables Γ(a1, λ), . . . ,Γ(an, λ), respec-
tively. If 1 ≤ a1 ≤ a2 ≤ . . . ≤ an, then

(β1, · · · , βn)�w (β′
1, · · · , β′

n) =⇒
n∑

i=1

β(i)Xi ≥RS

n∑
i=1

β′
(i)Xi.
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Yu [27] gave necessary and sufficient conditions for stochastically comparing linear combinations of
heterogeneous and homogeneous gamma random variables. The following result gives necessary and
sufficient conditions for comparing linear combinations of gamma random variables according to right
spread order.

Proposition 5.4 Let X1, . . . , Xn be independent gamma random variables Γ(a1, λ), . . . ,Γ(an, λ), re-
spectively. Then,

n∑
i=1

βiXi ≥RS β

n∑
i=1

Xi ⇐⇒ β ≤
∑n

i=1 βiai∑n
i=1 ai

.

Proof: It follows from Yu [27] (see also (4.5)) that

n∑
i=1

βiXi ≥� β

n∑
i=1

Xi.

Using Theorem 4.3 in Fernández-Ponce, et al. [8] again, we have

n∑
i=1

βiXi ≥RS β

n∑
i=1

Xi ⇐⇒ E

(
n∑

i=1

βiXi

)
≤ E

(
n∑

i=1

βXi

)
.

Hence, the required result follows.

Remark: Compared to Corollary 5.3, there is no restriction on the shape parameters.
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