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MULTI-LEVEL DECOMPOSITION OF PROBABILISTIC RELATIONS

Stanislaw Grygiel, Martin Zwick, Marek Perkowski

December 2, 2002

Abstract

Two methods of decomposition of probabilistic relations are presented. They consist of splitting relations (blocks) into pairs
of smaller blocks related to each other by new variables generated in such a way as to minimize a cost function which depends
on the size and structure of the result. The decomposition is repeated iteratively until a stopping criterion is met. Topology
and contents of the resulting structure develop dynamically in the decomposition process and reflect relationships hidden in the
data.

1 INTRODUCTION

There exist two main approaches to the analysis of complex
systems: probabilistic and non-probabilistic. Probabilis-
tic approach assumes a knowledge of probability distribution
over the variables of the system and the decomposition con-
sists on determination of a set of simplest possible marginal
probabilities. Non-probabilistic approach requires specifica-
tion of the global relation over the variables of the system
and the decomposition consists on determination of a set of
simplest possible projected relations describing the system.

A system is here described by a contingency table. Each
cell of the table contains the frequency observed for a partic-
ular combination of variable values. These frequencies can
be normalized to the total number of observations and used
to approximate the true probability distribution over the vari-
ables of the system. The system is referred to as probabilistic
system.

In many situations it may be impossible or unreasonable
to collect frequency information which is statistically reliable
but it is relatively easy to collect meaningful information on
the set-theoretic relation which exists between variables of
the system. This corresponds to the situation where the cell
frequency is either 0 or 1. This approach is also justified if
cells of the contingency table contain only two distinct values
of frequency (or values that are close to two distinct values)
which may be assigned to two classes 0 or 1. In such situa-
tions the system is referred to as non-probabilistic.

Systems are also characterized as being either directed
or neutral. In directed systems, variables are distinguished
as being either independent variables (inputs) or dependent
variables (outputs); in neutral systems no such distinction is
made.

The decomposition of a complex system into an orga-
nized set of subsystems is motivated by the belief that a sim-

pler decomposed structure will better describe unobserved
data (Occam razor principle) and will make it easier to under-
stand relationships hidden in the data. Each subsystem can be
viewed as defining a certain concept and the whole structure
can be viewed as a higher level relation expressed in terms of
these concepts (variables).

In this paper both probabilistic and non-probabilistic ap-
proaches will be considered and a new method of their de-
composition will be presented.

The paper is organized as follows: Section 2 presents
the related work, Section 3 presents the decomposition algo-
rithms, Section 4 presents the cost function used in this paper,
Section 5 discusses results and Section 6 concludes the paper.

2 RELATED WORK

The decomposition of complex systems was analyzed by
many researchers in the past. In the terminology of systems
science both decomposition and composition are known un-
der the name of reconstructability analysis [Klir, 1985].

The approach presented by Ashby [Ashby, 1965], Klir
[Klir, 1976], Krippendorff [Krippendorff, 1979], and Conant
[Conant, 1972] consists of generating a lattice of possible de-
composition structures and evaluating them in terms of both
complexity and accuracy using either a set-theoretic (non-
probabilistic) or an information-theoretic (probabilistic) ap-
proach. Both approaches are based on uncertainty measures,
the first on Hartley’s entropy [Hartley, 1928] and the second
on Shannon’s entropy [Shannon and Weaver, 1949]. A struc-
ture that results in the smallest complexity and yet describes
the data with a high accuracy is selected to be the best solu-
tion.

An overview of decomposition approaches developed
within the framework of general systems methodology (re-
constructability analysis) is presented in [Zwick, 2001] and
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an extended bibliography of reconstructability analysis (RA)
as a whole is provided in [Klir, 1996]. Reconstructabil-
ity analysis of directed systems was further clarified in
[Zwick, 1995a], and some additional details on set-theoretic
RA are presented in [Conant, 1981] [Zwick, 1995b].

In standard (both set-theoretic and information-
theoretic) approaches to reconstructability analysis, the num-
ber of system variables remains unchanged in the process of
decomposition. By contrast, the methods presented in this
paper, which are based on ideas used in the decomposition
of binary functions, introduce new variables in the decom-
position process to reduce complexity. These methods, while
inherently non-probabilistic in nature [Grygiel, 2000], can be
applied also as approximate techniques for probabilistic sys-
tems.

3 DECOMPOSITION

Decomposition of relation consists in general on splitting a
larger relational block into a number of smaller, possibly in-
terrelated, blocks (see Figure 1).

RX Y

X2

X1

Y2

Y1R 1

R 2

Figure 1: Decomposition

We will focus in this paper on decomposing one block
into two smaller blocks in such a way as to reduce a certain
cost measure. This process can be iteratively repeated until
termination criterion is satisfied. The cost measure will be
discussed in more details in Section 4.

In Figure 1
�

denotes a set of independent and � set
of dependent variables of the relation. In the decomposed
structure, if

���������
	�� then decomposition will be called
non-disjoint, otherwise we will call it disjoint. In the most
general case both � � and � � have both dependent and inde-
pendent variables. It is also possible that dependent variables
of one block are independent in another block, for instance it
may be � � ��� � 	��� .

The presentation of the decomposition algorithms
in this paper will be based on tabular representa-
tion of relations (contingency tables). The software
implementation of the algorithm, however, uses lr-
partition representation which is more memory effi-
cient for manipulation of large multiple-valued relations
[Grygiel et al., 1997],[Grygiel and Perkowski, 1998].

Other notations used in this paper are as follows: up-
percase characters will denote sets and lowercase characters
will denote variables. � � � is the cardinality of the set

�
and� ��� is the cardinality of the variable � (number of values the

variable � can take). A relational/functional block with a set�
of independent variables and set � of dependent variables

will be denoted by � ��� ��� .
3.1 Relations

The following definition of relation will be used in this paper:

Definition 1 (relation) Let � ��� ����� be a set of sets � � . A
subset � of the Cartesian product � �"! � �#!%$&$'$(! � ) will be
called an * -ary relation. +

Such a defined relation can always be represented by
a two dimensional contingency table based on the fact that
the Cartesian product operation is associative and Cartesian
product is a set so we can reduce a * -ary relation to a binary
relation �-,.�0/ ! � 1 where �0/ and �01 are sets of 2 -ary and3 -ary tuples respectively and 2
4 3 � * .

Cells of the contingency table representing relation can
either contain 0s and 1s or any numbers. The first case corre-
sponds to non-probabilistic relations, 1s and 0s denoting tu-
ples which are and are not contained in a given relation. The
second case corresponds to probabilistic relations and num-
bers represent probabilities or frequencies associated with the
corresponding tuples.

3.2 Decomposition Type I

This type of decomposition is always non-disjoint, i.e. the
sets of independent variables of the decomposed blocks are
non-disjoint.

Let
� �5� � � � �76 �98 � $'$&$ � 2 , be a set of variables,���:�;�<�

be a partition of
�

, and =?>'@ be a set of values the
variable �A� can take. If � is a relation based on the set of
variables

�
then �B,C= >ED !F$&$'$�! = >'G � =IH D ! =IHKJ ,

where =LH�M �N�PO )QH�ME� , O )QH�M is a tuple (combination of val-
ues) for the variables of set

�SR
, and =LH�M is a set of all tuples

for the set
�SR

. Such defined relation � can be represented
by a contingency table of � =?H D � columns and � =LHKJT� rows,
each column corresponding to different tuple O )QH DVU =IH D
and each row to a different tuple O )QHKJ U =IHKJ . Each cell of
the contingency table contains 1 if the corresponding combi-
nation of tuples O �WH D , O R H J belongs to the relation and 0 if it
doesn’t.

Definition 2 (column multiplicity) Column multiplicity X
is a number equal to the number of distinct columns in the
contingency table. +
Definition 3 (row multiplicity) Row multiplicity X is a
number equal to the number of distinct rows in the contin-
gency table. +

Column multiplicity X is greater or equal to 1 (it is equal
to 1 if all the columns are identical) and less then or equal to� =IH D � (all the columns are different).



Our goal is to decompose the original relation � into
two sub-relations � � and � � .

Let’s create a new variable Y such that � YZ� � X and label
each of X sets of identical columns with a different value Y R
of variable Y .

Let � � ,�=IH D ! =?[ /&\ be a relation created by extend-
ing every tuple O �WH D]U =IH D with the value Y R of variableY assigned to the column O �^H D so that � � �_�PO �^H D Y R � . To
achieve our goal, � � has to be created in such a way that the
composition of � � and � � results in � . The process of cre-
ation of � � will be defined by the following theorem:

Theorem 1 (decomposition) Relation � � ,_= H J ! =?[ /&\
meeting the above conditions can be represented by a con-
tingency table created from the original table for relation �
by combining the identical columns of the table. The new
columns will correspond to the tuples O R;` U = ` .

PROOF It is enough to show that for every pair of tuplesO �^H D Y ) U � � and O R H J'Y ) U � � , the pair of tuples O �^H D O R H J
is part of the relation � ( O �^H D O R H J U � ).

Let’s assume that there exists a pair of tuples O �WH D Ya) U� � and O R HKJ'Yb) U � � , such that O �WH D O R HKJ 	U � . The con-
dition O �WH D O R H J 	U � means that the intersection of columnO �^H D and row O R H J in the original contingency table contains
0. The condition O R H J'Y ) U � � means that the intersection of
row O H J and column Y ) in the contingency table correspond-
ing to � � contains 1. By the construction of � � , column Y )
corresponds to the set of identical columns containing columnO �^H D . Hence, by the condition O R HKJPYa) U � � , intersection of
the row O R HKJ and column O �WH D contains 1 which is in contra-
diction with the assumption O �^H D O R HKJ 	U � . This completes
the proof. c

The following example shows the process of decompo-
sition of a relation (Figure 2).
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Figure 2: Decomposition type I.

Relation � is represented by tables in Figures 2 Y and
2 d . A cell in the table in Figure 2 d contains 1 if the corre-
sponding tuple belongs to the relation and 0 otherwise. The
column multiplicity index of the table in Figure 2 d is equal to
2 and so is the cardinality of the new variable Y . The table
in Figure 2 e corresponds to the block � � in Figure 2 f , a cell
of the table contains 1 if the corresponding combination of
variable values exist in the table in Figure 2 d . For instance,
the columns �Ag'�ih �kjTj , �Ag&�lh �kjm8 in Figure 2 d are labeled
with Y ��j and �Ag'�ih �n8'j , �Ag&�lh �o8(8 with Y �n8 so the
cells corresponding to these combinations of values will con-
tain 1 in table � � in Figure 2 e . Other combinations of values
of �lg'�ih and Y will yield 0 in the table � � .

The table in Figure 2 p which corresponds to the block� � in Figure 2 f is created from the table in Figure 2 d by com-
bining identical columns and replacing variables �qg'�ih with a
new variable Y .

The same decomposition method can be used to decom-
pose probabilistic relations, i.e. relations with probability or
frequency associated with each tuple. For this kind of re-
lations however, the probabilities have to be discretized be-
fore decomposition can be performed. The most often used
discretization method, uniform binning, divides the space of
each variable values into a number of equally sized bins. An-
other type of discretization methods are methods based on
the entropy measure [Catlett, 1991], [Fayyad and Irani, 1993]
which use minimum entropy criterion to assign values to dif-
ferent bins. They often yield better results.

Figure 3 depicts decomposition process of such a rela-
tion.
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Figure 3: Decomposition type I, probabilistic relation.

3.3 Decomposition Type II

The decomposition described in the previous section resulted
always in a non-disjoint solution. In this section we will de-
scribe a decomposition which may result in either disjoint or
non-disjoint solutions. The main distinction of the decompo-



sition described in this section is that it is a functional decom-
position. We decompose not the relation itself but the prob-
ability density function defined by the frequencies or proba-
bilities in the contingency table describing the relation. The
result of the decomposition can again be viewed as a neutral
relation. The type II decomposition procedure is depicted in
Figure 4.

The relation used in this example is the same as the one
in Figure 3. The relation to be decomposed is defined in Fig-
ures 4 Y and 4 d . The result of uniform binning to five values is
shown in Figure 4 e . The decomposition alone is performed in
the manner similar to the decomposition described in the pre-
vious section. The difference between the two is the way the
block � � is created. For decomposition of type I the new vari-
able Y is always an independent variable in � � . For decom-
position of type II described in this section the new variableY is always a dependent variable in � � . In block � � , variableY is independent in both, type I and type II decompositions.
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Figure 4: Decomposition type II.
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Figure 5: Non-disjoint decomposition type II.

The decomposition in Figure 4 is a disjoint decomposi-
tion because the sets of independent variables of blocks � �
and � � are disjoint. In Figure 5 we show the type II non-
disjoint decomposition procedure. Since for the type II de-
composition the extra variable Y can’t be shared between � �
and � � then the only way to achieve non-disjoint decompo-
sition is to share some of the independent variables from the
set

�
.

The disjoint decomposition with
� � �r� � � � � � and��� �5� � g � h � in Figure 5 leads to � Yq� �ts and doesn’t

simplify the original structure. Selecting non-disjoint sets��� �u� � �v� � � � , ��� �w� � �v� � g � � h � leads to the table in
Figure 5 e . Some of the cells in this table correspond to im-
possible combinations of variable values for instance, a vari-
able taking values 0 and 1 at the same time. These cell are
denoted by ’-’ and correspond structural zeros as defined in
[Krippendorff, 1986]. Since structural zeroes correspond to
impossible observations we can replace them with any values
for the sake of the column multiplicity computations. Select-
ing the values as in Figure 5 p results in column multiplicity
equal to 2. This value is smaller then the value of column
multiplicity of the table in Figure 5 d corresponding to the
non-disjoint case. Relations � � and � � can now be deter-
mined the same way as for the disjoint case. The result of the
decomposition is shown in Figures 5 f , 5 x , and 5 y .

The same procedure can also be used in type I decom-
position to increase the number of shared variables if needed.

4 COST MEASURE: CARDINALITY

The cost measure used in this paper is based on the measure
proposed by Abu-Mostafa in [Abu-Mostafa, 1988]. He de-
fined complexity of a binary function (functional block) as a
number of tuples describing it:z �.{i| H | � ��� (1)

where
�

and � are sets of independent and dependent vari-
ables respectively.

The cost of a combination of functional blocks was de-
fined as a sum of costs of particular blocks.

Notice, that according to his definition the number of tu-
ples, which is determined by the set of independent variables�

, is multiplied by the number of dependent variables. This
is due to the fact that each dependent variable corresponds to
a separate function defined on the same set of independent
variables.

We will extend Abu-Mostafa definition to the multiple-
valued case and call it cardinality (see [Grygiel, 2000]):z �~}

>'@�� H �l�0���W�(�
� }� @��(�I� � (2)

where � > @ � H �A� is the number of tuples and �^�T� � � � @ �(� � �



is a normalized number of dependent variables, i.e. an equiv-
alent number of binary variables corresponding to the set �
of multiple-valued variables.

If there is no dependent variables we will assume:

z �r}
> @ � H �l� (3)

This is justified by the fact that every neutral relation (only
independent variables present) can be always transformed to
a function with one binary dependent variable which takes
value 1 if the corresponding combination of values of in-
dependent variables belongs to the relation and takes value
0 if it doesn’t. For one binary variable � the expression�^�T� � ��� @ �(� � � in Equation 2 is equal to 1 and the Equation 3
follows.

Let us consider decomposition of the block � ��� �?� into
blocks � ���:� � � � and ��� �#�����v� �?� . The complexity of the
decomposed structure is equal to:

z ��� H D �W�(� � � � D 4 � � D � H Jq�^�T� � � � (4)

where:
���K����� � �
� H D = � >P@�� H D �l�� H J = � > @ � HKJ � �� �ED = ��� @��(� D � �� � = � � @ �(� � �

Comparing Equation 4 to the complexity of the original
structure we can easily show that in order to achieve com-
plexity reduction the following necessary condition must be
true:

� �ED#� � H D (5)

in fact, if � �ED�� � H D then:

� H D �W�(� � � �ED 4 � �ED � HKJZ�^�T� � � �]�� H D �W�(� � � H D 4 � H D � HKJZ�^�T� � � �]�� H D � H�JZ�^�T� � � � ��� H��W�(� � � �
and decomposition increases, instead of decreasing, the

complexity of the structure.

5 RESULTS

In this section we will present type II decomposi-
tion of a small real life example (Ries-Smith data
[Ries and Smith, 1963]) and compare complexities of few
simple decomposition examples presented in the previous
sections.

Figure 6 Y depicts contingency table of the Ries-Smith
data.
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Figure 6: Ries-Smith data

We have four independent variables here, each combi-
nation of variable values is associated with a frequency in the
table in Figure 6 Y . In Figure 6 d the result of uniform bin-
ning into three equally sized bins is shown. We performed
uniform binning for the number of bins ranging from 2 to 10
but only for the 3 bins case our program was able to find a
decomposition.

The decomposed structure is portrayed in Figure 6 e . In
the decomposition process (disjoint decomposition of type II)
three blocks were extracted from the original data and two
new variables Ya� and Ya� � added. The tables in Figure 7 de-
scribe relations between variables in these three blocks.

� J �7� �7�
0 1 0
0 0 1
1 1 1
1 0 2

� D �7� �7� �
0 2 0
0 1 0
0 0 1
1 2 0
1 1 1
1 0 2
2 2 2
2 1 1
2 0 2

�7� ��� � �7�
0 0 0
0 1 0
1 1 1
1 2 2
1 0 2
0 2 1

Figure 7: Ries-Smith data: decomposed blocks.

The complexity of original structure in Figure 6 d is
equal to

z � � � � �^� � � �^� �lga�W� �ihb���^�T� � � xZ��� �.� � { � { � { ���^�T� � �L��T� $ jTs , the decomposed structure complexity is smaller and
equal to

z���� � � � � �^� �ihb���^�T� � � Ya��� 4¡� � � �^� Ya�����^�T� � � Ya� ����4� �lga�W� Ya� �����^�T� � � xZ�¢� �£{ � { �¢�^�T� � � 4 � � � �¢�W�(� � � 4 { � � �¤�^�T� � �L��Tj $ 8(8 , which makes for 21% complexity reduction.

The Table 1 summarizes complexity gains for different
structures discussed in this paper.

Type ¥�¦ ¥�¦ ¦ drop
Figure 2 I d np 16.00 16.00 0%
Figure 3 I d p 37.15 26.58 28%
Figure 4 II d p 37.15 22.58 39%
Figure 5 II nd p 37.15 26.58 28%
Figure 6 II nd p 38.04 30.11 21%

Table 1: Complexity drop.



where p and 2 p denote disjoint and non-disjoint decom-
positions, � and 2 � denote probabilistic and non-probabilistic
relations,

z � is the complexity of the initial structure,
z � � is

the complexity of the structure after decomposition and Equa-
tions 2, 3, and 4 were used to calculate complexity. Remem-
ber also that Figures 3, 4, and 5 present decomposition of the
same relation but using different decomposition methods.

As we can see in Table 1 for the decomposition in Fig-
ure 2 complexity of the decomposed structure is the same as
that of the initial structure. However, if we count the number
of tuples in the original and decomposed structures we will
obtain 10 and 9 respectively (10%). This means that the com-
plexities calculated using Equations 2, 3, and 4 are equal to
the maximum number of tuples that can be used to describe a
given structure. The real complexity (number of tuples) can
be in fact smaller. In other words, the values of

z � and
z � �

in Table 1 compare the size of the state space of the original
table (the binned table, if the data are probabilistic) and the
sum of the sizes of the state spaces of the tables which the
decomposition gives.

The second observation we can make is that non-disjoint
decompositions usually result in higher complexity structure
than the disjoint ones (see Figures 3 and 5 for non-disjoint
and Figure 4 for disjoint decompositions). The disjoint de-
composition however, is harder to find and the non-disjoint
one may be the best we can get. The non-disjoint decomposi-
tion may not exist either but the chance of finding it is higher
then for disjoint one.

6 SUMMARY

In this paper we presented two types of decomposition that
can be used for decomposing relations both probabilistic and
non-probabilistic. The decomposition of type I can be ap-
plied to relations directly and leads to non-disjoint decom-
posed structures. The type II decomposition is a functional
decomposition so we apply it to probability density function
or frequency distribution specified for a given relation.

Both decompositions act on discrete values only so if
they are applied to probabilistic relations the continuous val-
ues of probabilities or frequencies have to be discretized be-
fore decomposition. All decompositions are “lossless” in the
sense that they yield the binned table exactly (but they’re
not lossless relative to original tables with unbinned frequen-
cies). No analysis has yet been done of the loss of information
which occurs when frequencies are binned.

The decomposition process is driven by a cost function
which assures that the decomposed structure is of lower com-
plexity than the decomposed one. The cost function used
in this paper (cardinality) defines a relation’s complexity as
number of its tuples. Other cost functions could be used as
well (see for instance [Grygiel, 2000]) but more detailed dis-
cussion of this subject is beyond the scope of this paper.

We also presented few simple decomposition examples
to illustrate the algorithms used. In one of the examples we
decomposed a small real life data set (Ries-Smith data) run-
ning our software implementation of type II decomposition
method. The data values were discretized using uniform bin-
ning method and decomposed iteratively into three blocks
with two independent variables each.

Summarizing, we think that the methods of decomposi-
tion presented in this paper can serve as a useful alternative
to the uncertainty based methods most often used for the de-
composition of probabilistic relations.
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