
Portland State University Portland State University

PDXScholar PDXScholar

Systems Science Faculty Publications and
Presentations Systems Science

2004

A Software Architecture for Reconstructability A Software Architecture for Reconstructability

Analysis Analysis

Kenneth Willett
Portland State University

Martin Zwick
Portland State University, zwick@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Kenneth Willett, Martin Zwick, (2004) "A software architecture for reconstructability analysis", Kybernetes,
Vol. 33, No. 5/6, pp. 997 - 1008

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Systems Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc_fac
https://pdxscholar.library.pdx.edu/sysc
https://pdxscholar.library.pdx.edu/sysc_fac?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fsysc_fac%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/sysc_fac/25
mailto:pdxscholar@pdx.edu

Willett, K. & Zwick, M. 2004. “A Software Architecture For Reconstructability Analysis.” Kybernetes, vol. 33, No. 5/6, pp.
997-1008.

A SOFTWARE ARCHITECTURE FOR RECONSTRUCTABILITY ANALYSIS
Kenneth Willett and Martin Zwick

Systems Science Ph.D. Program, Portland State University, P.O. Box 751, Portland, OR 97201
kwillett@ignisys.com

KEYWORDS: reconstructability analysis, log-linear
modeling, information theory, data-mining, Occam,
Python

ABSTRACT

Software packages for Reconstructability Analysis (RA),
as well as for related Log Linear modeling, generally
provide a fixed set of functions. Such packages are
suitable for end-users applying RA in various domains,
but do not provide a platform for research into the RA
methods themselves.

A new software system, Occam3, is being developed
which is intended to address three goals which often
conflict with one another: to provide (1) a general and
flexible infrastructure for experimentation with RA
methods and algorithms; (2) an easily-configured system
allowing methods to be combined in novel ways, without
requiring deep software expertise; and (3) a system which
can be easily utilized by domain researchers who are not
computer specialists.

Meeting these goals has led to an architecture which
strictly separates functions into three layers: the Core,
which provides representation of datasets, relations, and
models; the Management Layer, which provides
extensible objects for development of new algorithms;
and the Script Layer, which allows the other facilities to
be combined in novel ways to address a particular domain
analysis problem.

I. INTRODUCTION

Reconstructability Analysis (RA) is a technique based on
set theory and information theory for the modeling and
analysis of datasets involving discrete variables. It
derives from Ashby (1964), and was developed by
Broekstra, Cavallo, Cellier, Conant, Jones, Klir,
Krippendorff, and others (see, e.g., Klir 1985 1986 1996
2000; Krippendorff 1986; Zwick 2001a) It differs from
other techniques in that it can identify high-dimensional
multi-component relationships among the variables.

RA encompasses a number of related methods and
variations:

• Information-Theoretic(probabilistic) vs. Set-
Theoretic (crisp possibilistic) modeling. The
information-theoretic approach deals with a
frequency or probability distribution over the states
of the system, while the set-theoretic approach deals

only with the occurrence or non-occurrence of each
possible state. These two approaches can be seen as
two distinct methods within the framework of
Generalized Information Theory (Klir 98),which also
includes fuzzy methods (currently outside the scope
of the software system described in this paper).
Information-theoretic RA is mathematically
equivalent to Log-linear Modeling (Bishop et al
1978; Knoke and Burke. 1980), where the two
overlap. Set-theoretic RA is related to techniques
used in logic design and machine learning
(Perkowski et al 1997; Files and Perkowski 1998).

• Variable-Based, Latent Variable-Based and State-
Based modeling. Traditionally RA has used a
variable-based approach, where the constraints of the
model are associated with sets of variables and the
corresponding state subspaces. Latent variable-based
modeling (Hagenaars 1993) takes a similar approach,
but introduces new (unobserved) variables to
represent relationships among the primary variables.
State-based modeling (Zwick and Johnson, 2002)
defines the constraints of the model (that is, the
specifics of how the model must match the observed
data) in terms of specific states of the data or its
margins, rather than being defined by complete
margins only. Thus, state-based modeling is a
generalization of variable-based modeling.

• Directed vs Neutral Systems. In a directed system one
or more of the variables is assumed to be dependent
on the others, and the problem is typically to find a
reduced set of variables which adequately predicts
the dependent variable(s). In neutral systems all
variables are treated as interdependent, and the
problem is to identify the relationships among the
variables which most account for the relation or joint
probability distribution.

There exist several RA software packages, e.g., GSPS by
Klir (1976), Elias (1988), and coworkers, CONSTRUCT
and SPECTRAL by Krippendorff (1981), SAPS by
Uyttenhove (1984) and Cellier (1987), EDA by Conant
(1988), Jones’ k-systems analysis (Jones, 1989) and a
recent program by Dobransky and Wierman (1995).
However, no package fully encompasses the variations of
RA discussed above. Some programs are not easily used
by researchers outside the systems field; others do not
incorporate statistical tests; only EDA can handle large
numbers of variables. These packages are in limited use.
A number of statistics packages (SAS, SPSS, Statistica,

LEM) provide a basic Log-Linear (LL) capability which
can be used to perform RA in a confirmatory mode,
where a model can be selected and its fit to the data
evaluated. However, the set of possible models for a
dataset of N variables grows hyper-exponentially with N.
Because of this, and because RA is most useful for
modeling complex (and therefore non-intuitive)
relationships, a simple confirmatory approach has limited
value. Instead, one requires the ability to rapidly search
the space of all possible models, applying heuristics to
narrow the search.

A previously developed software package, Occam (Zwick
2000), was developed at Portland State University to
provide a range or RA capabilities. This package was
derived from a set of predecessor programs, the first of
which was written by Zwick in 1985. Under his direction,
programs (Occam0) were written by Hosseini, Anderson,
and Shu which improved these computations and
performed additional RA functions, and several of these
programs were then integrated by Daniels, who also
introduced heuristic search (Occam1). Grygiel added new
search procedures and an improved user interface
(Occam2). This most recent version has been used to
analyze medical, healthcare, satellite, linguistic, and other
data, as part of a general research program in discrete
multivariate modeling (Zwick, 2001b). A desire to
increase the accessibility of RA methods to a broader
range of researchers, and also make these methods both
more flexible and more automated, has led to
development of Occam3.

II. KEY REQUIREMENTS FOR OCCAM3

Ideally, a tool such as Occam should address the needs for
three types of researchers in the RA community:

1. Those developing variations on RA methods, as
mentioned above. These researchers require the
ability to extend the representation of core RA
entities, such as data tables and model definitions.

2. Those developing new algorithms within a given RA
framework, such as novel search heuristics, different
statistical measures, etc. These researchers need to be
able to extend the processing rules used by the
system.

3. Those using RA for analysis in various domains.
These researchers need a flexible analysis framework,
which allows them to combine various methods
according to the needs of their particular problems.

Previous versions of Occam addressed item number 3
only; the system architecture was rigid and provided no
simple means of extension. For this, a different
architecture was needed.

III. OVERVIEW OF RA

Both information-theoretic and set-theoretic analyses
begin with a table of sampled data, over a set of discrete
variables (continuous variables can be discretized by
binning.). The cover is the set of variables in the data,
and the data defines a distribution (information-theoretic)
or a set-theoretic relation over the system states defined
by the Cartesian product of all the variables.

Given this data, one is interested in evaluating simpler
approximations of the data. In RA such an approximation
is defined by a structure, which is a set of relations.
(From now on, the the word relation will encompasses
both distributions and set-theoretic relations.) Each
relation is in turn a set of variables from the cover. For a
four variable problem with a cover{A,B,C,D}, an
example of a relation is ABC and of a structure is
ABC:BCD.

Given a structure, a model is constructed by first
producing a projection for each relation in the structure,
and then reconstructing a fitted relation over the cover,
which agrees with all the projections. For both set-
theoretic and information-theoretic RA, one chooses the
relation which maximizes uncertainty subject to the
constraints of the projections.

A structure may be loopless or may contain loops. For
example, AB:BC:BD is loopless, while AB:BC:ACD
contains one loop (i.e., A→B→C→A). Loopless models
are more efficient to process because fitted distributions
can be determined algebraically, while distributions for
models with loops must be fitted iteratively. (For set-
theoretic relations, however, even models with loops have
closed form solutions).

Structures (and their corresponding models) can be
arranged in a lattice by definition of a parent-child
relationship. Given a structure, each child structure is
created by removal of a relation and reinsertion of all the
embedded relations within that relation which are not
already present in other relations of the structure. For
example, the relation ABC has embedded relations AB,
BC, and AC. Thus the children of ABC:BD are
AB:AC:BC:BD and ABC:D.

The topmost structure (model) in the lattice is the
saturated structure (model), defined by all the variables
occurring in a single relation, e.g. ABCD. The bottom of
the lattice is defined by the independence structure
(model), which is defined by only first-order relations,
e.g. A:B:C:D. To be more precise: this is the bottom of
the lattice if one wishes to maintain the same cover in all
structures, so that every structure contains every variable.

A researcher using RA is typically interested in one or
more of the following questions:

1. What are all possible structures for a given cover?
What are all the loopless structures, structures of non-
overlapping relations, etc.? This might be a prelude
to further exploration.

2. Which subset of variables in a directed system is
most predictive of the dependent variable(s)? This
problem is equivalent to bottom-up search of the
sublattice of loopless models.

3. Which model(s), allowing loops, provide the simplest
representation of the data, while still fitting the data
with adequate accuracy? This question involves
searching the lattice of models.

4. What are the characteristics of each of a specific set
of models? The models may have been identified by
some a priori criteria. Models can be fit to the data
and then compared based on predictive power,
differences from the data, chi-squared statistics, etc.
Details of the model, such as the residual error in
each specific state of the system, can also be
computed.

IV. OVERVIEW OF OCCAM3 ARCHITECTURE

The three requirements described above are addressed by
separation of the architecture into three distinct layers.
Each of these layers is extensible to address the needs of a
particular constituency.

The Occam Core provides the representation of basic RA
entities. The implementation of the core must be done
with careful attention to performance, memory usage, and
robustness. Implementation of this layer is done in C++.

The Occam Management Layer provides the manipulation
of Core entities. This layer provides the basic
mechanisms for searching, caching, computing statistics
of interest, and reporting. This layer is implemented in
C++ and uses class inheritance to provide extensibility.

Assembly of particular functions into an analysis strategy
is done using the Occam Script Layer. There are standard
scripts for common situations (such as detailed analysis of
a single model, or simple search heuristics), but it is
possible to create more complex scripts for special cases.
The scripts are written in the Python language (Beazley
99), and an adapter interface between the Python
interpreter and the rest of Occam3 is written in C++.

Python was chosen because it is readily available on a
wide variety of systems, including Windows and various
forms of Unix. It is powerful enough to develop complex
algorithms, but does not require mastery of programming
details such as variable declarations and memory
management. Even though Python is an interpreted
language, most of the computation is done at lower levels
of the system, so interpreter performance is not an issue.

The specific approaches used for these three layers are
described further in the sections below.

Script Layer

Management Layer

Core

script

Architecture of Occam3

V. THE OCCAM CORE

Occam Core Objects

The Occam Core provides efficient implementations of
three key objects: Tables, Relations, and Models. These
objects are described further below.

Model

Relation

Data

Table

Projection

Table

Fitted

Table

 Objects in the Occam Core

Tables

A key goal of Occam3 is to be able to handle larger
problems, with larger numbers of variables, than was
possible with Occam2. (Occam2 has been used to analyse
data involving 10’s of variables.) The state space of a
particular problem grows exponentially with the number
of variables, while the amount of available data for
analysis is likely to grow at a much slower rate. This
means that, for large problems, the data is very sparse (not
every feasible state is represented in the data sample).

The Core takes advantage of this sparseness by avoiding
the need to represent the entire state space explicitly. A
Table, whether it represents the input data or a computed
projection, consists of a sorted list of tuples. Each tuple
contains a key, which encodes the states of the individual
variables associated with that tuple; and a value which
may be either Boolean (for set-theoretic analysis), a
frequency, or a probability (depending on the type of
analysis being performed).

Tables are used in three contexts. A Data Table contains
observation data, typically read from a data file. Data
tables might also be produced by preprocessing data in
some way, such as by binning quantitative variables,
performing mask analysis on time series data, etc.

A Projection Table is computed from a Data Table, and is
associated with a particular Relation by summing over the
missing variables for probabilistic distributions or taking
a logical “or” for crisp possibilistic relations.

A Fitted Table is a computed table associated with a
Model, which defines a maximum uncertainty relation
subject to the constraints of the model for all variables in
the cover. Fitted tables for distributions are produced by
algorithms such as Iterative Proportional Fitting (IPF)
(Krippendorf 19xx). Research into other, more efficient
methods for fitting is being done as part of the overall
Occam project (Zwick 2002).

For large analysis problems, the memory space
requirements become dominated by storage of these data
tables. Typically the cardinality of individual variables is
small (binary variables are common; most variables have
only a few states); so bit-packing of the key is used to
represent the tuple in the smallest possible number of
bytes.

Sorting the tuples allows binary searching to be used to
find specific states, and allows operations on multiple
tables to be performed in linear time. Sorting eliminates
the need for any additional indexing structure for the data
tables.

Each variable has an additional state, “absent”, which is
used in computing projection tables. For example, in a
problem with binary variables A, B, and C, the tuples of
the projection associated with AB are 00*, 01*, 10*, and
11*, where “*” represents the “absent”.

Computation of a Projection Table over one or more
variables is done in time which is linear with the amount
of data, and storage of this table is typically much smaller
than the initial data set due to combination of tuples.

Relations

A Relation stores a list of variables defining the relation,
an associated projection table produced from the initial
data table, and a list of Attributes, computed from the
relation (e.g., Degrees of Freedom, Uncertainty, etc.)

Relations are reusable, because the projection table and
relation attributes are independent of the model currently
being evaluated. Also, the storage space for a relation,
and the high computational cost of computing the
projection for that relation, makes this reuse a critical
performance strategy. A cache of Relations is maintained
so that each relation is computed only once.

Models

An RA model is defined be a set of relations; thus each
Model object contains references to its constituent
relations, but not a separate copy. A Model also contains
a list of Attributes, with statistics of interest computed for

the model. A Model may also have a Fitted Table in
cases where this must be explicitly computed (see below).

VI. THE OCCAM MANAGEMENT LAYER

While the Occam Core is concerned primarily with the
representation of various data objects, analysis methods
are implemented in the Occam Management Layer.
Finding the best models, and computing and displaying
statistics about models, involves three types of operations:

• Navigation – this involves traversal of the lattice of
all possible models, producing new candidate models
from existing ones.

• Reconstruction – for probabilistic systems, this
involves construction of a fitted distribution for a
given model. Reconstruction requires generation of a
projection for each relation in the model, then the
combination of those projections to produce the fitted
distribution. For models without loops, the fitted
distribution can be represented explicitly in terms of
the projections of the individual relations, and key
attributes such as uncertainty and degrees of freedom
are computed algebraically. For models with loops it
is necessary to construct a Fitted Table, using an
algorithm such as Iterative Proportional Fitting (IPF).
Reconstruction for crisp possibilistic systems is done
using a closed form set-theoretic equation for models
both without and with loops.

• Evaluation – attributes of the model are computed
and used to rank models for further processing.
Attributes may be computed from the model structure
(such as Degrees of Freedom), or may be computed
from the fitted distribution (e.g., Uncertainty,
Transmission).

The Management Layer uses the entities of the Core
(Tables, Relations, and Models) and basic operations on
these entities (constructing projections, computing
uncertainties, etc.) to build these higher-level RA
methods.

The foundation for building extensions in this layer (such
as different heuristic search methods, of different
evaluation criteria) is the Base Manager. This object
provides facilities for caching and reusing relations and
models.

The Base Manager also provides for basic operations such
as construction of a fitted table for a model; computation
of degrees of freedom (DF) and uncertainty (H) for
models with overlapping components; and generation of
all child relations of a given relation. These basic
operations are used in a variety of RA methods.

More specialized managers can be constructed using class
inheritance in C++. Such a manager will augment and/or
replace operations provided by the Base Manager. In

particular, the Variable Based Modeling (VBM) Manager
has been developed to provide support for classical RA
methods.

In the lattice of models the basic operations are to move
upward (find all parents of a given model); or move
downward (find all children).

It is also useful to be able to navigate within the sublattice
defined by models meeting a certain criterion, such as
those without loops. Restricting attention to loopless
models allows much larger problems to be considered.
For directed systems, loopless models correspond to
models with a single predictive component. For example,
the model ABC:AZ is loopless, while model ABC:AZ:BZ
which has two predictive components contains a loop
(A→B→Z→A)

Most model evaluation methods are based on some
measure that combines the complexity of the model and
the quality of its fit to the data. In the lattice of models,
quality of fit is highest at the saturated model at the top of
the lattice, which exactly fits the data. Quality of fit
decreases monotonically as one navigates down through
the lattice, with the fit being poorest with the
independence model which assumes all variables are
independent. (This is true among models which use the
full cover, i.e. the set of variables in the data. It is possible
to analyze even simpler models, where variables are
removed from the model entirely, ending with the
uniform distribution model.) Quality of fit is typically
measured by either the transmission between the model
and the saturated model, or by the reduction in uncertainty
of the dependent variables in the model relative to their
uncertainty in the independence model.

Model complexity, on the other hand, is lowest in the
independence model, and increases monotonically
upward. Information-theoretic complexity is typically
measured by DF; similar measures are available for set-
theoretic models (Grygiel 2000).

Because the set of possible navigation operators is open-
ended, the VBM Manager has a facility for navigation
“plug-ins”. At this point plug-ins have been developed
for full upward and downward search, as well as loopless
upward and downward search (loopless upward search is
currently limited to directed systems).

The VBM Manager has algorithms defined for about 40
relation and model attributes (Uncertainty, Transmission,
standard and Pearson chi-square statistics, etc.).
Additional attributes can be defined either as extensions
to the Management Layer, or in the Scripting Layer.

The result of the search process is typically a report of the
best models encountered during search, sorted by some
criterion (typically the same criterion which guided the
search). Depending on the analysis problem, different

statistics of the models may be of interest. The
Management Layer contains a report generator, which can
be provided with a list of models, sort them according to a
specified attribute, and display the results as a table.
Tables can be generated in a textual format, a format
compatible with desktop applications (e.g., spreadsheets),
or in HTML.

VII. THE SCRIPT LAYER

One of the most serious limitations of previous versions
of Occam was that minor variations in analysis technique
required changes to the underlying software. The
researcher was restricted to a fixed set of options, and
adding additional options not only required rebuilding the
software but also led to a proliferation of options and
controls.

In the planning for Occam3, it was clear that more
flexibility and programming power in the user interface
was required. Users who want to run analysis of a
number of data sets, or preprocess the data in multiple
ways before analysis, were interested in a way to
automated this processing. For this reason, instead of
being developed as a stand-alone application, Occam3
was developed as a loadable module which can be used in
conjunction with the script language Python.

The Python language was initially developed by Guido
van Rossum at BWI in Amsterdam in 1990, and its
continued development is performed by an Open Source
development community. Python is becoming common
in information system management applications as well as
in web systems.

Python was selected because of its simple syntax, its high
level functions (such as automatic memory management
with garbage collection, list processing, etc.) and the ease
with which it can be used with existing C and C++
libraries.

Interfacing a C++ library to Python involves development
of an adapter file, which describes how C++ facilities are
made visible through Python. Currently the Occam
adapter exposes four classes through python:

• ocVBMManager, which provides access to most of
the computational and modeling functions, such as
constructing models, performing search navigation
operations, and computing statistics.

• ocModel, which provides read access to details of a
model, such as its attributes and relations.

• ocRelation, which provides read access to the
attributes and data of a single relation.

• ocReport, which provides model sorting and
reporting functions.

The example below shows a simple script for performing
a complete loopless top-down search, and producing a

report sorted on %dH.

import os, sys, occam
sortName = "cond_pct_dh" # this determines the sort order for filtering
mgr = occam.ocVBMManager() # create a variable based modeling manager
mgr.initFromCommandLine(sys.argv) # initialize setting and read input file
mgr.setSearchType("loopless-down")# set search method

report = occam.ocReport() # create a report generator
report.setAttributes("level, h, ddf, lr, alpha_sat, cond_pct_dh");
report.setSeparator(3); # align columns using spaces

top = mgr.getTopRefModel() # get the top (saturated) model

Build a work list; go through all the models and construct their children.
Mark models already processed so they aren't repeated. Add each model to
report generator

modelList = [top]
while len(modelList) > 0 :
 model = modelList[0]
 modelList = modelList[1:]
 mgr.computeL2Statistics(model)
 newModels = mgr.searchOneLevel(model)
 for newModel in newModels :
 if newModel.get("processed") <= 0.0 :
 newModel.processed = 1.0
 modelList.append(newModel)
 report.addModel(newModel)

report.sort(sortName, sortDir) # sort and print report
report.writeReport("report.out")

VIII. USING OCCAM3 FOR LARGE
DATASETS

A simple experiment was run using a subset of
the OPUS data obtained from Dr. Clyde Pope of
the Kaiser Permanente Center for Health
Research in Portland, Oregon (Zwick and Pope,
2002). This data concerns healthcare utilization
in the Kaiser member population, and is a
directed system with 24 independent and 1
dependent variable. This data has previously
been analyzed with Occam2, to (1) select a
subset of the 24 variables, which is most
predictive, and then (2) build a model structure
from that subset of variables which is
statistically significant.

With Occam2 the first step requires exhaustive
bottom-up search. Since the number of single-
component models grows exponentially with
distance from the bottom of the lattice, the search
for the best seven-variable model required many
hours.

The second step was able to take advantage of
Occam2’s fixed width downward search, and
was much faster. Even so, running more than a

few experiments (e.g., changing the number of
variables in the selected subset) was very
expensive, requiring several hours. Also, the
sequence of performing step 1, then step 2,
required manual interaction.

With Occam3 a simple script was written which
defined the desired search strategy: a fixed-width
single-predicting-component (i.e., loopless)
upward search for the desired number of levels,
followed by fixed-width downward search. All
models not statistically significant were
eliminated before the final report.

The upward search to select the best 7-variable
component was faster by more than an order of
magnitude, with a search-width of 30 (i.e., the
best 30 2-variable components were kept, then
the 30 best 3-variable components, etc.) This
heuristic approach identified a number of single-
component models as good or better than the
component found with Occam2.

The scripting approach makes it simple to
combine both the upward and downward search
phases, and also allows experimentation with

search width, number of levels, and different
sorting criteria.

IX. BIBLIOGRAPHY

Ashby, W. R. 1964. “Constraint Analysis of
Many-Dimensional Relations.” General Systems
Yearbook, vol. 9, 99-105.

Bishop, Y. M.; S.E. Feinberg; and P.W. Holland.
1978. Discrete Multivariate Analysis. MIT Press,
Cambridge.

Beazley, D. 1999. Python Essential Reference,
New Riders Publishing.

Cellier, F. and D. Yandell. 1987. “SAPS-II: A
New Implementation of the Systems Approach
Problem Solver.” Int. J. of General Systems, vol.
13 (4), pp. 307-322.

Conant, R. C. 1988. Extended Dependency
Analysis of Large Systems. Int. J. General
Systems, vol. 14, 97-141.

Dobransky, M. and M. Wierman. 1995. “Genetic
Algorithms: A Search Technique Applied to
Behavior Analysis.” Int. J. of General Systems,
24 (1&2), pp. 125-136.

Elias, D. 1988. The General Systems Problem
Solver: A Framework for Integrating Systems
Methodologies. Ph.D. Dissertation, Dept. of
Systems Science, SUNY-Binghamton.

Files, C. and M. Perkowski, M. 1998. “Multi-
Valued Functional Decomposition as a Machine
Learning Method,”' Proc. ISMVL'98.

Grygiel, S. 2000. Decomposition of Relations as
a New Approach to Constructive Induction in
Machine Learning & Data Mining. Electrical
Engineering Ph.D. Dissertation, PSU, Portland
OR.

Hagenaars, J. A. 1993. Loglinear Models With
Latent Variables. (Quantitative Applications in
the Social Sciences #94). Sage, Beverly Hills.

Jones, B. 1989. “A Program for
Reconstructability Analysis.” Int. J. General
Systems, 15, pp. 199-205.

Klir, G. 1976. “Identification of Generative
Structures in Empirical Data.” Int. J. General
Systems, vol. 3 (2), pp. 89-104.

Klir, G. 1985. The Architecture of Systems
Problem Solving. Plenum Press, New York.

Klir, G. 1986. “Reconstructability Analysis: An
Offspring of Ashby’s Constraint Theory.”
Systems Research, vol. 3 (4), pp. 267-271.

Klir, G., ed. 1996. International Journal of
General Systems Special Issue on GSPS, vol. 24.

Klir, G. and M. Wierman. 1998. Uncertainty-
based Information – Elements of Generalized
Information Theory, Physica-Verlag, Heidelberg

Klir, G., ed. 2000. International Journal of
General Systems Special Issue on
Reconstructability Analysis in China, vol. 29.

Knoke, D. and P.J. Burke. 1980. Log-Linear
Models. (Quantitative Applications in the Social
Sciences Monograph # 20). Sage, Beverly Hills.

Krippendorff, K. 1981. “An Algorithm for
Identifying Structural Models of Multivariate
Data.” Int. J. of General Systems, vol. 7 (1), pp.
63-79.

Krippendorf, K. 1986. Information Theory -
Structural Models for Quantitative Data, Sage
Series: Quantitative Applications in the Social
Sciences, Series 07-062.

Perkowski, M., M. Marek-Sadowska, L.
Jozwiak, T. Luba, S. Grygiel, M. Nowicka, R.
Malvi, Z. Wang, and J. Zhang. “Decomposition
of Many-Valued Relations,” Proc. ISMVL ‘97,
Halifax, Nova Scotia, May 1997, pp. 13-18.

Uyttenhove, Hugo J.J. 1984. "SAPS - A
Software System for Inductive Modelling." In:
Simulation and Model-Based Methodologies: An
Integrative View, edited by T.I Oren et al.
Springer-Verlag, Berlin, Heidelberg. NATO
ASI Series, Vol. F10, pp.427-449.

Zwick, M. 2000. "OCCAM: Organizational
Complexity Computation and Modeling",
Portland State University Systems Science
Program Internal Document.

Zwick, M. 2001a. "Wholes and Parts in General
Systems Methodology.". In: The Character
Concept in Evolutionary Biology, G. Wagner, ed.
Academic Press, New York, pp. 237-256.

Zwick, M. 2001b. “Discrete Multivariate
Modeling”
http://www.sysc.pdx.edu/res_struct.html

Zwick, M. and M. Johnson. 2002. “State-Based
Reconstructability Analysis.” In these
Proceedings.

Zwick, M. 2002. “Reconstructability Analysis
With Fourier Transforms.” In these Proceedings.

	A Software Architecture for Reconstructability Analysis
	Let us know how access to this document benefits you.
	Citation Details

	Microsoft Word - kenpitf.doc

