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ABSTRACT 

Software packages for Reconstructability Analysis (RA), 
as well as for related Log Linear modeling, generally 
provide a fixed set of functions.  Such packages are 
suitable for end-users applying RA in various domains, 
but do not provide a platform for research into the RA 
methods themselves. 

A new software system, Occam3, is being developed 
which is intended to address three goals which often 
conflict with one another: to provide (1) a general and 
flexible infrastructure for experimentation with RA 
methods and algorithms; (2) an easily-configured system 
allowing methods to be combined in novel ways, without 
requiring deep software expertise; and (3) a system which 
can be easily utilized by domain researchers who are not 
computer specialists. 

Meeting these goals has led to an architecture which 
strictly separates functions into three layers: the Core, 
which provides representation of datasets, relations, and 
models; the Management Layer, which provides 
extensible objects for development of new algorithms; 
and the Script Layer, which allows the other facilities to 
be combined in novel ways to address a particular domain 
analysis problem. 

 

I. INTRODUCTION 

Reconstructability Analysis (RA) is a technique based on 
set theory and information theory for the modeling and 
analysis of datasets involving discrete variables.  It 
derives from Ashby (1964), and was developed by 
Broekstra, Cavallo, Cellier, Conant, Jones, Klir, 
Krippendorff, and others (see, e.g., Klir 1985 1986 1996 
2000; Krippendorff 1986; Zwick 2001a)  It differs from 
other techniques in that it can identify high-dimensional 
multi-component relationships among the variables. 

RA encompasses a number of related methods and 
variations: 

• Information-Theoretic(probabilistic) vs. Set-
Theoretic (crisp possibilistic) modeling.  The 
information-theoretic approach deals with a 
frequency or probability distribution over the states 
of the system, while the set-theoretic approach deals 

only with the occurrence or non-occurrence of each 
possible state. These two approaches can be seen as 
two distinct methods within the framework of 
Generalized Information Theory (Klir 98),which also 
includes fuzzy methods (currently outside the scope 
of the software system described in this paper).  
Information-theoretic RA is mathematically 
equivalent to Log-linear Modeling (Bishop et al 
1978; Knoke and Burke. 1980), where the two 
overlap.  Set-theoretic RA is related to techniques 
used in logic design and machine learning 
(Perkowski et al 1997; Files and Perkowski 1998). 

• Variable-Based, Latent Variable-Based and State-
Based modeling. Traditionally RA has used a 
variable-based approach, where the constraints of the 
model are associated with sets of variables and the 
corresponding state subspaces.  Latent variable-based 
modeling (Hagenaars 1993) takes a similar approach, 
but introduces new (unobserved) variables to 
represent relationships among the primary variables.  
State-based modeling (Zwick and Johnson, 2002) 
defines the constraints of the model (that is, the 
specifics of how the model must match the observed 
data) in terms of specific states of the data or its 
margins, rather than being defined by complete 
margins only.  Thus, state-based modeling is a 
generalization of variable-based modeling. 

• Directed vs Neutral Systems. In a directed system one 
or more of the variables is assumed to be dependent 
on the others, and the problem is typically to find a 
reduced set of variables which adequately predicts 
the dependent variable(s).  In neutral systems all 
variables are treated as interdependent, and the 
problem is to identify the relationships among the 
variables which most account for the relation or joint 
probability distribution. 

There exist several RA software packages, e.g., GSPS by 
Klir (1976), Elias (1988), and coworkers, CONSTRUCT 
and SPECTRAL by Krippendorff (1981), SAPS by 
Uyttenhove (1984) and Cellier (1987), EDA by Conant 
(1988), Jones’ k-systems analysis (Jones, 1989) and a 
recent program by Dobransky and Wierman (1995).  
However, no package fully encompasses the variations of 
RA discussed above.  Some programs are not easily used 
by researchers outside the systems field; others do not 
incorporate statistical tests; only EDA can handle large 
numbers of variables.  These packages are in limited use.  
A number of statistics packages  (SAS, SPSS, Statistica, 



LEM) provide a basic Log-Linear (LL) capability which 
can be used to perform RA in a confirmatory mode, 
where a model can be selected and its fit to the data 
evaluated. However, the set of possible models for a 
dataset of N variables grows hyper-exponentially with N.  
Because of this, and because RA is most useful for 
modeling complex (and therefore non-intuitive) 
relationships, a simple confirmatory approach has limited 
value.  Instead, one requires the ability to rapidly search 
the space of all possible models, applying heuristics to 
narrow the search. 

A previously developed software package, Occam (Zwick 
2000), was developed at Portland State University to 
provide a range or RA capabilities.  This package was 
derived from a set of predecessor programs, the first of 
which was written by Zwick in 1985.  Under his direction, 
programs (Occam0) were written by Hosseini, Anderson, 
and Shu which improved these computations and 
performed additional RA functions, and several of these 
programs were then integrated by Daniels, who also 
introduced heuristic search (Occam1).  Grygiel added new 
search procedures and an improved user interface 
(Occam2).  This most recent version has been used to 
analyze medical, healthcare, satellite, linguistic, and other 
data, as part of a general research program in discrete 
multivariate modeling (Zwick, 2001b).  A desire to 
increase the accessibility of RA methods to a broader 
range of researchers, and also make these methods both 
more flexible and more automated, has led to 
development of Occam3. 

II. KEY REQUIREMENTS FOR OCCAM3 

Ideally, a tool such as Occam should address the needs for 
three types of researchers in the RA community: 

1. Those developing variations on RA methods, as 
mentioned above. These researchers require the 
ability to extend the representation of core RA 
entities, such as data tables and model definitions. 

2. Those developing new algorithms within a given RA 
framework, such as novel search heuristics, different 
statistical measures, etc. These researchers need to be 
able to extend the processing rules used by the 
system. 

3. Those using RA for analysis in various domains. 
These researchers need a flexible analysis framework, 
which allows them to combine various methods 
according to the needs of their particular problems. 

Previous versions of Occam addressed item number 3 
only; the system architecture was rigid and provided no 
simple means of extension.  For this, a different 
architecture was needed. 

III. OVERVIEW OF RA 

Both information-theoretic and set-theoretic analyses 
begin with a table of sampled data, over a set of discrete 
variables (continuous variables can be discretized by 
binning.).  The cover is the set of variables in the data, 
and the data defines a distribution (information-theoretic) 
or a set-theoretic relation over the system states defined 
by the Cartesian product of all the variables. 

Given this data, one is interested in evaluating simpler 
approximations of the data.  In RA such an approximation 
is defined by a structure, which is a set of relations.  
(From now on, the the word relation will encompasses 
both distributions and set-theoretic relations.)  Each 
relation is in turn a set of variables from the cover.  For a 
four variable problem with a cover{A,B,C,D}, an 
example of a relation is ABC and of a structure is 
ABC:BCD. 

Given a structure, a model is constructed by first 
producing a projection for each relation in the structure, 
and then reconstructing a fitted relation over the cover, 
which agrees with all the projections.  For both set-
theoretic and information-theoretic RA, one chooses the 
relation which maximizes uncertainty subject to the 
constraints of the projections. 

A structure may be loopless or may contain loops. For 
example, AB:BC:BD is loopless, while AB:BC:ACD 
contains one loop (i.e., A→B→C→A).  Loopless models 
are more efficient to process because fitted distributions 
can be determined algebraically, while distributions for 
models with loops must be fitted iteratively. (For set-
theoretic relations, however, even models with loops have 
closed form solutions). 

Structures (and their corresponding models) can be 
arranged in a lattice by definition of a parent-child 
relationship.  Given a structure, each child structure is 
created by removal of a relation and reinsertion of all the 
embedded relations within that relation which are not 
already present in other relations of the structure.  For 
example, the relation ABC has embedded relations AB, 
BC, and AC.  Thus the children of ABC:BD are 
AB:AC:BC:BD and ABC:D. 

The topmost structure (model) in the lattice is the 
saturated structure (model), defined by all the variables 
occurring in a single relation, e.g. ABCD.  The bottom of 
the lattice is defined by the independence structure 
(model), which is defined by only first-order relations, 
e.g. A:B:C:D.  To be more precise: this is the bottom of 
the lattice if one wishes to maintain the same cover in all 
structures, so that every structure contains every variable. 

A researcher using RA is typically interested in one or 
more of the following questions: 



1. What are all possible structures for a given cover? 
What are all the loopless structures, structures of non-
overlapping relations, etc.? This might be a prelude 
to further exploration. 

2. Which subset of variables in a directed system is 
most predictive of the dependent variable(s)?  This 
problem is equivalent to bottom-up search of the 
sublattice of loopless models. 

3. Which model(s), allowing loops, provide the simplest 
representation of the data, while still fitting the data 
with adequate accuracy?  This question involves 
searching the lattice of models. 

4. What are the characteristics of each of a specific set 
of models?  The models may have been identified by 
some a priori criteria.  Models can be fit to the data 
and then compared based on predictive power, 
differences from the data, chi-squared statistics, etc. 
Details of the model, such as the residual error in 
each specific state of the system, can also be 
computed. 

IV. OVERVIEW OF OCCAM3 ARCHITECTURE 

The three requirements described above are addressed by 
separation of the architecture into three distinct layers. 
Each of these layers is extensible to address the needs of a 
particular constituency. 

The Occam Core provides the representation of basic RA 
entities. The implementation of the core must be done 
with careful attention to performance, memory usage, and 
robustness.  Implementation of this layer is done in C++. 

The Occam Management Layer provides the manipulation 
of Core entities.  This layer provides the basic 
mechanisms for searching, caching, computing statistics 
of interest, and reporting.  This layer is implemented in 
C++ and uses class inheritance to provide extensibility. 

Assembly of particular functions into an analysis strategy 
is done using the Occam Script Layer.  There are standard 
scripts for common situations (such as detailed analysis of 
a single model, or simple search heuristics), but it is 
possible to create more complex scripts for special cases.  
The scripts are written in the Python language (Beazley 
99), and an adapter interface between the Python 
interpreter and the rest of Occam3 is written in C++. 

Python was chosen because it is readily available on a 
wide variety of systems, including Windows and various 
forms of Unix.  It is powerful enough to develop complex 
algorithms, but does not require mastery of programming 
details such as variable declarations and memory 
management.  Even though Python is an interpreted 
language, most of the computation is done at lower levels 
of the system, so interpreter performance is not an issue. 

The specific approaches used for these three layers are 
described further in the sections below. 

Script Layer

Management Layer

Core

script

 
Architecture of Occam3 

V. THE OCCAM CORE 

Occam Core Objects 

The Occam Core provides efficient implementations of 
three key objects: Tables, Relations, and Models. These 
objects are described further below. 

Model

Relation

Data

Table

Projection

Table

Fitted

Table

 

 Objects in the Occam Core 

Tables 

A key goal of Occam3 is to be able to handle larger 
problems, with larger numbers of variables, than was 
possible with Occam2.  (Occam2 has been used to analyse 
data involving 10’s of variables.)  The state space of a 
particular problem grows exponentially with the number 
of variables, while the amount of available data for 
analysis is likely to grow at a much slower rate.  This 
means that, for large problems, the data is very sparse (not 
every feasible state is represented in the data sample). 

The Core takes advantage of this sparseness by avoiding 
the need to represent the entire state space explicitly.  A 
Table, whether it represents the input data or a computed 
projection, consists of a sorted list of tuples.  Each tuple 
contains a key, which encodes the states of the individual 
variables associated with that tuple; and a value which 
may be either Boolean (for set-theoretic analysis), a 
frequency, or a probability (depending on the type of 
analysis being performed). 

Tables are used in three contexts.  A Data Table contains 
observation data, typically read from a data file.  Data 
tables might also be produced by preprocessing data in 
some way, such as by binning quantitative variables, 
performing mask analysis on time series data, etc. 



A Projection Table is computed from a Data Table, and is 
associated with a particular Relation by summing over the 
missing variables for probabilistic distributions or taking 
a logical “or” for crisp possibilistic relations.  

A Fitted Table is a computed table associated with a 
Model, which defines a maximum uncertainty relation 
subject to the constraints of the model for all variables in 
the cover.  Fitted tables for distributions are produced by 
algorithms such as Iterative Proportional Fitting (IPF) 
(Krippendorf 19xx).  Research into other, more efficient 
methods for fitting is being done as part of the overall 
Occam project (Zwick 2002). 

For large analysis problems, the memory space 
requirements become dominated by storage of these data 
tables.  Typically the cardinality of individual variables is 
small (binary variables are common; most variables have 
only a few states); so bit-packing of the key is used to 
represent the tuple in the smallest possible number of 
bytes. 

Sorting the tuples allows binary searching to be used to 
find specific states, and allows operations on multiple 
tables to be performed in linear time.  Sorting eliminates 
the need for any additional indexing structure for the data 
tables. 

Each variable has an additional state, “absent”, which is 
used in computing projection tables.  For example, in a 
problem with binary variables A, B, and C, the tuples of 
the projection associated with AB are 00*, 01*, 10*, and 
11*, where “*” represents the “absent”.  

Computation of a Projection Table over one or more 
variables is done in time which is linear with the amount 
of data, and storage of this table is typically much smaller 
than the initial data set due to combination of tuples. 

Relations 

A Relation stores a list of variables defining the relation, 
an associated projection table produced from the initial 
data table, and a list of Attributes, computed from the 
relation (e.g., Degrees of Freedom, Uncertainty, etc.) 

Relations are reusable, because the projection table and 
relation attributes are independent of the model currently 
being evaluated.  Also, the storage space for a relation, 
and the high computational cost of computing the 
projection for that relation, makes this reuse a critical 
performance strategy.  A cache of Relations is maintained 
so that each relation is computed only once. 

Models 

An RA model is defined be a set of relations; thus each 
Model object contains references to its constituent 
relations, but not a separate copy.  A Model also contains 
a list of Attributes, with statistics of interest computed for 

the model.  A Model may also have a Fitted Table in 
cases where this must be explicitly computed (see below). 

VI. THE OCCAM MANAGEMENT LAYER 

While the Occam Core is concerned primarily with the 
representation of various data objects, analysis methods 
are implemented in the Occam Management Layer. 
Finding the best models, and computing and displaying 
statistics about models, involves three types of operations: 

• Navigation – this involves traversal of the lattice of 
all possible models, producing new candidate models 
from existing ones. 

• Reconstruction – for probabilistic systems, this 
involves construction of a fitted distribution for a 
given model.  Reconstruction requires generation of a 
projection for each relation in the model, then the 
combination of those projections to produce the fitted 
distribution. For models without loops, the fitted 
distribution can be represented explicitly in terms of 
the projections of the individual relations, and key 
attributes such as uncertainty and degrees of freedom 
are computed algebraically.  For models with loops it 
is necessary to construct a Fitted Table, using an 
algorithm such as Iterative Proportional Fitting (IPF).  
Reconstruction for crisp possibilistic systems is done 
using a closed form set-theoretic equation for models 
both without and with loops. 

• Evaluation – attributes of the model are computed 
and used to rank models for further processing. 
Attributes may be computed from the model structure 
(such as Degrees of Freedom), or may be computed 
from the fitted distribution (e.g., Uncertainty, 
Transmission). 

The Management Layer uses the entities of the Core 
(Tables, Relations, and Models) and basic operations on 
these entities (constructing projections, computing 
uncertainties, etc.) to build these higher-level RA 
methods. 

The foundation for building extensions in this layer (such 
as different heuristic search methods, of different 
evaluation criteria) is the Base Manager.  This object 
provides facilities for caching and reusing relations and 
models. 

The Base Manager also provides for basic operations such 
as construction of a fitted table for a model; computation 
of degrees of freedom (DF) and uncertainty (H) for 
models with overlapping components; and generation of 
all child relations of a given relation.  These basic 
operations are used in a variety of RA methods. 

More specialized managers can be constructed using class 
inheritance in C++.  Such a manager will augment and/or 
replace operations provided by the Base Manager. In 



particular, the Variable Based Modeling (VBM) Manager 
has been developed to provide support for classical RA 
methods. 

In the lattice of models the basic operations are to move 
upward (find all parents of a given model); or move 
downward (find all children). 

It is also useful to be able to navigate within the sublattice 
defined by models meeting a certain criterion, such as 
those without loops.  Restricting attention to loopless 
models allows much larger problems to be considered.  
For directed systems, loopless models correspond to 
models with a single predictive component. For example, 
the model ABC:AZ is loopless, while model ABC:AZ:BZ 
which has two predictive components contains a loop 
(A→B→Z→A) 

Most model evaluation methods are based on some 
measure that combines the complexity of the model and 
the quality of its fit to the data.  In the lattice of models, 
quality of fit is highest at the saturated model at the top of 
the lattice, which exactly fits the data.  Quality of fit 
decreases monotonically as one navigates down through 
the lattice, with the fit being poorest with the 
independence model which assumes all variables are 
independent.  (This is true among models which use the 
full cover, i.e. the set of variables in the data. It is possible 
to analyze even simpler models, where variables are 
removed from the model entirely, ending with the 
uniform distribution model.)  Quality of fit is typically 
measured by either the transmission between the model 
and the saturated model, or by the reduction in uncertainty 
of the dependent variables in the model relative to their 
uncertainty in the independence model. 

Model complexity, on the other hand, is lowest in the 
independence model, and increases monotonically 
upward.  Information-theoretic complexity is typically 
measured by DF; similar measures are available for set-
theoretic models (Grygiel 2000). 

Because the set of possible navigation operators is open-
ended, the VBM Manager has a facility for navigation 
“plug-ins”.  At this point plug-ins have been developed 
for full upward and downward search, as well as loopless 
upward and downward search (loopless upward search is 
currently limited to directed systems). 

The VBM Manager has algorithms defined for about 40 
relation and model attributes (Uncertainty, Transmission, 
standard and Pearson chi-square statistics, etc.).  
Additional attributes can be defined either as extensions 
to the Management Layer, or in the Scripting Layer. 

The result of the search process is typically a report of the 
best models encountered during search, sorted by some 
criterion (typically the same criterion which guided the 
search).  Depending on the analysis problem, different 

statistics of the models may be of interest. The 
Management Layer contains a report generator, which can 
be provided with a list of models, sort them according to a 
specified attribute, and display the results as a table. 
Tables can be generated in a textual format, a format 
compatible with desktop applications (e.g., spreadsheets), 
or in HTML. 

VII. THE SCRIPT LAYER 

One of the most serious limitations of previous versions 
of Occam was that minor variations in analysis technique 
required changes to the underlying software.  The 
researcher was restricted to a fixed set of options, and 
adding additional options not only required rebuilding the 
software but also led to a proliferation of options and 
controls. 

In the planning for Occam3, it was clear that more 
flexibility and programming power in the user interface 
was required.  Users who want to run analysis of a 
number of data sets, or preprocess the data in multiple 
ways before analysis, were interested in a way to 
automated this processing.  For this reason, instead of 
being developed as a stand-alone application, Occam3 
was developed as a loadable module which can be used in 
conjunction with the script language Python. 

The Python language was initially developed by Guido 
van Rossum at BWI in Amsterdam in 1990, and its 
continued development is performed by an Open Source 
development community.  Python is becoming common 
in information system management applications as well as 
in web systems. 

Python was selected because of its simple syntax, its high 
level functions (such as automatic memory management 
with garbage collection, list processing, etc.) and the ease 
with which it can be used with existing C and C++ 
libraries. 

Interfacing a C++ library to Python involves development 
of an adapter file, which describes how C++ facilities are 
made visible through Python.  Currently the Occam 
adapter exposes four classes through python: 

• ocVBMManager, which provides access to most of 
the computational and modeling functions, such as 
constructing models, performing search navigation 
operations, and computing statistics. 

• ocModel, which provides read access to details of a 
model, such as its attributes and relations. 

• ocRelation, which provides read access to the 
attributes and data of a single relation. 

• ocReport, which provides model sorting and 
reporting functions. 



The example below shows a simple script for performing 
a complete loopless top-down search, and producing a 

report sorted on %dH. 

import os, sys, occam 
sortName = "cond_pct_dh"  # this determines the sort order for filtering 
mgr = occam.ocVBMManager()  # create a variable based modeling manager 
mgr.initFromCommandLine(sys.argv) # initialize setting and read input file 
mgr.setSearchType("loopless-down")# set search method 
 
report = occam.ocReport()  # create a report generator 
report.setAttributes("level, h, ddf, lr, alpha_sat, cond_pct_dh"); 
report.setSeparator(3);  # align columns using spaces 
 
top = mgr.getTopRefModel()  # get the top (saturated) model 
 
# Build a work list; go through all the models and construct their children.  
# Mark models already processed so they aren't repeated. Add each model to 
# report generator 
 
modelList = [top] 
while len(modelList) > 0 : 
 model = modelList[0] 
 modelList = modelList[1:] 
  mgr.computeL2Statistics(model) 
 newModels = mgr.searchOneLevel(model) 
 for newModel in newModels : 
  if newModel.get("processed") <= 0.0 : 
   newModel.processed = 1.0 
   modelList.append(newModel) 
   report.addModel(newModel) 
 
report.sort(sortName, sortDir) # sort and print report 
report.writeReport("report.out") 

 

VIII. USING OCCAM3 FOR LARGE 
DATASETS 

A simple experiment was run using a subset of 
the OPUS data obtained from Dr. Clyde Pope of 
the Kaiser Permanente Center for Health 
Research in Portland, Oregon (Zwick and Pope, 
2002). This data concerns healthcare utilization 
in the Kaiser member population, and is a 
directed system with 24 independent and 1 
dependent variable. This data has previously 
been analyzed with Occam2, to (1) select a 
subset of the 24 variables, which is most 
predictive, and then (2) build a model structure 
from that subset of variables which is 
statistically significant. 

With Occam2 the first step requires exhaustive 
bottom-up search. Since the number of single-
component models grows exponentially with 
distance from the bottom of the lattice, the search 
for the best seven-variable model required many 
hours. 

The second step was able to take advantage of 
Occam2’s fixed width downward search, and 
was much faster.  Even so, running more than a 

few experiments (e.g., changing the number of 
variables in the selected subset) was very 
expensive, requiring several hours.  Also, the 
sequence of performing step 1, then step 2, 
required manual interaction. 

With Occam3 a simple script was written which 
defined the desired search strategy: a fixed-width 
single-predicting-component (i.e., loopless) 
upward search for the desired number of levels, 
followed by fixed-width downward search. All 
models not statistically significant were 
eliminated before the final report. 

The upward search to select the best 7-variable 
component was faster by more than an order of 
magnitude, with a search-width of 30 (i.e., the 
best 30 2-variable components were kept, then 
the 30 best 3-variable components, etc.)  This 
heuristic approach identified a number of single-
component models as good or better than the 
component found with Occam2. 

The scripting approach makes it simple to 
combine both the upward and downward search 
phases, and also allows experimentation with 



search width, number of levels, and different 
sorting criteria. 
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