Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

3-6-2015

Empirical Evaluation of Transit Signal Priority through Fusion of Heterogeneous Transit and Traffic Signal Data and Novel Performance Measures

Wei Feng Chicago Transit Authority, weifengpdx@gmail.com

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation

Feng, Wei, "Empirical Evaluation of Transit Signal Priority through Fusion of Heterogeneous Transit and Traffic Signal Data and Novel Performance Measures" (2015). *PSU Transportation Seminars*. 26. https://pdxscholar.library.pdx.edu/trec_seminar/26

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Empirical Evaluation of Transit Signal Priority

Wei Feng, Chicago Transit AuthorityMiguel Figliozzi, Portland State UniversityRobert Bertini, Cal Poly State Univ., San Luis Obispo

Transportation Seminar March 6, 2015

Background—Transit Signal Priority

Kamila Widulinski and Matthew Lapointe (2013)

Background—Transit Signal Priority

- Evaluation methods
- Analytic: Lin (2002); Abdy & Hellinga (2011)

Pre-install

- Simulation: Furth & Muller (2000); Dion et al. (2004)
- Empirical: Kimpel et al. (2005); Albright & Figliozzi (2012) Before / after

- Bus travel time
- Schedule adherence
- Headway variability
- Delay for other vehicles
- Lack of effectiveness and efficiency measures/evaluation

Motivation

Unique set of complementary data sources

Research Questions

Current TSP system in Portland:

- Effectiveness and efficiency?
- Time savings for buses vs. delay to cross street vehicles
- Green extension vs. early green phases?
- Near-side vs. far-side bus stops?
- Any problems and improvement opportunities?

Study Corridor

	Stop-to-	Stop-to-stop segment		Near-side (6) Far-side (12)				
Far-side:		33rd WB	39th WB	50th WB	52nd WB	65th WB		72nd WB
			39th EB	50th EB	52nd EB	65th EB	69th EB 71s	it EB
Near-side:	26th EB 26th WB	33rd EB	2	12nd EB 13rd WB				72nd EB

Portland State

Bus stop-to-stop segments

SCATS Signals

Data Integration

Bus Stop-to-Stop Trip Attributes

Θ

Input data

- Bus departure/arrival time
- Passenger activities
- Signal phase start/end time
- Priority request
- Upstream/downstream distance

Output variables

- Probability of arriving at intersection in:

- Green
- Red

Ξ

- Green extension
- Early green
- Signal delay
- Time savings

Bus Time Saving (Early Green)

Bus Time Saving (Green Extension)

Key Performance Measures

- TSP Frequency
- TSP Effectiveness (for each TSP request)
 - Probability of benefiting from a TSP phase
 - Expected time saving
- TSP Efficiency (for each TSP phase)
 - Probability of being beneficial to a TSP request
 - > Expected time saving per second of TSP phase duration

TSP Frequency

Average number of TSP phases per day

Average number of bus trips per day

When A TSP Request Will Benefit from GE/EG

Potential Results of A TSP Request

on-time EG = Red/Cycle

on-time GE = GE/Cycle

UNIVERSITY

Actual Outcomes of TSP Requests

GE: Green ExtensionEG: Early Green

Actual Outcomes of TSP Requests

TSP Effectiveness

UNIVERSITY

TSP Request Outcomes for GE

TSP Request Outcomes for EG

Actual TSP Effectiveness

Ideal TSP Effectiveness

on-time EG = Red/Cycle

Passenger Time Saving per TSP Request

TSP Phase Triggered by TSP Requests

% of GEs Associated to TSP Requests From

% of EGs Associated to TSP Requests From

TSP Efficiency

а

b

С

Bus trips that request TSP Green extension 1 3 2 Efficiency **Benefit No TSP request** (2) within the cycle **TSP** Early С phase Time b **On-time TSP request** saving (3) GE or EG within the cycle а Late

Actual Green Extension Efficiency

Actual Early Green Efficiency

TSP Efficiency (Time Saving vs. Delay)

Bus Passenger Time Saving per EG

Bus Passenger Time Saving per GE

 $\sum_{j} GE_{j}$

Vehicle Time Savings and Delay

Green Extension Efficiency

Assume single occupancy vehicles

Early Green Efficiency

Assume single occupancy vehicles

Summary of Findings

TSP performance

Green extension

Early green

- Vary significantly across intersections
- Big gap between actual and ideal performance
- Too many late green extension phases
- Time savings \approx Delay
- Time savings > Delay

Conclusions

- Proposed TSP performance measures can help identify problems/improvement opportunities and support planning decisions
- Findings from this study may be site-specific, but the methodologies are transferable to other corridors/cities
- TSP effectiveness and efficiency can be greatly affected by control logic, parameter calibration and signal detection/communication reliability

Future Work

- Consider vehicle queuing effect when estimating bus arrival time probabilities at intersections
- Utilize new and higher resolution data such as:
 - 5-second bus AVL data (finer bus trajectory between bus stops)
 - TSP Optical detector log data (priority log in/out records)

Acknowledgements

Steve Callas David Crout

Peter Koonce Willie Rotich

Questions?

On Average

On Average

