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Introduction

Horn’s parallel analysis (PA) is an empirical method used

to decide how many components in a principal component

analysis (PCA) or factors in a common factor analysis (CFA)

drive the variance observed in a data set of n observations

on p variables (Horn, 1965). This decision of how many

components or factors to retain is critical in applications of

PCA or CFA to reducing the dimensionality of data in anal-

ysis (as when compositing multiple scale items into a single

score), and also in exploratory factor analysis where the dif-

ferent contributions of each factor to each observed variable

help generate theory (Preacher & MacCallum, 2003; Velicer

& Jackson, 1990). As will be shown, the development of PA

was predicated upon properties of PCA. However, some have

been exponents of the use of PA for CFA (Velicer, Eaton, &

Fava, 2000). The correct application of PA with CFA re-

quires modification to the original PA procedure. This paper

attempts to clarify PA with respect to both PCA and CFA.

Concerning eigenvalues in PCA and CFA

PCA and CFA are two similar methods used to describe

the multicollinearity in an n by p matrix X of observed

data. Both methods produce eigenvalues—λs ordered

in magnitude from largest (λ1) to smallest (λp)—which

apportion variance along p unobserved dimensions. One

major interpretive difference between PCA and CFA, is

that in the former, each (unrotated) eigenvalue represents a

portion of total standardized variance in X, and in the later

each (unrotated) eigenvalue represents a portion of common

standardized variance shared among all p variables. This

means that the eigenvalues of a principal component analysis
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sum to p, and that the eigenvalues of a CFA sum to less than

p (and eigenvalues from a CFA can be negative).

For purposes of this paper, PCA is taken to be a function of

observed n by p data set X that returns a set of p eigenvalues.

If e (A) is a function returning a vector of eigenvalues of

square matrix A, and cor (X) is the correlation matrix1 of

X, then, leaving out the issue of eigenvectors, a PCA of X

returns the vector Λ of eigenvalues as in (1).

ΛX = e (cor (X)) (1)

Where

ΛX =
[

λ1, λ2, . . . , λp

]

(2)

and λ1 > λ2 > · · · > λp.

If U is a matrix of n observations of p uncorrelated vari-

ables, then as n approaches ∞, ΛU approaches the 1 by p

unit vector 1 (3). This jibes with the substantive interpreta-

tion of PCA as apportioning total standardized variance: if p

variables are perfectly uncorrelated, then in an infinite pop-

ulation they must each explain exactly the same amount of

standardized variance, namely (1/p) × p, or 1.

lim
n→∞
ΛU = 1

1×p
(3)

One can easily demonstrate this limiting property by running

the series of commands in R listed in Appendix A which re-

turn the eigenvalues of a PCA of U for progressively larger

values of n for p = 20.

The behavior of CFA relevant to PA in the limit of n can

be approached in the same fashion. If the function diag (A)

of a square matrix returns a square matrix with the main di-

agonal elements (ai j where i = j) of A, and zeros in all other

elements, and if A+ is the Moore-Penrose inverse (also ‘gen-

eralized inverse’, or ‘pseudoinverse’) of the matrix A, then a

1A previous version of this document mistakenly used the term

‘covariance matrix.’ While PCA and CFA can be performed using

covariance matrices with specific constraining assumptions (Gor-

such, 1983), the arguments presented here were and are relevant to

correlation matrices.
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CFA of X returns the vector ΛX of eigenvalues as in (4).

ΛX = e
(

cor (X) − diag
(

cor (X)+
)+
)

(4)

and ΛX =
[

λ1, λ2, . . . , λp

]

, with λ1 > λ2 > · · · > λp as in (2).

If U is a matrix of n observations on p uncorrelated vari-

ables, then as n approaches∞,ΛU approaches the 1 by p zero

vector 0 (5). This jibes with the substantive interpretation of

common factor analysis as apportioning common standard-

ized variance: if p variables are perfectly uncorrelated, then

in an infinite population there can be no common standard-

ized variance, so each factor ‘explains’ zero common vari-

ance.

lim
n→∞
ΛU = 0

1×p
(5)

One can easily demonstrate this property by running the se-

ries of commands in R listed in Appendix B (requires the

MASS package from http://cran.r-project.org) which return

the eigenvalues of U for progressively larger values of n (the

commands return the diagonal of ΛU).

The difference between (3) and (5) is critical to the correct

application of PA to PCA versus CFA.

Applying PA

Kaiser (1960) asserted that in application of PCA one

would retain those components with eigenvalues greater than

one (6).

λq

{

> 1 retain

≤ 1 do not retain
(6)

Where q indexes the eigenvalues from 1 to p.

Horn (1965) elaborated upon this logic by pointing out

that applied researchers do not have an infinite number of

observations. According to Horn, in order to account for

“sampling error and least squares bias” due to finite n, one

would want to:

1. conduct a parallel PCA on an n by p matrix of uncorre-

lated random values;

2. repeat this k times;

3. average each of the eigenvalues λr
q over k, to produce

λ̄r
q; and

4. adjust λq by subtracting from it
(

λ̄r
q − 1
)

to produce

λ
ad j
q .

The retention criterion of PA is to retain those first com-

ponents with adjusted eigenvalues greater than one (7).

Technically, PA is a stopping rule in PCA, because the

adjustment to subsequent components—especially the last

few components—may sometimes increase their eigenvalues

above the value of one. The retention criterion in (7) can be

stated in a mathematically equivalent way as “retain those

first components with unadjusted eigenvalues greater than

the corresponding mean eigenvalue of random data” (8).

λ
ad j
q

{

> 1 retain

≤ 1 do not retain (and stop)
(7)

λq

{

> λ̄r
q retain

≤ λ̄r
q do not retain (and stop)

(8)

PA must be amended for use with CFA by calculating the

adjusted eigenvalue λ
ad j
q as λq − λ̄

r
q. The retention criteria

must likewise be changed to retain those first adjusted eigen-

values greater than zero (9). Technically, PA is a stopping

rule in CFA, because the adjustment to subsequent common

factors—especially the last few factors—may sometimes in-

crease their eigenvalues above the value of one. And as

with PA for PCA, this criterion for CFA can be restated in

an equivalent form as “retain those unadjusted eigenvalues

greater than the corresponding mean eigenvalue of random

data” (8).

λ
ad j
q

{

> 0 retain

≤ 0 do not retain (and stop)
(9)
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NOTE: Both the verbatim and listings approaches to representing code produce output that has problems for simple

select-cut-paste operations with LATEX on my computer. This means that selecting, copying, pasting and then trying to execute

the following examples may present difficulties, so I recommend typing them out. Email me if you have suggestions for how

to fix this.

Appendix A

*

The limiting case of Λ in PCAs of uncorrelated data

p <- 20

for (n in c(100, 1000, 1000000) ) {

U <- matrix(rnorm(n*p),n,p)

Lambda_U <- eigen(cor(U), only.values = TRUE)[[1]]

cat("For n = ", n, ", Lambda_U (PCA) = \n", sep="")

print(Lambda_U)

cat("\n")

}

Appendix B

*

The limiting case of Λ in CFAs of uncorrelated data

library(MASS)

p <- 20

for (n in c(100, 1000, 1000000) ) {

U <- matrix(rnorm(n*p),n,p)

Lambda_U <- eigen(cor(U)-ginv(diag(diag(ginv(cor(U))))), only.values = TRUE)[[1]]

cat("For n = ", n, ", Lambda_U (CFA) = \n", sep="")

print(Lambda_U)

cat("\n")

}
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