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Analytic modeling of gain-switched lasers. I. Laser 
oscillators 

Lee W. Casperson 

School of Engineering and Applied Science, University of California, Los Angeles, California 90024 
(Received 6 October 1975) 

Detailed mathematical models are derived for the evolution of light pulses in gain-switched laser oscillators. 
Unlike previous instantaneous-switching models, arbitrary pump and spontaneous relaxation rates are 
considered. Explicit expressions are obtained for the gain and pulse characteristics in several practical 
situations, and both homogeneous and inhomogeneous limits are considered. By proper adjustment of the 
laser pump any output-pulse shape can be obtained. The results are especially relevant for recent short
pulse ultraviolet lasers and also for more conventional devices such as TEA CO2 lasers. 

PACS numbers: 42.60.L, 42.60.N, 42.60.C 

I. INTRODUCTION 

An ever-widening range of laser applications requires 
the formation of short optical pulses having high inten
sity and possibly prespecified temporal characteristics. 
BeSides the various radar and related applications, 
pulses of this type are essential for most laser-fusion 
schemes. In pellet-compression laser fUSion, for exam
pIe, maximizing the intensity of the laser pulse is a 
basic requirement. Nearly as obvious is the require
ment that the pulse have a precisely speCified time 
shape. Many industrial, medical, and metrological 
applications also require well-controlled optical pulses. 
Therefore, it is important that the characteristics of 
pulsed laser oscillators and amplifiers be understood 
in the greatest possible detail. 

There have previously been several investigations of 
the output properties of pulsed lasers. 1,2 Most of these 
treatments have assumed as their starting point that the 
gain switching or Q switching is instantaneous and that 
the optical field consists of a single monochromatic 
frequency at the gain center in a homogeneously broad
ened medium. After the gain is switched on (or the loss 
is switched off) in such a model, the optical pulse 
rapidly builds up from spontaneous emission. When the 
gain has been depleted, the pulse decays away due to 
cavity losses. Optimum coupling conditions have also 
been calculated. 3 Recently the spectral characteristics 
of such gain-switched pulses have been described in de
tail including the gradual resolution of the longitudinal 
modes from the broad-band spontaneous emission and 
the narrowing of the over-all spectrum. 4 The effects of 
inhomogeneous broadening have been considered too. 
For many practical lasers, however, the instantaneous
switching model provides a somewhat inadequate de
scription of the actual gain characteristics. Often the 
gain rises gradually due to continued pumping and 
spontaneous relaxation may be significant during the 
development of the optical pulse. The purpose of the 
present work is to develop new analytic models for the 
laser output including a time-dependent pump rate and 
spontaneous relaxation. These solutions are reduced to 
the simplest possible mathematical form and then 
applied to specific laser systems. The results are rele
vant for high-pressure ultraviolet (uv) xenon lasers, 
because in these systems a substantial decay of the in
version may take place during the rise time of the opti
cal pulse. With TEA lasers, on the other hand, the out-
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put pulse normally occurs during the rise time of the 
gain. For all such lasers and other similar devices the 
techniques developed here provide a much more reason
able description of the output characteristics than is 
possible with the instantaneous-switching approxima
tion. In addition it becomes possible to choose a pump 
function which will yield any desired output-pulse shape. 

In a related study the properties of gain-switched 
laser amplifiers have been conSidered in detail. 5 For 
very-high-power applications it is always simplest and 
most effective to add a pulse amplifier chain after the 
laser-oscillator source. Exact analytical models have 
been developed for the pulse transfer characteristics 
of typical amplifier chains including lor the first time 
a completely arbitrary space- and time-dependent 
pumping function. The oscillator pulse shapes derived 
here are used as input pulses for the amplifiers con
sidered in the following paper. 

The basic pulse-evolution formulas are derived in 
Sec. II. With an exponential pump characteristic, the 
predicted gain behavior is found to be in excellent 
agreement with previously obtained data involving 1700-
A xenon lasers and 10. 6-JJ. CO2 lasers. In Sec. III the 
special case of instantaneous pumping with gradual 
spontaneous decay is conSidered in greater detail, and 
the complementary case of slow pumping with no decay 
is treated in Sec. IV. In each of these limits the satura
tion behavior is governed by a simple differential equa
tion. For the eaSiest case of instantaneous pumping and 
no relaxation, approximate closed-form solutions for 
the output pulse can be obtained, and these are de
scribed in Sec. V. In Sec. VI formulas are derived 
which indicate the necessary pumping function for 
achieving any deSired gain or output-pUlse shape, and 
some effects of inhomogeneous broadening are dis
cussed briefly in Sec. VII. 

II. DERIVATION OF INTENSITY EQUATIONS 
There are various ways that one can approach the 

problem of light propagation in laser systems and the 
details depend on the type of approximations that can be 
made. In the majority of practical applications the 
coherence time T2 is short compared to any other time 
of interest and the behavior is governed by familiar rate 
equations. 1-4 Most previous treatments have employed 
this simplification and it is the starting point for the 
present analysis as well. Thus the coupled pair of rate 
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equations governing the frequency-dependent population 
densities of the upper and lower laser states in a 
medium with inhomogeneous broadening are4 

on2(y, z, t) 
01 

S( ) ( )( ~f~ I(y"Z,t) d) 
= 2y,Z,t -n2 y,z,t A 2+ 7T 6.V

h 
_~ 1+(y-y,)2 Y, 

( ) ~f~ I(YI,Z,t) 
+n l y, z,t 6. 1 ( )2 dYl' 

7T V h _~ + y-y, 

onley, z, t) 
at 

(1) 

S( ) ( )(A ~f~I(YI,z,t) ) 
= IY,Z,t +n2 y,z,t 21+ A 1 ( )2dYI 

7T .... V h _~ + y-y, 

( )( 2Bo f~ ICYI' z, t) ) 
-nly,z,t ,4 1 + 7T 6.V

h 
_~1+(Y_YI)2dYl' (2) 

Here SI(Y, z, t) and S2(Y' z, t) are space- and time-depen
dent pumping rates, Y I = 2( v I - 1'0)/6. v h is a frequency 
parameter normalized in units of the homogeneous 
line width 6.vh , I(y" z,t) is the average spectral density 
at the frequency y" and the significance of the Einstein 
A and B coefficients is apparent. If the lower state 
decays quickly compared to the pulse length, it follows 
from Eqs. (1) and (2) that the inversion density n=n2 

- n1 is governed by an equation of the form 

on(y,z,t)=S( t)- ( t)~ 
at y,z, ny,z, rr6.v

h 

xf~ l(y" z, t) d _ n(y, z, t) . 
_~ 1 +(y _y,)2 YI T2 

(3) 

Except for the spontaneous decay terms, the same basic 
form is also obtained in the limit of negligible lower
state decay. 

In a laser medium of the type considered here the 
growth of intensity is proportional to the population in
version, and the governing equation is 

ol(y" e,t) +...!.- oleYl, z,t) 
OZ Vg at 
=hv , 2!o [l(y" z, t) +1)] 

7T .... V h 

f ~ n(y, z,t) d ( ) 
X 1 ( )2 Y -yl y" z, t , 

_~ + y-Yl (4) 
where Vg is the group velocity and y represents distri
buted losses. The noise parameter is 1)=hv ,6.vh/2A, 
where A is the mode area. Equations (3) and (4), which 
couple the intensity to the population inverSion, provide 
the basis for most of the following analysis. They give 
a very general description of the development of an 
intensity spectrum in a saturating laser amplifier hav
ing an arbitrary amount of inhomogeneous broadening 
and an arbitrary pump distribution. The equations are, 
of course, highly nonlinear and they cannot be solved 
in any general sense. However, for most practical 
problems enormous simplifications are possible and 
often analytiC solutions can be obtained. In the remain
der of this paper we are concerned with deriving some 
of these solutions and investigating their implications 
for practical laser systems. 
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An important special case of the previous results in
cludes the homogeneously broadened lasers, and this 
limit is appropriate for most practical short-pulse 
devices. In a homogeneously broadened laser it is 
generally the case that both the intenSity spectrum 
I(y" z, t) and the inversion spectrum n(y, z, t) are narrow 
compared to the Lorentzian homogeneous line shape. 
Then Eqs. (3) and (4) can be integrated over frequency 
to obtain 

rJN~z,t) =S(z,t)-sI(z,t)N(z,t)- N(z,n , 
ut ~ 

(5 ) 

ol(z,l) 1 al(z,/) 
-;;-t- + Vg -a-t-=hv,s[I(z,t) +Io]N(z,t)-yI(z,tl, 

(6) 

where a new inversion density N(z,f) =f:' n(y, z, t)dy, 
intensity I(z, t) = f~~ l(y" z, ndy" pump S(z, t) 
= f~~ S(y, e, t)dy, saturation parameter s = 2Bo/7r6.v h , 

and input noise 10 = 7T1) have been introduced. Close to 
threshold the intenSity spectrum is actually not narrow 
compared to the homogeneous width, but Eqs. (5) and 
(6) apply under typical operating conditions. 

EquaUOll (5) is a linear first-order differential equa
tion with nonconstant coefficients. The Solution of such 
equations is well known and the result is 6 

N(z,t)=exp[-s f: I(z,t')dt ' -t/r2 1 

x i~ SCz, t')exp[s f: I(z, l")d/" +t l /T 2 1dt ' , (7) 

where it has been assumed that the inversion at t = - co 

is zero. With Eq. (6) the intensity is therefore governed 
by 

al(z, t) 1 al(e, t) 
---+----

at Vg at 

=hv,s[I(z, t) +10 I exp (- s f~tl(Z' t')dt 1_ ~J 

xf t S(z, t') exp(s ft'I(Z, t") dt" + ~' )dtl - yI(z, 0. 
-~ -~ 2 (8) 

Equation (8) is the basic working equation for homoge
neously broadened lasers. This result is an appropriate 
starting point for a variety of problems involving tran
sient effects in laser amplifiers and oscillators. 

As a first cheCk on the practical applicability of Eq. 
(8), one may consider the determination of the unsatu
rated gain. The single most important pumping function 
in practice is the z-independent exponential 

S(e,t)=Soexp(-I/T3 ), t >0 

=0, t <0. 
(9) 

This corresponds to an exponentially decaying transfer 
of excitation into the upper laser state from some other 
state (level three) of the system. Then Eq. (8) takes the 
form 

al(z,t) + 1.. al(z,t) 
a z v ~ at 

= go [I(z, t) +Iol exp(- s f
t

' I(z, l')dt' _1-) 
~ ~ ~ 

it ~ it' t' tl) x exp s l(e, t")dt" +-.:..- dt ' -yI(z,t), 
a a T 2 T 3 (10) 
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FIG. 1. Time-dependent gain functions for (a) a high-pressure 
electron-beam-excited xenon laser and (b) a resistive-pin 
TEA CO2 laser. The xenon data is from Ref. 7, and the CO2 
curve agrees with the experimental results of Ref. 8. 

where the gain parameter go = 73hviSSO has been intro
duced. In the absence of the saturation exponentials it 
follows from Eq. (10) that the instantaneous unsaturated 
gain coefficient is 

g(t) = go exp - - exp - -....:.. dt' ( t)ifn t ( t' t ') 
73 72 0 72 73 

= 1-~/72 [exp (- :J-exp (- :Jl (11 ) 

Differentiation of this equation shows that the peak value 
of the gain occurs at the time 

(12) 

Equations (11) and (12) are in good agreement with 
measurements of the unsaturated gain or fluorescence 
in practical gain-switched lasers. In short-pulse elec
tron-beam-excited uv xenon lasers at 1700 A, for exam
ple, the fluorescence is known to be well represented 
by a sum of exponentials. 7 The spontaneous decay time 
is 72 = 20 ns, and at a pressure of 100 psi the pumping 
time is about 4 ns. A plot of the corresponding gain 
function from Eq. (11) is given in Fig. 1(a). From Eq. 
(12) the gain maximum occurs about 8 ns after the 
excitation current. 

These results are also in agreement with gain mea
surements made with many types of TE CO2 lasers. In 
resistive-pin devices, for example, the discharge is 
usually completed in a few hundred ns. 8 Then the upper 
laser state is pumped by the exponentially decaying 
transfer of excitation from the vibrationally excited N2 
molecules. The relevant lifetimes are governed by the 
equations9 ,lO 
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(13) 

7 -(5 OX10- 15N +16x10- 15N +1 1xlO-15N )-1 2- • C02' N 2 ' He , 

(14) 
where N x is the number of molecules of component x 
per cm3. But the density of molecules at standard tem
perature and pressure is Ntotal =2. 687 X1019 cm-3. 
Therefore, in a TEA laser having a 1 l' 30 mixture of 
CO2:N2 :He, the lifetimes are 73=2.0 JJ.s and 72=30.1 
JJ.s. With these values the gain is plotted in Fig. 1(b) 
using Eq. (11). The resulting curve is in excellent 
agreement with the corresponding experimental data 
over the entire time history of the gain. 8 From Eq. (12) 
the gain maximum should occur at the time t max = 5.8 
JJ.s, while the reported value is 5.5 JJ.s. Thus the ana
lytical model described here exhibits the essential gain 
characteristics of practical gain-switched lasers, at 
least in the limit of negligible saturation. The detailed 
validity of these results will be explored more fully in 
Secs. III-V which deal with saturating laser oscillators . 

III. SATURATING OSCILLATOR: FAST PUMP. 
SLOW DECAY 

In Sec. II general analytical gain saturation equations 
have been developed. These equations may now be 
applied to determine the output intensity of specific 
laser systems. The intensity equation simplifies great
ly in certain special cases. In this section we consider 
situations in which the gain rises rapidly to its maxi
mum value and then decays slowly during the develop
ment of the saturating optical pulse. This limit is 
appropriate for many practical lasers including the 
nanosecond pumped 1700-A. uv xenon lasers. The oppo
site limit of a slowly rising gain is conSidered in the 
Sec. IV. 

From Eq. (8) the general equation for the intensity 
in a gain-switched laser oscillator is 

dl(t) 21 (fl t) at ='ThVIS[/(t) +fo] exp - 2s _~ 1(t')dt'-7; 

xf~ s(t')exp(2sf~' l(t")dl" + ~Jdl'-YJ(t), 
(15) 

where l(t) is the one-way intensity, I is the length of the 
laser medium, and T is the round-trip time. The factor 
of 2 in the saturation exponentials results from the fact 
that with homogeneous broadening the population inver
sion is depleted by the radiation propagating to the right 
and to the left. The cavity losses are lumped into the 
parameter Yc = (2yl -lnR j R 2)/T, where Rl and R2 are 
the mirror reflectivities. Equation (15) may be used for 
many types of problems involving optimum coupling 
and transients in laser oscillators. Q switching and 
more complicated output-coupling schemes could be 
treated by introducing the time-dependent loss parame
ter yc(t). 

With the exponential gain function of Eq. (9), Eq. (15) 
is 

d~~) = ~: [/(t) +fol exp(- 2s 1 I l(t')dt' - ~J 

xit eX/2s (t'/(I")dt" +~ -'!:"')dt' -yJ(t), (16) 
o ~)o 72 73 
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FIG. 2, Output power characteristics for a 1700-A xenon 
laser as a function of initial unsaturated gain. The arrow 
marks the location of the small power maximum for gc~ 2 
x 109 s·l, Experimental results of Ref. 7 correspond approxi
mately to the curve ge Oo 4 X 109 s·l. 

where the gain is represented by the coefficient ge 
=2lhv zsS0 7 3 /T, In the limit 73 - 0 the exponential 
exp(-t'/T) in Eq. (16) acts like a () function and the 
equation reduces to 

dIU) (ft t) dt =ge[I(t) +Iolexp -2s I(t')dt'- 72 -YeW)' 

o (17) 
This equation can be readily solved numerically, since 
the derivative at any instant of time predicts the inten
sity at a later time according to l(t + t.t) = I(t) 
+ (dI /dt)t.t. 

Plots of Eq. (17) are given in Fig. 2 using numbers 
appropriate to the xenon laser mentioned previously. 
In particular, with a cavity length L = 0.1 m and mirror 
reflectivities of 70% the loss coefficient is approxi
mately Ye=109 S-1. With reasonable 1-m mirror curva
tures the mode area is about A = 3.7 x10-8 m2

• 11 Since 
the homogeneous linewidth is t.Ah = 150 A, 7 it follows 
that the spontaneous-emission noise intensity is 10 
=7515 W/m2

• The saturation parameter is 
approximately. 

(18) 

The vertical scale in Fig. 2 is obtainBd by assuming 
somewhat arbitrarily that the total beam area is 0.1 
cm2 and that the mirror transmission is 10%. From the 
curves in Fig. 2 it is evident that the stimulated emis
sion takes the form of a short pulse when the gain ge 
exceeds the loss Ye' When the gain is about four times 
the loss it follows from the figure that the pulse width 
is about 3 ns, which is the same as the experimentally 
obtained value. 7 The output power level of about 15 MW 
is also comparable to typical experimental results. 12 

It may be emphasized that the existence of a narrow 
peak in the laser output is not conclusive evidence that 
the laser medium has been saturated by the optical 
field. In the absence of the saturation integrals Eq. (16) 
reduces to 
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dI(t) 
dl 

This is a linear first-order differential equation and 
the solution is 6 

(19 ) 

where the initial intensity has been set equal to zero. 
If 73 is also set equal to zero, Eq. (20) Simplifies to 

1(t)=gc l oexp{gc72[1 -exp(-1/7211-y/r 

xfot exp{-gc72[1-exp(-I'/72)]-I'/72 +Yel'fdl'. 

(21) 

Equation (21) is plotted in Fig. 3 for various values of 
the gain gc' The numerical constants used in obtaining 
these results are the same as those employed previously 
in analyzing the 1700-A xenon laser. It is evident from 
the figure that even in an unsaturated laser oscillator 
the output takes the form of a narrow pulse of radiation. 
For the curves shown the pulse width is about 10 ns, 
which is much greater than the corresponding experi
mental values. One can conclude, therefore, that the 
experimental stimulated-emission intensities are suffi
Cient to saturate the 1700-A. transition. 

107 

106 

105 

104 

~ 
~103 .. 

102 

10 

5 10 15 20 25 30 
t (ns) 

FIG. 3. Power characteristics as a function of the gain ge 
for the xenon laser operating close to threshold where satura
tion is negligible. 
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FIG. 4. Output power of a CO2 laser with a 5:5:90 gas mix
ture of CO2:N2:He, The gain and loss coefficients aregc 

3 

~ 1. 5x 108 S·1 and 'Yc= 1. 7 X 107 s·I, As the loss is reduced the 
tail of the pulse changes, but the important leading edge and 
pulse delay are only slightly affected. 

IV. SATURATING OSCILLATOR: SLOW PUMP, 
NO DECAY 

Another important class of gain-switched laser 
oscillators occurs when longer-lived molecules are 
present. It then may happen that the stimulated-emis. 
sion pulse is over before the pumping is complete, and 
spontaneous decay of the upper laser level may be en
tirely negligible. This model is approximately valid for 
many TE CO2 lasers, for example, and we use CO2 as 
our principal illustration. A complicating feature of CO2 

lasers is that the lower-state relaxation time is not 
always negligible as we have assumed. In fact the lower 
state decays via complicated resonance processes, and 
the relevant mechanisms and lifetimes are still the 
subjects of investigations. 13 Far above threshold the 
lower-level saturation effects can lead to a Slight reduc
tion in pulse height accompanied by an increase of ener
gy in the pulse tail. The important leading edge of the 
pulse is unaffected. 

In the limit T 2 - 00 it follows from Eq. (16) that the 
intensity in an exponentially pumped laser oscillator is 
governed by 

d~~t) =~[l(t) +10]exP(-2s Iat IU/)dt) 

x ~t exp~s it' l(t")dt"- ~Jdt' -yJ(t). (22) 

If the spontaneous -emission input is neglected for the 
moment, Eq. (22) can be written 

--=-~- exp -2s I(t')dt ' d/(t) fI_ d [ ( f t ) 
dt 2S73 dt 0 

f t ( f t
' I 

X 0 exp 2s )0 I(t")dt" - ~3)dt' -ycl(t). (23) 
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The integral of this equation is 

1(1)= - 2:~3 exp (-2S Jot 1(t')dt) 
x it eXI=(2S Iat' I(t")dt" - :Jdtl 

-f: [exp ( - ~J -1] -Yc~ t I(t')dl ' +/0' (24) 

where the effective initial intensity has been set equal 
to the spontaneous emission input 10 , This definition is 
valid as long as the unsaturated gain gc is much greater 
than the loss. In terms of the new parameter C(t) 
=2s fbl(t/)dt/, Eq. (24) becomes 

d~~t) = _ ;: exp[ _ C(t)] it exp(C(l/) - ~ )dtl 

-gct!Xp(- :J-IJ-YcC(t) +2s1 0 
This equation is of lower order than Eq. (22) and 
numerical solutions are readily obtained. 

(25) 

The laser output intensity from Eq. (25) is plotted in 
Fig. 4 using numbers appropriate to CO2 lasers. For a 
reasonable 0.5: O. 5 : 9 gas mixture of CO2 : N2 : He, 
Eqs. (13) and (14) yield the lifetimes T3 = 1. 24 /-Ls and 
T 2 = 28. 2 /-Ls. It will turn out that this value of T 2 is 
much larger than any other time of interest, so the 
previous neglect of the spontaneous relaxation term is 
justified. If the cavity length is L =2 m and the reflec
ti vity of the coupling mirror is 80%, it follows that the 
loss parameter is Yc = - 0.75 x 108 1n(0. 8) = 1. 7 x107 

S-I. 

The homogeneous pressure -broadened line width of the 
A = 10.6 /-L transition at a temperature of 300 "K is given 
by13 

~lIh = 7.58 X 1Q6(1/icoz +0. 731.jJN 2 +0. 6>jJHe)P, (26) 

where ljix is the partial fraction of gas x and P is the 
pressure in Torr. For the gas mixture mentioned pre
viously the linewidth at atmospheriC pressure is 3.61 
GHz. Therefore, a mode area of 1 cm2 implies an input 
noise intensity 10= 1. 06xlO-s W/m2

• A reasonable 
saturation energy for a resistive-pin laser is 0.1 J and 
thus the saturation parameter is s=10-3 m 2/J. 

Several features of the solutions of Eq. (25) are Signi
ficant. With increased pumping (larger g) the output 
pulse becomes higher and narrower as observed in 
practice. Also, the delay between the discharge and the 
pulse maximum is reduced as the gain is increased. 
The secondary pulse seen in Fig. 4 is due to continued 
pumping from the excited nitrogen molecules, and this 
pulse is also observed with practical TEA CO2 lasers. 
The gain used in the plots is gc = 1. 5 xl08 S-l, which 
corresponds to the reasonable value go = 1. 0 m -1 and an 
amplifier length of 1=1 m. The loss has been varied 
for the different curves shown in the figure instead of 
the gain, and it can be seen that the leading edge of the 
pulses are nearly independent of the loss y c' For very 
low losses useful explicit expressions for the intensity 
can be obtained. 

Multiplying Eq. (25) by expC(t) and differentiating 
yields 
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d2 
expC(t) {[ ( t)l }d expC(t) 

d/ 2 = Kc l-exp --:r; 'J+2SIo dt ,(27) 

where it has been assumed that cavity losses are small 
(Ye - 0). This equation can be integrated to obtain 

dexpC(t) { [ ( t)~ } dt =2sIoexp get -ge T 3 1 -exp - T3 ~ +2sIol . 

(28) 
A second integration gives 

expC(t) 

= 2sIo I: exp{get ' -geT3[1 -exp(-I'/T3)] +2sIot'}dt' +1. 

(29) 

The final expression for the intensity in a low-loss gain
switched laser oscillator is 

1 dCU) 
I(t) = 2sC(t) dt 

=IoeXP{get -geT3[1 -exp(- ~3)] +2SIo/} 

X(2sIo~texp{get'- ge T{I- exp (- :JJ +2SIot'}dt' + If 
(30) 

This result is useful when the main interest is in the 
leading edge of the laser output pulse, In the limit of in
stantaneous pumping (T3 - 0) Eq. (30) simplifies to 

I(t) = I ge + 2sl0 
o ge exp( - gel - 2s lot) + 2sIo 

(31) 

These formulas are used in a related work as input 
pulse shapes for the analysis of pulse propagation in 
saturating laser amplifiers. 5 It will be shown that only 
the leading edge of the pulse is important in determin
ing the transfer characteristics of such amplifiers. 

V. SATURATING OSCILLATOR: FAST PUMP, 
NO DECAY 

As a final example of a saturating gain-switched 
laser oscillator, we consider the simplest possible case 
where the gain is switched on instantaneously and no 
spontaneous relaxation occurs, In the limit T 3 - 0, 
T2 -OO, Eq. (16) reduces to 

(32) 

and numerical solutions are elementary. One can also 
obtain approximate analytical solutions which include 
all of the significant features of Eq, (32). The general 
form of these solutions is suggested by an examination 
of the low-loss expression given in Eq. (31). In that re
sult saturation occurs abruptly when the exponential 
term in the denominator ceases to be much larger than 
2sIo• Therefore, we are led to try the pulse shape 

(33) 

This is an exponential pulse having a peak intensity Ip 
occurring at the time tp. 

The usefulness of Eq. (33) can readily be demon
strated. Early in the pulse both Eqs. (32) and (33) imply 
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that the intenSity grows exponentially like eXP[(Ke -yJt I. 
Late in the pulse after heavy saturation has occurred 
both equations imply that the intensity decays like 
exp(-y/). Equation (33) can also be matched to the 
exact solution of Eq. (32) with respect to peak intensity 
and pulse delay by proper choice of the parameters Ip 
and tp. 

For the limit under conSideration Eqs. (5) and (6) 
governing the intensity and population inversion reduce 
to 

dIU) ge dl = N I(t)N(t) -yJ(t), 
o 

(34) 

d~~t) = _ 2sI(t)N(t) , (35 ) 

where No is the initial population inverSion. If Eq. (34) 
is divided by Eq. (35), one obtains 

~=_~+....1:.L. 
dN 2sNo 2sN 

(36) 

The integral of this equation is 

1= _ ge(N - No) + U In(.!i) , 
2sNo 28 No 

(37) 

where the initial intensity is assumed to be small. From 
Eq. (34) the peak intensity occurs when the inversion 
is Np=NoyJge. With this value of the inversion it fol
lows from Eq. (37) that the peak intenSity is l 

Ip=...h[ge -In (ge)-lJ. (38) 
28 Ye Ye 

An expression for the pulse delay fp can also be ob
tained. From Eq. (32) the pulse in its initial stages is 
described by 

1(1)= ~ exp[(ge -Ye)t]. 
ge -Ye 

(39) 

On the other hand, Eq. (33) implies that the initial in
tenSity variation is 

(40) 

From a comparison of these expressions one findS the 
relationship 

(41) 

Thus the pulse delay is approximately 

t =---In ~~. -1 ('\1_ I ) 
p ge -Ye ge -Ye Ip 

(42) 

With Eq. (38) this is 

fpC< _--I-In! 2s10 :\. (43) 
ge -Ye \(go -Ye)[geIYe -In(geIYC> -1] J 

Equation (33) is plotted in Fig. 5 USing Eqs. (38) and 
(43) together with the numerical constants ge = 1. 5 xl08 

s-t, ye =1.7xl07 s- l , 8=10-3 m2/J, I o=10-e W/m 2
, an 

output coupling of 20%, and a mode area of 1 cm2
• The 

peak power in this example is I p =0.96 MW, and the 
pulse delay is tp=O. 30 J1.s. The corresponding numeri
cal solution of Eq. (32) has also been obtained, and 
within the accuracy that can be represented in the figure 
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FIG. 5. Output power for a laser with instantaneous gain 
switching and no decay of the population inversion. This is a 
plot of the explicit formula given in Eq. (33). 

the two solutions are identical. The only possible dis
crepancy with this model is a slightly incorrect decay 
of the pulse tail for operation close to threshold where 
saturation is incomplete. For most purposes, though, 
Eq. (33) provides a highly accurate and useful descrip
tion of the output pulses from gain-switched lasers. 

VI. OUTPUT·PULSE SHAPING 

For some applications of pulsed laser oscillators it 
is desirable to generate an optical pulse having a pre
specified temporal shape. An important example would 
be pellet-compression laser fusion, where optimum 
heating and compression are only achieved with a spe
cific shape of the incident laser pulse. 14 The pulse 
shape, however, depends directly on the time-dependent 
pump function S(t). Therefore, one might expect that 
any output-pulse shape could be achieved if S(t) were 
chosen properly. In practice considerable freedom is 
usually available in choosing the electrical and geomet
rical factors which govern the rate of pumping. The 
purpose of this section is to derive relationships be
tween the pump S(t) and the desired gain or power 
characteristics of the laser. 

Choosing a pump function S(t) to achieve a particular 
gain g(t) is straightforward. From Eq. (8) the net un
saturated gain is 

g(t) =hv/s exp(- t/T2) J: S(I') exp(t' /T2)dl' -I'; (44) 

multiplying by exp(t/T2 ) and differentiating yields 
immediately 

S(I) =_1_(dg(t) + g(t) +1'). 
hv/s dt T2 

(45) 

For any desired unsaturated gain g(t) Eq. (45) gives the 
required pump function S(t). 

A somewhat more practical problem is to determine 
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the pump function Set) that will yield a particular inten
sity l(t) in a laser oscillator. Equation (15) can be 
written 

j t (, f t
' f') _~ S(t') exp \2s _~ l(t") dl" + T; dl' 

= 2IhV1S[~t) +1
0

] (d~~t) + Ycl (t))exp (2S f: l(t')dl' + ~) 
(46) 

and differentiation yields 

S(t) = _T_ ~ [-:;-:-c_l -=- (diU) + l(t i)] 
2lhv/s dt l(t) +/0 dt Yc 

+ _T_ 2sl(t) + Til (dl(t) + 1(1)\. 
2lhv 1s 1(1)+/

0 
dt Yc 'j (47) 

This is an explicit expression for the pumping needed 
to achieve an arbitrary intensity l(t) in a homogeneously 
broadened laser oscillator. The function S(t) is not 
necessarily positive, and if very rapid decay of the 
intensity is needed one finds that a negative pump is 
required. 

When the noise input 10 is small compared to l(t) Eq. 
(47) Simplifies to 

S(I)= 2l:V/s [d~: lnI(t) + (2SI(t) + ~)C~ lnI(t) +y,)} (48) 

Now suppose, for example, that a Gaussian intensity 
pulse is required in the form 

(49) 

Therefore, the laser oscillator must be pumped with 
the function 

S(t) = 2ll~/s {- ~ + [2S/ 1 exp (- ~; ) + :J [- ~~ + yJ}-
(50) 

Equation (50) is plotted in Fig. 6 USing the values 
s/l=109 S-I, T 2 =20 ns, and Yc=10 9 S-l corresponding 
to the xenon laser described in Sec. III. A value of 

3.---------~--------,----------r--------~ 

2 

~2tO------.. ~.1=O~------~O~----~~1~O-=======~ 
t (ns) 

·1L-______________________________________ ~ 

FIG. 6. Pump function required to obtain a Gaussian intensity 
pulse of maximum amplitude sII ~ 10 9 s·1 and width tJ ~ 8. 3 nSf 
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to =: 5 ns is also chosen corresponding to a desired pulse 
width of 6l=21 0(ln2)1/2=8.3 ns. It is apparent from the 
figure that the pump pulse is similar in shape to the 
Gaussian intensity pulse. In order to achieve the rapid 
decay of the Gaussian function, the theoretical pump 
function becomes negative after about 8 ns. In practice 
negative pumping would ordinarily not be feasible, so 
the Gaussian pulse tail could not be obtained. More 
slowly decaying intensity functions do not require nega
tive pumping. 

A complementary application of this formalism is in 
the diagnosis of laser amplifiers and oscillators. For 
example if gain or fluorescence measurements on a 
particular pulsed laser amplifier implied a gain function 
g(t), one could from Eq. (45) immediately deduce the 
time dependence of the pumping. Similarly, if the 
output-intensity-pulse shape from a laser oscillator is 
known, the pump function follows from Eq. (47). A 
knowledge of the pump SU) should provide information 
regarding the processes which excite the upper laser 
level. With very-short-pulse oscillators an analysis of 
this type would often provide the most direct measure
ment of the time-dependent pumping. 

VII. DISCUSSION 

A straightforward mathematical formalism has been 
developed for analyzing the properties of practical 
gain-switched laser oscillators. The initial equations 
include arbitrary pumping rates and spontaneous relaxa
tion. A very common pumping characteristic in practice 
corresponds to an exponentially decaying transfer of 
excitation into the upper laser level from some other 
state of the system. Using this particular pumping 
characteristic, several specific analytical models have 
been developed. In some lasers, such as electron
beam-pumped devices, the pumping time may be short 
compared to the rise time of the optical fields. In this 
case the mathematics simplifies greatly, and the results 
have been illustrated using the 1700-A. xenon laser. 
Under typical conditions the gain pulse is about 25 ns 
wide, while the output laser pulse is about 3 ns wide. 
In the opposite limit of very slow pumping the analysis 
again simplifies and this case was illustrated with the 
TEA CO2 laser. Here the gain pulse is typically 25 IJ-s 
wide, while the laser pulse is about 100 ns wide. The 
procedure may also be reversed so that one can predict 
the pump function needed to produce a particular output 
pulse. 

All of the examples that have been conSidered have 
involved the limit of homogeneous broadening, and in 
most practical short-pulse laser oscillators homoge
neous broadening is indeed the dominant mechanism. 
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For completeness, however, it is appropriate to men
tion also the limit in which inhomogeneous broadening 
is much greater than the homogeneous contribution. 
Neodymium-glass lasers, for example, fall in this 
category. Equations (3) and (4) include an arbitrary 
level of inhomogeneous broadening, so they are an 
appropriate starting point for this limit as well. A rea
sonable assumption is that the population inversion is 
uniform over the width 6v h , and often the mode spacing 
is small compared to 6.v h• Then Eqs. (3) and (4) reduce 
to 

il n(y, z, t) ( ) , ( ) ( ) n(y, z, t) al =:S),,?,I -rrl>ly,z,lny,z,l - '2 ' (51) 

(J/(y,z,l) 1 (J/()"z,tl h [/( ) 1 ( ) 
(J + -;- al = rr v IS }'I, Z, I + 71 ny, Z, I . 
, t tK 

=: rrhvls lI(y , z. t) +71]n(y, z, t) - yl(y, z, I). (52) 

But these equations are identical in form to Eqs. (5) and 
(6) if one makes the changes s_ rrs and 10 -71. There
fore, the previously given solutions for the homogeneous 
limit apply to each small spectral region in such an in
homogeneously broadened laser, Each spectral region 
produces an output pulse which depends only on its own 
local values of gain and loss and is independent of the 
other portions of the spectrum. Since the previous 
analysis applies, this limit is not considered further. 
Its primary practical consequence is to cause a re
broadening of the output spectrum when line-center 
saturation occurs. 
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