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Emissions of anaerobically produced methane by trees
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[1] Recent studies indicate that plants may be a previously
overlooked but significant source of atmospheric CH4, though
there is considerable disagreement on the mechanism of
production. Our work sought to verify that woody deciduous
trees grown under inundated conditions had the capacity
for transporting CH4 from an anaerobic subsurface to
the atmosphere and to consider if such a source could be
important globally. Here, we report results from a greenhouse
mesocosm study that indicate significant emissions of
anaerobically produced CH4 transmitted to the atmosphere
through broadleaf riparian tree species grown under flooded
conditions. Using a leaf area normalized mean emission rate
(0.7 ± 0.3 mg cm−2 hr−1), results were scaled globally for
flooded forest regions and estimated to be 60 ± 20 Tg year−1,
∼10% of the global CH4 source. The carbon isotopic
composition of CH4 emitted was found to be significantly
enriched compared with expectations (d13C ∼ −54‰) and
provided an important isotopic constraint on the global source
which coincides with the mean of the globally scaled
greenhouse‐based estimate.Citation: Rice,A. L., C. L.Butenhoff,
M. J. Shearer, D. Teama, T. N. Rosenstiel, andM. A. K. Khalil (2010),
Emissions of anaerobically produced methane by trees, Geophys. Res.
Lett., 37, L03807, doi:10.1029/2009GL041565.

1. Introduction

[2] Methane (CH4) is an important radiative and chemi-
cally reactive trace gas that has more than doubled in con-
centration in the Earth’s atmosphere over the past 200 years
as a result of mankind’s activities, primarily rice cultivation,
ruminant animal husbandry, biomass burning, and fossil fuel
usage [Rasmussen and Khalil, 1984]. Despite more than two
decades of research, there are considerable uncertainties in
the magnitudes and trends of natural and anthropogenic
sources of methane to the atmosphere. Renewed interest in
atmospheric CH4 has recently resulted from observations of
larger than expected emissions in tropical forests and studies
that upset the conventional wisdom by proposing that plants
could produce CH4 in oxic environments [do Carmo et al.,
2006; Frankenberg et al., 2008; Keppler et al., 2006; Miller
et al., 2007; Nisbet et al., 2009; Vigano et al., 2008;Wang et
al., 2008]. Both the mechanism and the magnitude of source
estimations have been disputed in the literature [Butenhoff
and Khalil, 2007; Dueck et al., 2007; Kirschbaum and
Walcroft, 2008; Nisbet et al., 2009].

[3] Though there has been significant research on emis-
sions of CH4 from natural wetlands, early work concluded
that the majority of emissions in natural wetland systems are
mediated by aquatic macrophytes and through ebullition
[Cicerone and Oremland, 1988]. Several more recent
studies have indicated that woody tree systems could present
a mechanism for transporting CH4 to the atmosphere from
an anaerobic root zone under inundated conditions or, po-
tentially, bypassing an aerobic oxidation layer that lies be-
tween deep roots and the atmosphere [Garnet et al., 2005;
Megonigal and Guenther, 2008; Rusch and Rennenberg,
1998; Terazawa et al., 2007]. These tree emissions could
particularly enhance CH4 flux in tropical regions that
experience regular seasonal inundation.
[4] In this paper, we present a study of emissions of

anaerobically produced CH4 from three deciduous riparian
tree species and a global upscaling of results to determine
the potential of tree emissions to impact the global CH4
budget.

2. Experimental Methods

[5] Three woody riparian tree species were grown in small
mesocosms and studied in a research greenhouse: ash
(Fraxinus latifolia), cottonwood (Populus trichocarpa), and
willow (Salix fluviatillis). These experiments were con-
ducted adjacent to ongoing mesocosm experiments with a
rice cultivar reference (Oryza sativa L. ‘M‐103’) and
unplanted control plots. Plants were grown in triplicate in a
sandy loam (71.8% sand, 25.6% silt, 2.6% clay and 3.23%
organic matter, 1.6% C, 0.12% N, 0.01% S, 126 ppm P, 101
ppm K) contained in fiberglass tubs (61 × 48 × 36 cm). Soil
organic content was enhanced through the addition of rice
straw equivalent to 3 tons per hectare to stimulate below
ground anaerobic methane production. All plants and con-
trols were grown under fully inundated conditions except
during one mid‐season drainage.
[6] Static flux samples were drawn from translucent

chambers enclosing each plant and its air‐water interface
approximately two times weekly between July and October
primarily during morning hours (9–11 AM local time).
Chambers were reinforced translucent polyethylene sheeting
on a frame of PVC pipe (66 × 51 × 90 cm), with a gas
sampling port and a 12 Volt battery powered fan that stirred
the air inside the chamber during sampling. Tedlar bag
branch enclosures were also used to confirm CH4 emis-
sions through the tree biomass. Leaf area and above
ground biomass were determined destructively at the end
of the experiment.
[7] Over the course of the study, approximately 60 fluxes

were measured from each species. Samples from inside the
chambers were removed at 10 minute intervals for 30 minutes
and CH4 concentrations were measured on a Agilent model
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6890 gas chromatograph with a flame ionization detector
(GC‐FID) [Khalil et al., 1998]. Net CH4 flux is determined
by linear regression of the change in concentration with time
(DCH4/Dt) and expressed m−2 of water‐atmosphere inter-
face [Khalil et al., 1998]. Analyses were filtered for strong
ebullition events and operator error, identified by their non‐
linearity (r2 < 0.9, ∼10% of data). Belowground porewater
samples at 5, 10, 15, and 20 cm depths were collected
bi‐weekly and CH4 concentrations were measured by
extracting samples in ultra‐high purity N2, and analyzing
them via GC‐FID.
[8] During a sampling intensive period, flux (t = 30 min)

and porewater samples were drawn once per week and
measured for the carbon isotopic composition (d13C) of
CH4. The d13C of CH4 was determined by continuous‐flow
gas chromatography‐isotope ratio mass spectrometry on a
Thermo Scientific Delta V Advantage IRMS using a method
previously described [Rice et al., 2001]. Values of d13C of
CH4 were measured relative to a calibrated CO2 reference
gas and are reported relative to the VPDB scale using the
delta (d) notation such that d13C = [(13C/12Csample/

13C/
CVPDB) − 1] × 1000 as established by the International
Atomic Energy Agency (IAEA) in Vienna, Austria [Coplen,
1995]. All samples were corrected for the ambient atmo-
sphere in the greenhouse (∼2 ppm CH4), collected at initial
chamber placement (t = 0 min).

[9] For purposes of global upscaling of results, inundated
forests were identified using the Global Land Cover 2000
product with a spatial resolution of ∼1 km [Bartholomé et
al., 2002]. Land cover classification included regularly
and permanently flooded forests. We assumed that tropical
riparian forests were flooded annually for five months which
is consistent with the duration of the wet season and mea-
surements of tropical inundation using satellite techniques
[Eva et al., 2002]. We assumed that mangroves and coastal
forests were flooded permanently as inundation here is
primarily determined by sea level [Eva et al., 2002]. Tundra
shrubland was considered waterlogged over the northern
hemisphere summer. The canopy leaf area was derived from
the Collection 5 MODIS Leaf Area Index (LAI) product at
1 km resolution [Yang et al., 2006]. The monthly averages
from 2000 to 2001 were used. Emissions were calculated for
each grid cell i and month m by:

Ei;m ¼ F" LAi;m " Di;m " Ii

where F is the mean methane flux, LA is the leaf area, D is
the number of daylight hours, and I is either 0 or 1,
depending on whether the pixel is inundated during the
current month. Monthly emissions were summed to annual.

3. Results and Discussion

[10] All three riparian tree species showed average flux of
CH4 greater than control, with mean emission rates of 2.6,
1.5, and 3.2 mg m−2 hr−1 for ash, cottonwood, willow and
0.9 mg m−2 hr−1 for control plots (Figure 1a). All tree plots
produced lower fluxes than rice which averaged 6.6 mg m−2

hr−1. The effect of daily temperature variations was deter-
mined to have only a small impact on CH4 flux (temperature
range 19–36°C, r2 = 0.14) and no clear seasonal behavior in
CH4 flux was observed in tree fluxes [Khalil et al., 1998].
[11] The flux distributions were fit using gamma dis-

tributions and the method of moments was applied to assess
the variability of each species [Rice, 2007]. Emissions from
ash, cottonwood, and willow were higher than control plots
at high levels of significance (p‐value < 0.01, two‐sided
t‐test). For purposes of calculating CH4 flux through the
trees, the control plot distribution was subtracted from the
aggregate tree distribution. Resulting data were then nor-
malized to tree leaf area and the average tree CH4 emission
rate was calculated to be 0.7 ± 0.3 mg cm−2 hr−1. This estimate
is higher, but within collective error, than recent estimates of
∼0.5 mg cm−2 hr−1 from Bald Cypress (Taxodium distichum)
[Garnet et al., 2005].
[12] Tedlar bag branch enclosures revealed significant

emission in all species, but concentrations in the bags were
non‐linear on short time scales and resulting quantitative
flux estimates using this approach were problematic. The
origin of this response is unknown, but its rapidity is sug-
gestive of stomatal control of CH4 conductance [Farquhar
and Sharkey, 1982].
[13] The d13C of emitted CH4 from chamber enclosure

and bag samples are shown in Figure 1b. Rice and control
plots had d13C values of −62 ± 3‰ and −59 ± 2‰
respectively for emitted CH4 which is characteristic of rice
agriculture and anaerobic wetland environments [Tyler et
al., 1997]. All three tree species emitted CH4 enriched in
13C relative to rice and control plots with d13C values of −54 ±

Figure 1. Box and whisker plots showing the distribution
of (a) methane fluxes and (b) the carbon isotopic composi-
tion of emitted CH4 measured for rice (black), ash (green),
cottonwood (blue), willow (red), and control plots (yellow).
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5‰ from ash, −54 ± 3‰ from cottonwood, and −52 ± 3‰
from willow. Though differences between tree species were
not found, the difference between d13C from aggregate tree
data (−54 ± 4‰) and rice plots (and controls) is significant
at high levels of confidence (p‐value < 0.01).
[14] The ∼8‰ d13C difference between rice and tree

emitted CH4 can result from differences in CH4 production,
gas transport, or oxidation. Though recent photosynthates
can be an important source of carbon for methanogenesis,
all plant species used in this work were C3 in photosynthetic
pathway and likely have similar isotopic signatures in their
organic matter (d13C ∼ −25‰) [King and Reeburgh, 2002].
Active rhizodeposition of organic acids fixed via the
enzyme PEP‐carboxylase have been observed in some
systems, including anaerobic root zones [Johnson et al.,
1996; Jones, 1998]. The enriched d13C signature observed
could indicate this form of root exudates driving methano-
genesis in the rhizosphere. Differences in carbon isotope
fractionation factors with different methanogenic commu-
nity structure could also potentially explain the observed
8‰ difference between rice and tree emitted CH4
[Chidthaisong et al., 2002].
[15] Alternatively, isotopic fractionation occurs in plants

due to diffusive and effusive transport processes which are
mass dependent, the magnitude of which depends largely on

pore size [Chanton, 2005]. If responsible, the observed 8‰
shift in d13C would suggest that CH4 transport in tree tissue
is more convective in nature, which is at odds with mea-
sured fluxes which indicate a slower turnover time. CH4
oxidation in the rhizosphere, upper layers of soil, and
potentially on the surfaces of the plant stems and leaves will
enrich the isotopic composition of emitted CH4 due to a
significant kinetic isotope effect (k12C/k13C ∼ 1.025) in
aerobic bacterial CH4 oxidation [Raghoebarsing et al.,
2005; Tyler et al., 1994]. Under this mechanism, measure-
ments of d13C above and below ground indicate that ∼20%
of CH4 was oxidized in rice plots whereas 50–70% was
oxidized in tree plots [Tyler et al., 1997]. Finally, it is
noteworthy that the average d13C of −54‰ emitted by trees
is close to the d13C of CH4 produced in aerobic environ-
ments of recent chamber studies involving whole C3 plants
(−52‰) [Keppler et al., 2006]. Thus, in future field studies
it may not be possible to distinguish between aerobic and
anaerobic mechanisms of CH4 production based on the d13C
of emitted CH4 alone.
[16] Porewater CH4 concentrations were found to be sig-

nificantly lower in rice plots (mean 760 mg/L) than in either
tree (mean 1570 mg/L) or control (mean 4960 mg/L) plots
(Figure 2a) because of enhanced CH4 transport from the
rhizosphere to the atmosphere. In fact, average belowground
CH4 concentration was found to be inversely related to
aboveground flux (r2 = 0.94), supporting the assertion that
transport was a controlling mechanism of belowground CH4
concentrations. The isotopic composition of belowground
CH4 was found to be highly variable (d13C −63 to −48‰,
Figure 2b) with no clear differences between species. The
absence of a large d13C difference between rice and tree
species belowground tends to favor the oxidative hypothesis
for explaining the 8‰ difference in d13C of emitted CH4.
However, given the variability in belowground d13C and
CH4 concentration, more measurements will be necessary to
verify this result.
[17] To determine if tree emissions have the potential to

impact the global CH4 budget, emissions were scaled using
mean leaf area emission rate (0.7 ± 0.3 mg cm−2 hr−1) across
all broadleaf tree species in flooded environments from the
Global Land Cover 2000 data set. The leaf area of the
vegetation canopy from MODIS LAI in these regions during
times of inundation was then used to scale the measured
emissions. With this technique, global CH4 emissions were
estimated at 60 ± 20 Tg year−1. Delineated spatially
(Figure 3), the majority of CH4 emissions (40 Tg) were in
the tropical Amazon region of South America, the African
Congo, and Indonesia. Significant emissions were also
found in the northern mid to high‐latitude regions of Eurasia
(20 Tg). We note that these estimates assume belowground
CH4 concentrations similar to those in the greenhouse
experiments, concentrations that may be higher than in
natural settings by the amendment of organic matter
[Khalil et al., 2008].
[18] If this source of CH4 is significant on the global scale

as our bottom up approach suggests, it will have important
implications for the pre‐anthropogenic CH4 budget.
Recently, preindustrial atmospheric CH4 was observed to be
unexpectedly 13C enriched based on an ice core record
during the period 0–1300 AD (d13C ∼ −47.5‰), which may
have resulted from enhanced biomass burning and a higher
than previously considered geological CH4 source [Etiope et

Figure 2. (a) Belowground concentrations and (b) carbon
isotopic composition of CH4 measured for rice (black
squares), ash (green inverted triangles), cottonwood (blue
triangles), willow (red circles), and control plots (yellow
diamonds).
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al., 2008; Ferretti et al., 2005]. This compares with
observations from ∼1700 AD that are depleted in 13C rela-
tive to modern CH4 (d13C ∼ −49‰). Because trees appear to
emit CH4 enriched in d13C by ∼8‰ compared with con-
ventional wetland sources, this biogenic source can provide
an alternative mechanism to shift the d13C of biogenic CH4.
To better constrain the tree source we employed a box
model of the atmosphere that includes categories for bio-
genic, biomass burning, and geological sources for the
preindustrial period 0–1700 AD (Table 1). The atmo-
spheric kinetic isotope effect was estimated at −6 ± 1‰
[(k13C/k12C − 1) × 1000] and assumed to be constant
[Lassey et al., 2007]. With CH4 sources kept to lower esti-
mates and source d13C values from the literature, we estimate
themaximumglobal tree source strength to be 60 Tg (Table 1)
[Houweling et al., 2000; Quay et al., 1999]. This global
constraint coincides with the mean of bottom‐up estimates of
60 ± 20 Tg year−1.

4. Conclusions

[19] These results suggest that woody trees could present
a sizeable global source of CH4 to the budget, plausibly as

large as 60 Tg yr−1, and may help explain observed tropical
enhancements in atmospheric CH4 without a large aerobic
plant source. Though we have confirmed the potential of
such a source in our greenhouse mesocosm study and
identified key regions that may represent significant sources
of tree CH4 emissions, field studies will be needed to con-
firm the magnitude and spatial distribution of this CH4

Figure 3. Emissions of CH4 from trees scaled globally using the Collection 5 MODIS Leaf Area Index and the Global
Land Cover 2000 product. Shown are CH4 emissions from the tropical Amazon region of South America and the Congo
Basin in Africa. Units are tons of CH4 per year.

Table 1. Global Emissions Strengths and Isotopic Compositions
Used in the Box Model

0–1000 AD

Strength (Tg yr−1)a d13C‐CH4 (‰)a

Wetland (conventional) 83 −60
Trees 60 −54
Termites 10 −60
Ocean 5 −40
Geological 5 −40
Biomass Burning 23 −20
Rice agriculture 5 −60
Ruminant Animals 20 −60
Total 211 −53

aBase budget for 0–1000 AD and isotopic signatures from previous work
[Houweling et al., 2000; Quay et al., 1999].
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source. Laboratory, greenhouse, and field studies across a
wide variety of tree species (particularly tropical species)
and grown in differing soil and water conditions would also
be particularly useful to better characterize the variability in
CH4 emission rates. There are also several unanswered
mechanistic issues including the pathway of conductance
through the plant tissue to the atmosphere and the reason for
the difference in d13C of emitted CH4 between woody trees
and herbaceous aquatic macrophytes.

[20] Acknowledgments. We thank the members of the Global
Change Research program at Portland State University for their helpful dis-
cussions. This research was supported by the Office of Science (BER), U.S.
Department of Energy, grant DE‐FG02‐08ER64515.
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