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APPLICATION OF AN ADAPTIVE
STEP-SIZE ALGORITHM IN MODELS
OF HYPERINFLATION

OLENA KOSTYSHYNA
Portland State University

An adaptive step-size algorithm [Kushner and Yin, Stochastic Approximation and
Recursive Algorithms and Applications, 2nd ed., New York: Springer-Verlag (2003)] is
used to model time-varying learning, and its performance is illustrated in the environment
of Marcet and Nicolini [American Economic Review 93 (2003), 1476–1498]. The
resulting model gives qualitatively similar results to those of Marcet and Nicolini, and
performs quantitatively somewhat better, based on the criterion of mean squared error.
The model generates increasing gain during hyperinflations and decreasing gain after
hyperinflations end, which matches findings in the data. An agent using this model
behaves cautiously when faced with sudden changes in policy, and is able to recognize a
regime change after acquiring sufficient information.

Keywords: Time-Varying Gain, Adaptive Expectations, Hyperinflation, Learning in
Macroeconomics

1. INTRODUCTION

This paper introduces a new algorithm to model learning in an environment of
hyperinflations. Explanations of hyperinflation using rational expectations rely
on bubble equilibria [Sargent and Wallace (1987)], and recurrence of hyperin-
flations is explained by sunspots [Funke et al. (1994)]. Other explanations em-
ploy departures from rational expectations and introduce learning [Marcet and
Nicolini (2003), Adam et al. (2006), Sargent et al. (2006)]. These latter use learn-
ing mechanisms that differ in the specification of the speed of adjustment to new
information.

The speed of adjustment to new information is called the speed of update
or gain. The gain determines how quickly the learning mechanism reacts to new
observations, and how much weight is given to new relative to old information. Two
common assumptions about the gain used in the literature are least-squares learning
and constant-gain (perpetual) learning. In least-squares learning, the gain decreases
with time and gives equal weight to all past observations. If an agent knows that he
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is in a stationary environment, he will use a decreasing gain. Examples of research
using least-squares learning include Evans and Honkapohja (2001), and Marcet
and Sargent (1989a, 1989b). In general, least-squares learning can converge to a
rational expectations equilibrium under certain conditions [Bullard (1991, 2006),
Evans and Honkapohja (2001), Bullard and Mitra (2002)].

In contrast, a constant-gain algorithm discounts past data and gives more weight
to recent observations. A constant-gain algorithm is thus better at tracking struc-
tural changes. If an agent believes that the environment is not stationary, and
that regime changes are possible, constant-gain learning is used. Constant-gain
learning can be interpreted as agents not trusting the government, and so be-
ing alert to possible changes in the government’s policy. Once change happens,
an agent using a constant gain is ready to view it as a regime switch and up-
dates his estimates accordingly. Evans and Honkapohja (1993, 2001), Sargent
(1999), Orphanides and Williams (2005), Chakraborty and Evans (2008), and Cho
and Kasa (2008) are several examples of research using constant-gain learning.
Sargent (1999) finds that least-squares learning converges to a Nash equilibrium
in the Kydland–Prescott model [Kydland and Prescott (1977)]. Sargent (1999)
suggests using constant-gain learning—it can allow a government using a mis-
specified model to achieve a superior Ramsey outcome and escape from Nash
inflation. In a changing environment, constant-gain learning does not converge to
a rational expectations equilibrium, but it may converge to an ergodic distribution
around a REE [Sargent (1999), Evans and Honkapohja (2001)].

Several questions about constant-gain learning remain to be addressed. First is
the choice of the gain parameter. In most of the literature, this parameter is chosen
in an ad hoc manner to produce desired properties in the model at hand. The
value of the gain is generally quite important for the results. The recent literature
estimates the constant gain either from the data or from surveys of professional
forecasters [Orphanides and Williams (2004), Branch and Evans (2005), Sargent
et al. (2006), Milani (2007, 2008)].

A second question is whether constant-gain beliefs can be self-confirming. The
stated motivation for using a constant-gain algorithm is a nonstationary environ-
ment, but constant-gain learning is often used in models that are stationary. In these
models, if agents were to use decreasing gain, their expectations would be vali-
dated just as well as they are validated when they use constant-gain expectations
[Chakraborty and Evans (2008)].

A third issue is that one would expect agents to learn at different speeds de-
pending on the economic environment. Cagan (1956) uses adaptive expectations
to study hyperinflation and points out the limitations of this scheme: adaptive
mechanisms with constant gain constrain agents to adjust their forecasts by a
constant proportion of their forecast error.1 Cagan (1956) estimates gains during
hyperinflation and finds that agents update more slowly in the earlier periods of hy-
perinflation, and more quickly in the later periods of hyperinflation. Khan (1977)
finds support for variable gain in the data as well—the update speed increases
with the variability of inflation. Khan (1977) specifies the gain as a function of
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the absolute level of inflation (using Cagan’s finding that the gain increases as
hyperinflation unfolds) and the variability of inflation, measured by the absolute
change of inflation. A similar specification for a variable gain is derived in a
model with rational expectations by Mussa (1981). Silveira (1973) finds support
for increasing gain in hyperinflation data from Brazil. These papers point out
that agents need to revise their expectations more quickly, and so use a higher
gain, because slow adjustment to forecast errors can be costly in hyperinflationary
environments.

There are more recent examples using time-varying gain parameters. Marcet
and Nicolini (2003) introduce a learning mechanism that combines a constant gain
and a decreasing gain to model recurrent hyperinflation in Latin America. Their
agent switches from a decreasing gain to a constant gain when forecast errors rise
above a critical level, and then returns to a decreasing gain when forecast errors fall
below the critical level. The value of the constant gain is chosen so that the learning
algorithm satisfies the lower bound on rationality. Timmermann (1993) models
learning in an environment with infrequent structural changes, where the timing
of the regime shifts is known to the agent. The agent uses a decreasing gain when
the structure is unchanged and a constant gain when a structural break occurs.
Milani (2007) allows for a structural break that changes the value of constant
gain. Evans and Ramey (2005) derive the Nash equilibrium gain and show that
agents using a recursive prediction error (RPE) algorithm [Ljung and Soderström
(1983)] are able to adjust their gain to an equilibrium value that varies with policy
changes.

In this paper, I introduce a new time-varying gain algorithm. I use an adaptive–
step-size algorithm as described in Benveniste et al. (1990), Kushner and Yang
(1995), and Kushner and Yin (2003, pp. 69–73). The successful use of a constant-
gain algorithm depends on the choice of the gain. The optimal choice of the
gain depends on the relative variability of the time-varying parameters to be
estimated, the probability distributions of the data, and the observation noise. If
the probability distributions of the data and parameters vary greatly, then a higher
gain is optimal. However, if observation noise is high, then a smaller gain is better.
The adaptive step-size algorithm allows the gain to evolve in response to changes
in the environment. Estimation consists of two parts: (i) estimation of the model
parameters, and (ii) estimation of the gain (the details are provided in the section
“Specification of expectations”). This algorithm is commonly used in engineering
applications, and should be useful in economic learning models. Its economic
interpretation is that agents adjust the speed of their learning based on recent
experience. This procedure thus avoids the problems of committing to a single
value for the gain.

To illustrate the performance of the adaptive step-size algorithm, I apply it to the
environment in Marcet and Nicolini (2003), in which an agent learns about forming
inflation expectations. The agent does not know whether there are regime changes
or not, and adapts his forecasts and learning speed based on his observations using
the adaptive step-size algorithm.
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1.1. Main Findings

The adaptive step-size algorithm specifies a learning scheme that is endogenous
to the model and to changes in policy. This addresses the criticism that bound-
edly rational mechanisms are exogenous to the model. This algorithm provides a
universal approach to how gain parameters change in response to changes in the
model environment, and avoids the arbitrariness of gain parameter specifications
in the previous literature.

Interestingly, the simulations show that the model in this paper produces be-
havior of inflation and inflation expectations qualitatively similar to that in Marcet
and Nicolini’s (2003) model (MN below). Mean squared errors are similar to those
of Marcet and Nicolini (2003). This suggests that adaptive step-size algorithms
can provide a natural and convenient method for incorporating a state-dependent
learning speed. Previous work along these lines has had to resort to ad hoc mech-
anisms.

An adaptive step-size algorithm also produces interesting dynamics in the gain.
The value of gain increases as hyperinflation develops. The increasing gain during
hyperinflations matches the empirical findings in Cagan (1956), Silveira (1973),
and Khan (1977). The adaptive step-size learning specification matches findings
of increasing speed of update during hyperinflation better than the mechanism in
MN. In the MN model, the agent switches from a decreasing gain to a constant
gain at the beginning of hyperinflation and continues to use a constant gain during
hyperinflation. In my model, the agent revises his or her update speed optimally
based on the adaptive step-size algorithm.

In my model, the gain behaves differently than in MN after a hyperinflation
ends with the implementation of an exchange rate rule (ERR). In MN, the agent
continues to update using constant gain. In my model, the agent switches to a
lower gain right after an ERR is implemented. The decrease in gain has the
following behavioral interpretation. The agent does not know that a regime change
has happened and inflation will be low, and/or does not believe that the new
policy regime is credible. The agent has repeatedly underpredicted inflation during
hyperinflation. When inflation drops, the agent does not discard past experience
quickly, and does not rush to revise down his inflation forecasts, because he does
not believe that a new regime has started or will prevail successfully.

This behavior of the gain (increases during hyperinflation, decreases after
implementation of the ERR) is similar to the mechanism modeled in Cho and
Sargent (1997). They specify a learning algorithm in which agents are skeptical
that the government can stick to good economic policy (p. 10). When applied
to hyperinflationary environments, this mechanism implies the following. During
a hyperinflation, agents update their beliefs by putting more weight on recent
data, because they understand that the government does not use good economic
policy. When agents observe a sudden drop in inflation, they update by placing less
weight on recent data, because they do not expect the government to maintain good
policy.
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I estimate the model for Argentina, Bolivia, Brazil, and Peru using the simu-
lated method of moments with a genetic algorithm. Simulations for the estimated
parameters exhibit hyperinflation for all countries except Brazil. This suggests
that a more sophisticated estimate (for example, based on transition probabilities
for inflation) may be needed.

1.2. Related Literature

Sargent and Wallace (1987) show that a high-inflation steady state (with perverse
comparative statics) is stable under perfect foresight and explain hyperinflations
as rational bubble equilibria. Marcet and Sargent (1989b) study the model in
Sargent and Wallace (1987) with least-squares learning, and find that the low-
inflation steady state is stable under least-squares learning, whereas the high-
inflation steady state is not. Adam et al. (2006) show that hyperinflationary paths
near the high-inflation steady state are stable if agents use contemporaneous data.

Marcet and Nicolini (2003) study the Sargent and Wallace (1987) model (with
stochastic i.i.d. seignorage) by introducing an endogenous learning scheme that
combines least-squares learning and constant-gain learning. One of the mecha-
nisms is used depending on the size of forecast error. Marcet and Nicolini (2003)
are able to address stylized facts of recurrent hyperinflations in Latin American
countries.

Sargent et al. (2006) estimate the same model with constant-gain learning and
some modifications (e.g., specification of seignorage as a Markov switching pro-
cess) for Latin American countries that experienced hyperinflation. They conclude
that changes in inflation can be attributed to the learning dynamics (switches of
perceived inflation between low and high self-confirming equilibria) and/or to
changes in fundamentals (change in seignorage).

1.3. Organization

I describe the environment and the expectation-formation mechanism in Section
2. The results of the simulations and analysis are presented in Section 3. Section
4 presents the results of estimation of model and is followed by the conclusion.

2. MODEL

I study a model that consists of a money demand equation, a government budget
constraint, an exogenous process for seignorage, and a specification of expecta-
tion formation that is different from rational expectations. Marcet and Nicolini
(2003) and Sargent et al. (2006) use the same model with different expectation
mechanisms.

The demand for money is given by a Cagan-style specification:

Mt

Pt

= φ − γφ
P e

t+1

Pt

, (1)
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where φ, γ > 0 are parameters, Mt is nominal balances as a percent of output at
time t , Pt is the price level at time t , and P e

t+1 is the expected price level for time
t + 1.

The government supplies money to finance seignorage. If inflation is above a
certain critical level, the government implements an ERR. If there is no need for
the ERR, then the government budget constraint is

Mt = Mt−1 + dtPt , (2)

where the seignorage process dt is i.i.d. I follow the assumption in Marcet and
Nicolini (2003) that seignorage is normally distributed, N(E(d), σ 2

d ), σd = 0.01,
and truncated to have positive values. The equilibrium values of nominal balances
and prices {Mt, Pt }∞t=0 are determined from (1), (2), and an expectation formation
equation. I denote the inflation rate as πt = Pt/Pt−1. Under rational expectations,
there are two deterministic steady state inflation rates for d = E(dt ):

π1,2 = 1 + γ − d/φ ±
√

(1 + γ − d/φ)2 − 4γ

2γ
. (3)

When inflation exceeds the upper critical level π > πU , or there is no positive
price level that clears the market without adjustment of foreign reserves, the
government imposes an ERR. From purchasing power parity (PPP), the exchange
rate is

et = Pt

P
f
t

, (4)

where Pt is the domestic price level, and P
f
t is the foreign price level. Using PPP,

we can write the domestic inflation rate as

Pt

Pt−1
= etP

f
t

et−1P
f

t−1

. (5)

The ERR sets the exchange rate in (5) so that the inflation rate is equal to the
targeted rate π :

Pt

Pt−1
= π. (6)

The targeted rate π is chosen to be equal to the low-inflation steady state in (3).
Under ERR, the equilibrium price level is determined from (6). Money demand is
determined from (1) together with the inflation expectation specification. If money
demand in (1) is not equal to money supply in (2), the government adjusts foreign
reserves so that the money supply satisfies

Mt = Mt−1 + dtPt + et (Rt − Rt−1). (7)
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2.1. Expectation Formation

Agents form their expectations of inflation, βt+1 = P e
t+1/Pt , adaptively as:

βt = βt−1 + at (πt−1 − βt−1) (8)

for some initial value β0. Thus inflation forecasts are revised by the last forecast
error weighted by the gain at .

In this paper, the gain at evolves based on the adaptive step-size algorithm
suggested in Benveniste et al. (1990) and Kushner and Yang (1995) and described
in Kushner and Yin (2003, p. 71). This algorithm specifies the endogenous behavior
of the gain in response to developments in the economy. The algorithm can
therefore be thought of as providing a unified specification of how gains evolve
over time, and so avoiding an ad hoc mechanism of discrete changes in the gain
in response to big forecast errors, as in Marcet and Nicolini (2003). In my model,
the gain follows

at =
∏

[a−,a+]

[at−1 + µ(πt−1 − βt−1)Vt−1], (9)

Vt = Vt−1 − at−1Vt−1 + (πt−1 − βt−1), V0 = 0. (10)

In (9), µ is the step size in the stochastic approximation of the at process (loosely
speaking, µ is “gain on the gain”).

∏
[a−,a+] is a projection operator that sets the

gain at equal to a− when it falls below this value, and sets the gain equal to a+
when it rises above this value. Kushner and Yin (2003) show that the performance
of a nonadaptive algorithm (with constant gain) is much more sensitive to the
choice of constant gain a than the adaptive step-size algorithm is to the choice
of the step size µ. Although it is necessary that 0 < µ � a− for the proofs, the
lower bound a− is not so important in applications. However, the upper bound a+
is very important for the performance, and is often chosen close to the point where
the algorithm becomes unstable.

In (10), Vt denotes the “derivative” of the estimated parameter (β in this case)
with respect to the gain a for the stationary process. The process βt is not a classical
function of a, but its distribution depends on a. Kushner and Yang (1995) interpret
Vt as the desired derivative [also see Kushner and Yin (2003)].

Kushner and Yin (2003) indicate that the gain should be chosen to minimize
MSE, so one should adjust the gain in such a way as to ensure that d(E(FE)2) < 0,
where FE = πt − βt is the forecast error. Because d(E(FE)2) = ∂

∂a
(E(FE)2)da,

and
∂

∂a
(E(FE)2) = −2(FE)

∂β

∂a
, (11)

one should choose da so that

−2(FE)
∂β

∂a
da < 0, (12)
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that is, da should have the same sign as (FE)
∂β

∂a
. So, letting µ be small and positive,

we set

da = µ(FE)
∂β

∂a
. (13)

Finally, because
βt = βt−1 + a(πt−1 − βt−1), (14)

we may compute ∂β

∂a
to get

∂βt

∂a
= (1 − a)

∂βt−1

∂a
+ FEt−1. (15)

Combining (13) and (15) yields equations (9) and (10).2

The intuition behind this learning mechanism is as follows. The change in
gain (9) is driven by the discounted past errors, V , and the last-period forecast
error, πt − βt .3 When the last-period forecast error is in the same direction as
the discounted past errors, the agent increases the gain. This means that if the
agent keeps making the same error, he wants to increase the response to the last-
period forecast error when updating forecasts. If the last-period forecast error is
in a different direction from the discounted past errors, the agent decreases the
gain. This means that when the agent encounters something contradictory to his
past experience, the agent reduces the response to forecast errors until he learns
more. The value of V (10) depends on the size of the last-period forecast error
(πt−1 − βt−1) relative to the size of past discounted errors (Vt−1 − at−1Vt−1). For
example, if the latest forecast error is small relative to the past discounted errors,
then V changes slowly.

3. SIMULATION RESULTS

I simulate the economy using the same parameter values as in Marcet and Nicolini
(2003).4 The parameters in the money demand equation are γ = 0.4 and φ = 0.37,
and mean seignorage is E(d) = 0.049. The model has two steady states that
become closer for higher values of average seignorage. For the above money
demand parameters, the maximum value of average seignorage for which a rational
expectations equilibrium exists is E(d) = 0.05. When mean seignorage is closer
to its maximum value, it is easier for the system to move above the high-inflation
steady state and to explode into a hyperinflation.

The parameters of the step-size algorithm are µ = 0.001, a− = 0.01, and
a+ = 0.6. The initial value of the gain is 0.2.5 It is important to note that this upper
boundary for the gain is not binding, as in the simulations, the gain rarely reached
values equal to or above it. I choose the initial expectation as β0 = π0 = πlow, equal
to the initial inflation started at the low inflation steady state. In the replication of
Marcet and Nicolini (2003), agents start with the least-squares rule, 6 and the gain
in period t = 1 is equal to 1

t
= 1.
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FIGURE 1. Replication of the model by Marcet and Nicolini (2003). The first panel shows
actual inflation, π , and expected inflation, β. The second panel shows gain.

I will compare the simulations based on Marcet and Nicolini (2003) and the
simulations based on the gain specification in (9). Figure 1 presents a replication
of Marcet and Nicolini’s (2003) model. Figures 2 and 3 present the results of
simulations with the adaptive step-size algorithm.

Figures 1 and 2 are based on the same seed; the only difference is the specifi-
cation of the gain. These two figures look very similar in terms of the behavior of
actual inflation (solid line) and inflation expectations (dashed line). For example,
the timing and magnitude of inflation are similar. Expectations of inflation adapt
slowly after the end of hyperinflation in both models. The key difference between
the two models is in how agents revise their inflation expectations; i.e., the behavior
of the gain is different.

Hyperinflation develops as a result of high seignorage shocks that lead to higher
inflation. Higher actual inflation leads to higher expected inflation. When expected
inflation is above the high steady state, actual inflation increases even more in
response to increases in expected inflation. This further raises expected inflation,
so that hyperinflation can erupt. As hyperinflation develops, the agent using an
adaptive step-size algorithm increases the gain. The agent using an adaptive step-
size algorithm can adjust the gain flexibly as the economic environment changes.
As hyperinflation unfolds, the agent’s inflation forecasts are repeatedly below
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FIGURE 2. Typical simulation with the adaptive step-size algorithm. The first panel shows
actual inflation, π , and expectations of inflation, β. The second panel shows adaptive
step-size gain on the left y-axis (thick line) and the derivative V on the right y-axis (thin
line).

actual inflation. Therefore, the agent begins to increase the gain so that his inflation
expectations catch up to actual inflation. A higher gain means that the agent updates
his inflation expectations with higher responses to forecast errors. If the forecast
errors are positive (as is the case during hyperinflation), increasing the gain means
that the agent increases his inflation expectation by a higher proportion of forecast
error. The increase in gain speeds up the update of expected inflation and, thus,
contributes to the development of hyperinflation.

Cagan (1956) estimates a model with adaptive expectations for subperiods of
hyperinflation and finds that the gain increases as hyperinflation evolves. The
value of gain increases in the regression when the initial periods of hyperinflation
are dropped. Silveira (1973) applies the same estimation procedure for Brazil
[not considered in Cagan (1956)]. Silveira (1973) finds that the gain increases
in regressions where the later periods of hyperinflation are added, and the gain
keeps increasing if the initial periods of hyperinflation are dropped. Khan (1977)
specifies the gain as a function of inflation and inflation variability and finds that
the gain is positively related to inflation variance. Khan’s specification is related
to Mussa (1981), who finds that update speed is a function of inflation variance
in a model with rational agents. In this paper, the agent revises his speed of
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Adaptive step size gain,  µ = 0.001, a− = 0.01, a+ = 0.6, E(d ) = 0.049, initial gain = 0.2, MSE = 9.9789

 

 
π
β
π low
π high

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a

0 20 40 60 80 100 120 140 160 180 200

−20

−10

0

10

20

30

V

FIGURE 3. Typical simulation with the adaptive step-size algorithm. The first panel shows
actual inflation, π , and expectation of inflation, β. The second panel shows adaptive step-
size gain on the left y-axis (thick line) and the derivative V on the right y-axis (thin
line).

update optimally based on the adaptive step-size algorithm (9), and the resulting
behavior of the gain matches these empirical findings of increasing gain during
hyperinflation: the gain continues to increase as hyperinflation develops.

The adaptive step-size algorithm captures an increasing speed of update during
hyperinflation better than the mechanism in MN. In this paper, the gain keeps
increasing as hyperinflation develops. In the MN model, as hyperinflation pro-
gresses, the agent makes forecast errors that are higher than the critical level, and
therefore, the agent switches from a decreasing gain to a constant gain of 0.2.
The gain then stays constant during hyperinflation and after the hyperinflation is
terminated by the ERR. The behavioral interpretation is that the agent realizes that
he makes large forecast errors and interprets them as a change in regime, not as an
exceptionally large shock in a stationary environment. The agent wants to learn
about this new regime as quickly as possible in order not to make large forecast
errors, and so he switches to a high constant gain. As soon as forecast errors are
below the critical level, the agent resumes the use of a decreasing gain.

To summarize, the model in this paper produces hyperinflation as in Marcet and
Nicolini (2003) and, in addition, matches the previous empirical finding that gains
increase during hyperinflation.
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Another difference in the behavior of the gain occurs after hyperinflation ends.
The second panel of Figure 1 illustrates behavior in the MN model, and the
second panel of Figure 2 illustrates behavior of the adaptive step-size gain on
the left y-axis, and the derivative V on the right y-axis. The agent in this paper
decreases his gain, whereas the MN agent continues to update at a high constant
gain after hyperinflation is ended. The MN agent uses a constant gain because he
makes forecast errors above the critical level during hyperinflation and after it. The
behavior of the agent using the adaptive step-size algorithm can be described as
follows. During hyperinflation, the agent increases his gain to speed up learning,
as explained above. By the time hyperinflation reaches its peak, the agent has
experienced a long history of underpredicting actual inflation. When hyperinflation
is terminated by imposing ERR, the agent makes a negative forecast error (πt −
βt < 0); i.e., he overpredicts actual inflation. When the forecast error is negative
in (8), the agent will reduce his inflation forecast. A decrease in the gain means
that the forecast will be reduced by a smaller fraction of the last forecast error and
achieve a smaller revision of expectations. This can be interpreted as the agent not
wanting to rush to lower his forecast.

There can be several reasons for an agent’s unwillingness to update quickly. If
the ERR is unknown to the agent, or is perhaps not credible, then the agent will
be cautious, and not revise inflation forecasts too quickly. Therefore, he reduces
the gain to decrease his response to the negative forecast error. The agent needs
to confirm that low inflation is not due to a temporary shock; and if low inflation
is the new government’s policy, the agent needs to observe that the government
is successful in implementing it. After the agent observes low inflation for some
time, he will believe it is caused by a change in regime, and thus increase his gain
to learn it more quickly. Figure 3 shows that this behavior is typical after the end
of hyperinflations.

I would like to provide the technical explanation of why the gain decreases
after hyperinflation is stopped. The algorithmic analog of the “long history of
underpredicting the inflation” is a high and positive value of V in (9, 10). V stores
discounted past forecast errors. By the peak of the hyperinflation, V is high and
positive. When hyperinflation ends, negative forecast errors πt − βt < 0 lower
V according to (10), but not by much, and so V remains positive. From (9), the
gain decreases. The key aspect of this behavior is the long history of past mistakes
(high positive V ) relative to negative forecast error. For the gain to increase, it is
necessary to repeatedly experience negative forecast errors such that V decreases
and becomes negative. When V and πt −βt are both negative, the gain can increase.
This means the agent’s response to the latest forecast error increases, i.e., he starts
to revise inflation expectations down by larger increments.

This adaptive step-size algorithm produces gain dynamics that are directly
related to the learning mechanism specified in Cho and Sargent (1997). Their
specification is set up so that the agent is suspicious about the government’s
implementation of good policy. When applied to a hyperinflationary environment,
the model of Cho and Sargent (1997) implies the following behavior. During
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TABLE 1. Mean squared error comparisons (standard
deviations are in parentheses)

Period Marcet and Nicolini (2003) Adaptive step size

100 7.00860 (8.4092) 7.30467 (8.68631)
200 9.21476 (5.46953 ) 8.71826 (5.48384)
300 11.21859 (5.52852 ) 8.00149 (4.22205)
400 11.57840 (4.62655 ) 7.35961 (3.07069)
500 11.74324 (4.29320 ) 7.10317 (2.80545)

hyperinflation the agent realizes that the government’s policy is bad, and so he
updates his beliefs with a high gain in order to be alert to possible repercussions.
When hyperinflation is ended with the ERR, the agent no longer trusts the gov-
ernment’s intentions, or possibly does not believe in the new government’s ability
to implement the new policy successfully, and so the agent slows down the update
of his beliefs.

Next, I evaluate the performance of the forecasting mechanism based on the
adaptive step-size algorithm and the mechanism in MN by comparing mean
squared errors (MSE) in the simulations. I run 100 simulations of each type,
compute MSE for each run, and then average over 100 simulations. The values of
model parameters are as described above. I compute MSE for the simulations of
different lengths. The results are summarized in Table 1. For a simulation length
of 100 periods, the values of MSE are comparable for the two mechanisms. The
adaptive step-size gain performs better for simulation lengths greater or equal
200. This means that it takes some time for this specification to be put to its best
use.

Next I compare how hyperinflation happens in this model and in other models. In
Sargent et al. (2006), hyperinflation occurs when a sequence of seignorage shocks
push inflation expectations above the high unstable self-confirming equilibrium
(SCE), which means that inflation dynamics escapes the domain of attraction of
the low SCE. (SCE are good approximations of rational expectations equilibria
for very persistent average deficit states.) In this escape region, actual inflation is
higher than expected inflation, and so both actual and perceived inflation increase,
and thus hyperinflations occurs. The end of hyperinflation is explained by learning
dynamics or changes in fundamentals.

A similar mechanism is in place in Marcet and Nicolini (2003). If inflation
starts below the high-inflation steady state, actual inflation is on average closer
to the low-inflation steady state than perceived inflation, and so learning moves
perceived inflation toward the low-inflation steady state. If perceived inflation is
above the high-inflation steady state, then actual inflation is on average higher
than perceived inflation, and so perceived inflation increases. There is also an
additional amplifying impact of the increased gain during the periods leading to
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hyperinflation and during hyperinflation: as the agent makes large forecast errors,
the gain increases, and so the agent updates perceived inflation more quickly which
feeds back into actual inflation, further increasing it. When inflation reaches the
critical level, the ERR is implemented and actual inflation is set to the low-inflation
steady state.

Hyperinflation happens in the adaptive step-size algorithm model and in the
model of Marcet and Nicolini (2003) in the same way. The difference between
Marcet and Nicolini (2003) and the specification in this paper is the behavior of
gain during hyperinflation and right after hyperinflation is ended by implemen-
tation of the ERR. In MN, the agent updates his forecasts using high gain (0.2)
during and after hyperinflation until his forecast error is lower than the critical
level. In my model, the agent increases speed of update as hyperinflation develops.
The agent meets the ERR reform with suspicion, and lowers the speed of update
after he observes a sudden large drop of inflation. After a sufficiently long period
of low inflation, the agent is convinced that the reform works and proceeds to
update his forecasts quickly to learn the new regime.

4. ESTIMATION OF THE MODEL PARAMETERS

Next, I proceed to estimate the model parameters. This model is stylized, and the
data on inflation are nonstationary. These factors can make econometric estimation
of the model problematic. The estimation approach in this paper is based on
indirect inference [Gourieroux et al. (1993)]. The indirect inference method is
useful for complex models with intractable likelihood functions, and the only
requirement for estimation is that the model can be simulated. The procedure can
be summarized as follows. First, I compute an auxiliary parameter from the actual
data on inflation. I use skewness as an auxiliary parameter. Second, I simulate the
model for different sets of model parameters, collect data from these simulations,
and then compute the skewness of simulated inflation. The objective is to find the
set of model parameters for which the distance between the auxiliary parameters
from the actual and simulated data is the smallest. In other words, I aim to match
the moment (skewness) in actual data and in simulated data.

To match the moments in the data and the model, I use a genetic algorithm—a
numerical optimization technique first introduced by Holland (1975) and described
in Goldberg (1989), Michalewicz (1996), and Bäck et al. (2000). Among the
advantages of using a genetic algorithm are that it starts with a set of random
solutions and so does not rely on the starting point, and that it is applicable
to discontinuous, nondifferentiable, noisy, multimodal, and other unconventional
surfaces [Schwefel (2000)]. Bullard and Duffy (2004) use a simulated method
of moments with a genetic algorithm to estimate a growth model with structural
breaks. The optimization problem here is to minimize the distance between the
auxiliary parameters computed from actual data and the auxiliary parameters
computed from simulated data with respect to the values of model parameters.
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The nature of the landscape is not known in advance, and so the application of a
genetic algorithm is appropriate.

The parameters to be estimated are money demand parameters, γ and φ, mean
E(d) and standard deviation σd of seignorage, and the initial value of the gain a1.
Parameter µ = 0.001 is fixed because the performance of the adaptive step-size
algorithm is not sensitive to this parameter [as shown in Kushner and Yin (2003)].

4.1. Description of the Genetic Algorithm

The algorithm starts with N rules. Each rule consists of the model parameters to
be estimated: (γ , φ, E(d), σd , a1).

The initial pool of rules is generated randomly from uniform distributions with
supports that are different for each parameter and are given in Table 2 along
with the standard deviations for mutation. Other genetic algorithm parameters are
given in Table 3. The ranges for the parameters are chosen taking into consideration
the values of the corresponding parameters in the related literature [Sargent and
Wallace (1987), Marcet and Sargent (1989b), and Sargent et al. (2006)]. Attention
must be paid to the value of mean seignorage because it has the maximum value
for which a rational expectation equilibrium exists, and this maximum value is
determined by the values of the money demand parameters. The value of mean
seignorage is restricted to be close to the maximum value because hyperinflation
can arise when mean seignorage is sufficiently close to its maximum value. I deal
with these aspects by initializing and performing mutation on the mean seignorage
after initialization and mutation of the parameters of the money demand in the
following way. For each rule’s values of money demand parameters γ , φ, I compute
the maximum value of mean seignorage as

max(d) = (1 + γ − 2
√

γ )φ. (16)

Then I restrict the range for mean seignorage [mind , maxd ] within some distance
from the maximum value max(d) as mind = 0.9max(d), maxd = 0.99max(d).

To evaluate the performance of each rule, the simulation is run for the parameter
values of this rule, simulated inflation data are collected, and skewness of the
simulated inflation is computed. The length of the simulation is equal to the
number of observations in the data on inflation plus 20 periods. The initial 20
periods of simulated data are discarded to avoid dependence on the initial values.

The fitness criterion is very important for the performance of the algorithm.
Mean squared error is often used as a performance measure. In this estimation,
fitness is the squared distance between skewness in the actual data and skewness
in the simulated data computed and added for 100 realizations.

Once fitness is computed, the pool of rules is updated by replication, crossover,
and mutation.

Replication is done by tournament selection. Two rules are randomly selected
with replacement from an old pool of rules. The fitness measures of these two
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TABLE 2. Ranges and standard deviations for
mutation for different parameters

Parameter Range Standard deviation

γ [0.3, 0.9] 0.1
φ [0.3, 1.9] 0.1
E(d) Depends on γ , φ 0.05
σd [0.01, 0.2] 0.05
a1 [0.01, 0.4] 0.05

TABLE 3. Genetic al-
gorithm parameters

Parameter Value

N 30
T 500
pcross 0.5
pmut 0.1

rules are compared, and the rule with higher fitness is chosen into the new pool of
rules. This procedure is repeated N times to form a new pool of rules. Replication
provides all the selection pressure in this genetic algorithm.

Crossover is done with probability pcross = 0.5 for a pair of randomly selected
(without replacement) rules. Once a pair of rules is chosen for crossover, the values
of each parameter are exchanged between the rules with probability 0.5.

TABLE 4. Estimated values of the model parameters

Country Skewness
sample [data] γ φ E(d) σd a1

Argentina 6.2538 0.35 1.17 0.194 0.18 0.05
1984:01–2000:04 [5.6072] (0.11) (0.11) (0.06) (0.01) (0.045)
Bolivia 6.2021 0.38 0.71 0.099 0.16 0.05
1982:02–2001:09 [5.2451] (0.10) (0.13) (0.03) (0.02) (0.038)
Brazil 1.1931 0.34 1.82 0.068 0.10 0.04
1984:01–2004:09 [1.9263] (0.11) (0.31) (0.13) (0.04) (0.10)
Peru 8.2743 0.77 1.62 0.019 0.17 0.07
1988:04–2004:09 [10.5472] (0.09) (0.23) (0.002) (0.02) (0.07)

Notes: The standard deviations of the estimated parameters are given in the parenthesis. The first row
of Column (2) gives skewness of the simulated data based on the estimated parameters, the second row of
Column (2) gives skewness in the data.
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FIGURE 4. Monthly inflation rates (in logs).

Mutation is done for each parameter in the rule with probability pmut = 0.1.
The new value of the parameter is computed as:

new rule = old rule + randn × std (17)

where randn is the random number from the standard normal distribution (N(0,1)),
and std is the standard deviation for a specific parameter. The values of std for each
parameter are presented in Table 2. If the value of a new rule is below (above) the
low (high) boundary value, the new rule is set equal to the low (high) boundary
value.

The genetic algorithm is repeated for T iterations. The purpose is for the
parameters to converge to their globally optimal values by the end of the genetic
algorithm simulation. The genetic algorithm parameters are presented in Table 3.
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FIGURE 5. Typical simulation with estimated parameters based on skewness for Argentina.
The first panel shows actual inflation, π , and expectations of inflation, β. The second panel
shows adaptive step-size gain on the left y-axis (thick line) and the derivative V on the right
y-axis (thin line).

4.2. Results of the Computations

I now present the estimated parameters from the genetic algorithm optimization,
with skewness as an auxiliary parameter. For each parameter, I report the average
and standard deviation (in parenthesis) of thirty rules after 40,000 iterations of the
genetic algorithm.

The estimated parameter values for Argentina, Bolivia, Brazil and Peru are
presented in Table 4. The data used for these countries are monthly inflation rates
for the samples indicated in Table 4 and computed from International Financial
Statistics Consumer Price Indexes. The data are plotted in Figure 4. The skewness
in data for each country is given in Column (2) in parentheses. The skewness for
simulated data for the estimated parameters is given in Column (2).

Using these estimated parameter values, I simulate the model to obtain the path
of the time-varying gain and present the simulations in Figure 5 for Argentina and
in Figure 6 for Bolivia. For all countries except Brazil, the model with estimated
parameters exhibits hyperinflation. The figures of the simulated data show that the
model captures the general features in the actual data when compared to the figure
with the actual data shown in Figure 4. The second panel of Figures 5 and 6 shows
that the gain increases during hyperinflation and falls right after hyperinflation
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FIGURE 6. Typical simulation with estimated parameters based on skewness for Bolivia.
The first panel shows actual inflation, π , and expectations of inflation, β. The second panel
shows adaptive step-size gain on the left y-axis (thick line) and the derivative V on the right
y-axis (thin line).

ends. Capturing this behavior is the distinguishing feature of the model with the
adaptive step-size algorithm.

Matching model skewness with skewness in the data can be viewed as a first step.
A more sophisticated approach may be warranted, for example, matching transition
probabilities in inflation data and simulated inflation for an autoregressive Markov-
switching model.

5. CONCLUSION

This paper presents the first application of an adaptive step-size algorithm to
model time-varying learning. The performance of the algorithm is illustrated in
the environment of Marcet and Nicolini (2003). The model behaves qualitatively
similarly to that of Marcet and Nicolini (2003) and performs quantitatively some-
what better, based on the criterion of mean squared error. The agent increases the
speed of update during hyperinflation and lowers it after the hyperinflation ends.
This behavior matches the findings in the data. The agent using this model shows
caution when faced with sudden changes in policy, and is able to recognize the
change in regime after acquiring sufficient information. The performance of this
new algorithm in models of hyperinflation suggests that it might be useful in less
extreme environments as well, e.g., in conventional models of asset pricing and
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business cycles. One could also follow Evans and Ramey (2006) and extend their
notion of an equilibrium gain parameter to a setting with a time-varying gain.

NOTES

1. The literature discussed in this paragraph often uses the term “coefficient of expectations” for
the gain or update speed.

2. I would like to thank the referee for providing this interpretation.
3. For a constant gain a, equation (10) for Vt can be written as Vt = ∑t−1

k=0(1 − a)k(πt − βt ), and
it is a weighted average of past forecast errors.

4. The model in Sargent et al. (2006) is estimated with seignorage as a Markov switching process,
and so their values of the model parameters are different from those of Marcet and Nicolini (2003).

5. This is the value of constant gain that Marcet and Nicolini (2003) use.
6. This is because the initial prediction error is zero, and so it is below a threshold that causes a

switch into constant gain in the expectation scheme of Marcet and Nicolini (2003).
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