
Portland State University Portland State University 

PDXScholar PDXScholar 

REU Final Reports 
Research Experiences for Undergraduates 

(REU) on Computational Modeling Serving the 
City 

8-20-2021 

Finding Lonely Routes for Runners and Bikers Finding Lonely Routes for Runners and Bikers 

Ethan T. Spicher 
Eastern Mennonite University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/reu_reports 

 Part of the Civil and Environmental Engineering Commons, and the Electrical and Computer 

Engineering Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Spicher, Ethan T., "Finding Lonely Routes for Runners and Bikers" (2021). REU Final Reports. 27. 
https://pdxscholar.library.pdx.edu/reu_reports/27 

This Report is brought to you for free and open access. It has been accepted for inclusion in REU Final Reports by 
an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: 
pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/reu_reports
https://pdxscholar.library.pdx.edu/reu
https://pdxscholar.library.pdx.edu/reu
https://pdxscholar.library.pdx.edu/reu
https://pdxscholar.library.pdx.edu/reu_reports?utm_source=pdxscholar.library.pdx.edu%2Freu_reports%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=pdxscholar.library.pdx.edu%2Freu_reports%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Freu_reports%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Freu_reports%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/reu_reports/27
https://pdxscholar.library.pdx.edu/reu_reports/27?utm_source=pdxscholar.library.pdx.edu%2Freu_reports%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Finding Lonely Routes for Runners
and Bikers

Ethan Spicher
ethan.spicher@emu.edu

August 20, 2021

*With help from Christof Teuscher, Philippe Proctor, The Portland State
University REU Program and The National Science Foundation

Link to Code: https://github.com/EthanSpicher/glowing-happiness

Abstract

With COVID-19 raging around the world, personal health is even
more important to a lot of people. One way to maintain good physical
and mental health is to exercise according to Deslandes [2]. When ex-
ercising it may be important to make sure that you are running/biking
on trails that are less populated than others, as well as taking into ac-
count the distance. This can be solved by creating an algorithm that
allows the user to choose the starting and end point, and the algo-
rithm will then find the optimal path between the two points with the
distance and popularity of paths taken into consideration. This allows
the user to get a nice workout in while minimizing possible exposure
to others.

1 Introduction

With personal health becoming so important, it’s critical that in a time
such as COVID-19 there are ways that everyone can exercise without wor-
rying about possible exposure. According to Andréa Deslandes [2], there is
a strong relationship between physical activity and mental/physical health.
By being active, it is beneficial to your mental/physical strength and that
is so valuable in such a mentally and physically draining time of life. This

1



leads us to the goal of this research which is providing Portland and the
surrounding area with a way to find better routes for biking and running to
reduce the possible risk of transmitting COVID-19. By creating an algorithm
that finds the best path from point A to point B, it would allow the user to
go on a run/bike ride, as well as provide a sense or safety from contracting
COVID-19.

This algorithm should be user friendly, accurate, efficient, and reliable.
It would be ideal for this to be a standalone app, or an add on to other
workout tracking applications like Strava or Garmin. The initial plan was
that we would take the information form Strava.com heat maps (Figure 1),
and then combine that information with data on the roads and trails. This
would allow us to have more accurate data leading to more usable results.
Although we ended up not using data from Strava’s heat maps, that is still
a goal in future work.

Figure 1: Strava Heat Map (Portland, OR)

The algorithm used in this research is the A*Prune algorithm that was
created by Gang Liu and Ramakrishnan [3]. This algorithm allows the user
to put in the starting point and ending point, and then it will find the best
route while taking into account the distance and popularity of each road or
path.

2



The following sections go over other work that is similar as well as work
that has been fundamental in our research. Sections also go over the approach
that we had, the results from the algorithm, and an overall summary of the
whole research project.

2 Related Work and Background

Although this exact research hasn’t been done before, there have been
many other research topics that are similar. One of these topics is Elling
Payne’s work on reducing personal pollution exposure [4]. His research uses
the A*Prune algorithm [3] to find the optimal path from point A to B while
reducing pollution exposure and limiting the length of the path. This allows
the user to find a path that might be a little bit longer then the shortest
path, but that’s the sacrifice that you have to be willing to take to reduce
your exposure to pollution.

Another paper that was fundamental in allowing us to conduct this re-
search was the A*Prune Algorithm paper by Gang Liu and Ramakrishnan
[3]. This paper provides extensive information on the A*Prune algorithm.
The A*Prune algorithm is a combination of the A* search algorithm and a
pruning method, with the goal of finding the most efficient (shortest) be-
tween two points. This is done by finding the shortest path, while also
pruning away the edges (paths) that the algorithm deems not useful. The
way that the algorithm prunes the graph is that it expands the graph into all
of the potential paths and cuts away the paths that don’t connect the points
and/or do not satisfy the constraints. This article then goes into comparing
the A*Prune algorithm with other algorithms that have similar uses. The
consensus was the A* algorithm is comparable to the other algorithms when
it comes to running time, but is much more robust in the sense that it is able
to run with more constraints and can consistently perform better.

Some other articles that where also looked at during this research in-
cludes Carlyle, et al paper on Lagrangian relaxation with the goal of finding
the shortest constrained path [1]. This article shows a new algorithm that
can solve the constrained shortest path problem. The constrained shortest
path problem or CSPP involves finding the optimal path from one point to
another while there are multiple different weights/constraints on each edge.
The algorithm is applied to many different network models and efficiency is
compared to other algorithms that perform similar tasks. This algorithm

3



is one of a kind, in that it uses Lagrangian mathematics to optimize the
potential shortest path. One benefit of this algorithm over others is that it
will eliminate edges that are proven to not lie on the optimal path. This is
done by evaluating the graph before optimization, and removing unnecessary
edges and nodes. By doing this, it greatly reduces the execution time. In
conclusion, the authors have shown their proposed algorithm is effective in
solving the constrained shortest path problem.

Now getting into how we decided to use the algorithm we did, we first
looked at other algorithms that eventually lead us to the A*Prune algorithm.
The first algorithm we looked into was Dijkstra’s algorithm. Dijkstra’s algo-
rithm is an algorithm that allows the user to implement a weighted network
graph G = (v, u) where v represents the nodes (intersections), and u repre-
sents the edges (roads/paths). The algorithm then finds the shortest path
from the starting point to all the other points. Now this algorithm is great
when you only have one weight on each edge, but if you are trying to find the
optimal path within a network graph with more then one weight per edge
this is not the algorithm for you.

In our case we are wanting to be able to determine the optimal path to
take when there is more than one weight, which in this case is the distance
and the popularity of the path/road. By having these as our weights, we can
find the path that has the shortest path, as well as the least number of other
people. The algorithm that we found that allows us to have more than one
set of weights is the A*Prune algorithm by Gang Liu and Ramakrishnan [3].

This algorithm is a combination of the A*Search algorithm, and a pruning
algorithm, that when combined allows the user to find the optimal path
easily and efficiently. We are also able to change the overall influence that
the weights have on the final result. For example if you are going on a run,
and are more interested in taking the shortest path, and not really worried
about if other people are also using those trails, then the algorithm can be
changed to find a path that fits your desire the best.

The way that the A*Prune algorithm works is very similar to how the
A*Search algorithm works with a small difference. The A*Search algorithm
works like this, it starts at the beginning node and looks around at its neigh-
bors, and records the A*Search value for each neighbor. The A*Search value
is the summation of the total distance traveled to get to that point plus the
heuristic value at that point. The heuristic value is the distance from a point
to the final point if measured by a bird. This means that the heuristic is
always the same or smaller then the actual distance from that point to the

4



destination point. Once all of the neighbors A*Search values are calculated,
the next node becomes the node with the lowest heuristic value. This is then
repeated over and over again until the final node is reached.

This is better then Dijkstra’s algorithm because it is faster, more efficient,
and more applicable to our problem. Now that A*Search has been explained,
we can go into detail on how the A*Prune algorithm works. Its really quite
similar to the A*search algorithm, the difference is that when the A*Prune
algorithm is executing each iteration, the algorithm also prunes away at the
edges and nodes that are deemed to be not needed. This greatly reduces the
execution time and improves efficiency drastically. Another wonderful part
of the A*Prune algorithm is that it allows the user to input network graphs
that contain multiple constraints for each edge, and that is precisely why we
chose this algorithm for this problem.

3 Methodology

As stated in the introduction, the algorithm used in this article is the
A*Prune algorithm created by Gang Liu and Ramakrishnan [3]. This al-
gorithm was the heart of the whole algorithm driving our research. This
algorithm did the computing on what path was the best to take, with the
edge weights. Once we had decided on using the A*Prune algorithm, I then
began to build the code around this algorithm so that it worked with the
data that we wanted to provide it. Since our goal was to find the best path
with the distance and popularity in mind, we had two different values paired
with each edge. One value represented the distance, while the other value
represented the busyness of that path (Figure 2).

The first step was to create an equation that combined the values of the
distance and the weight together so that the algorithm could use that data.
This was done by using this equations that Payne [4] also used. w = s∗d+(1−
s) ∗ p where d (distance) represented the length of each edge, p (popularity)
represented the busyness of each edge, and s (strength) represents a value
between 0 and 1. In this research strength was always 0.5. This meant that
the distance and popularity had the same ”weight” on the final result.

5



Figure 2: Network Graph Example

Once we had the weight for the edges figured out, the next goal was to
provide data for the algorithm to make sure that it is working as expected.
The data that I used for the initial tests was the data from Figure 2. This
data proved that the algorithm was working properly. Since the algorithm
was working as expected, the next step was to provide a way for the graph to
be seen. This was solved by using NetworkX, a package in Python that allows
you to do a lot of different things with network graphs and networks in gen-
eral, but most importantly it allowed us to visualize the network. Although
this was a step in the right direction, the visuals that NetworkX would gen-
erate where really quite hard to follow and not very useful especially with
really large networks.

Now the way that we where able to obtain data from roads and trails that
exist was to used OSMnx, witch is a package in Python that accesses data
from Open Street Maps. This means that any streets or trails that have been
added to Open Street Maps can be opened in Python. This package solved
multiple problems for us. The first one is that it allows us to use real data
and second it allowed us to generate much more understandable renders like
Figure 3.

6



Figure 3: Brentwood - Darlington, Portland, Oregon, USA

This render shows the neighborhood of Brentwood - Darlington located
in Portland Oregon. This is the network graph that we then used for the
rest of the research project.

Once I figured out how to generate renders of this neighborhood, I began
to work on extracting the data from OSMnx, like the length of the edges as
well as the node IDs. After I figured out how to access that information, I
began to convert this data so that the algorithm could work with it. Now that
the data is usable I began to work on creating synthetic data to represent
the popularity of each node. Initially I randomly assigned values for each
edge, test the algorithm with different starting and end node combinations.
After realizing that this wasn’t ideal for testing, I began to try and generate
data that made the edges closer to the middle of the render more popular.
I was able to get this to work, and the renders that I was able tt get after
this where what I was expecting. By using both OSMnx and NetworkX
I was able to highlight the path that the algorithm choose as well as the
shortest path (Dijksra’s Algorithm). The OSMnx render (Figure 4) shows
the shortest path from point to point in red, and the optimal path according
to the A*Prune algorithm in blue. As you can see, the blue path (A*Prune)
avoids the middle of the map, while the red path (Dijkstra’s Algorithm) goes
right through the middle.

7



Figure 4: Dijkstra’s Shortest Path, and A*Prune Path

Once I was getting results like Figure 4, I began to work on trying to add
a heat map to overlay on top of the renders. I eventually was able to generate
a heat map as seen in figure 5. The heat map represents the popularity of
each edge, and since I was going for a city center looking heat map, the
middle is the most popular with each color change signifying less populated
edges.

Figure 5: City Center Heat Map for Brentwood - Darlington

8



When this heat map is then overlaid with the map of Brentwood - Dar-
lington, it really shows how the algorithm is avoiding the middle (hot spot)
of the map, and this what is suppose to happen (figure 6).

Figure 6: Brentwood - Darlington With Heat Map

Figure 6 shows how the shortest path (red) goes straight through the
middle of the hot spot while the A*Prune path (blue) avoids the more popular
paths and stays away from the middle minimizing popular paths/roads.

4 Results

After conducting tests, the results show that the A*Prune algorithm does
indeed provide a path that is less popular then Dijkstra’s shortest path.
When looking into some of the numbers from the tests, it is seen that al-
though the A*Prune path (blue) is longer then the shortest path (red), it has
a lower popularity value then the shortest path (red). This can be observed
in Figure 6. The total distance of A*Prune path (blue) is 15.6 percent longer
then the shortest path (red) , but is 5 percent less popular then the shortest
path (red).

9



Figure 7: Results Table

The data in the table above (Figure 7) was taken form the Python code at
each test. The percent longer and percent less busy columns were calculated
with these equations. percentlonger = ((A∗Prunelength/Dijkstra′slength)−
1)∗100 and percentlessbusy = ((Dijkstra′spopularity−A∗PrunePopularity)
/Dijkstra′spopularity) ∗ 100.

When looking at the distance and popularity differences for multiple tri-
als, it is observed that the average A*Prune path (blue) is 29.41 percent
longer, and 6.8 percent less popular then Dijkstra’s shortest path (red).

An interesting result can bee seen in figure 7 on test 5 where the calcula-
tions show that Dijkstra’s path is less busy then the A*Prune path. This is
something that I am really unsure why it’s happening.

5 Conclusion

Based on the results we can conclude that overall the A*Prune algorithm
is able to find a path that is less popular then the shortest path, especially
when the path goes thought the middle of the map where the hot spot is
located. This causes the A*Prune path to divert around the middle of the
map avoiding the ”city center” hot spot.

Although the algorithm works for most staring and ending node combi-
nations, there is still a lot of work that could be done with this project and
other projects that are similar. This project could be worked on more to ob-
tain even more desired results so that the A*Prune path is more customized
and accurate. Another way this project could be improved, is for it to be a
stand alone app or an app that can work directly with other workout tracking
apps like Strava, or Garmin. This would allow the algorithm to tap into the
data from these apps to provide a more effective route.

All in all this research project satisfies the project goals by providing its
users with a way to get from one point to another that is less buss/popular
then the faster, more busy route.

10



6 Acknowledgment

I would like to express my thanks to the National Science Foundation,
Portland State University REU program, as well as my mentors Christof
Teuscher and Philippe Proctor for all of there help and support.

References

[1] W. M. Carlyle, J. O. Royset, and R. Kevin Wood. Lagrangian relax-
ation and enumeration for solving constrained shortest-path problems.
Networks: an international journal, 52(4):256–270, 2008.

[2] A. Deslandes, H. Moraes, C. Ferreira, H. Veiga, H. Silveira, R. Mouta,
F. A. Pompeu, E. S. F. Coutinho, and J. Laks. Exercise and mental
health: many reasons to move. Neuropsychobiology, 59(4):191–198, 2009.

[3] G. Liu and K. Ramakrishnan. A* prune: an algorithm for finding k
shortest paths subject to multiple constraints. In Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), volume 2, pages 743–749. IEEE, 2001.

[4] E. Payne. A resource constrained shortest paths
approach to reducing personal pollution exposure.
https://pdxscholar.library.pdx.edu/reureports/15/, 2019.

11


	Finding Lonely Routes for Runners and Bikers
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1629492114.pdf.mX7_m

