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Control Unigueness in Reconstructability Analysis

Martin Zwick
Systems Science Ph.D. Program, Portland State University, Portland, OR 97207

When the reconstructability analysis of a directed system yields a structure in which a generated
variable appears in more than one subsystem, information from all of the subsystems can be used
in modeling the relationship between generating and generated variables. The conceptualization
and procedure proposed here is discussed in relation to Klir's concept of control uniqueness.

INDEX TERMS:reconstructability analysis, directed systems, control uniqueness, structural
modeling, log-linear modeling, mask analysis

1. INTRODUCTION

This paper addresses the following question in the reconstructability analysis [Klir, 1985;
Krippendorff, 1986] of directed systems: if in this analysis, one obtains, as the simplest structure
which fits the data (or as a structure which, for whatever reason, one wishes to consider), a model
having two or more subsystems which overlap in the generated variables they contain, how should
one interpret this multiple determination of generated variables and how should one proceed with
the analysis?

This question is relevant whether the directedness of a system is synchronic or diachronic, i.e.,
whether the generated variables are causally influenced by "environmental” variables operating at
the same moment in time, and/or, in dynamic systems, by prior states of (some or all of) the
generated variables. Itis also relevant both to "selection systems" (“crisp possibilistic" systems),
defined set-theoretically in terms of relations, and to "probabilistic systems," defined information-
theoretically (or in the essentially equivalent log-linear modeling framework) in terms of
multivariate probability distributions.

This note offers an approach different from the one proposed by Klir [1985] involving "control
uniqueness.” It is structured as follows. In Section 2, the essence of the proposal is outlined.
Section 3 follows with a detailed exposition, applied to an example of a three variable
probabilistic system, the simplest multivariate system in which this issue can arise. The
conceptualization of the problem of "control uniqueness" by Kilir is reviewed and his proposed
solution summarized. Then, the alternative proposal which advocates using the reconstructed
distribution is presented. In Section 4, this proposal is applied to an example of a selection
system, more specifically to the reconstructability analysis of a mapping of three variables onto a
fourth. While in Section 3, the structure obtained from the analysis gives a distribution very close
to the original data and statistically indistinguishable from it, in Section 4, the structure obtained
from the analysis is identical to the original mapping. Finally, in Section 5, a discussion of the
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realms of applicability of the two methods is offered, and the relevance of this proposal to the
analysis of dynamic systems is noted.

2. ESSENCE OF THE PROPOSAL

The essence of the proposal, summarized now for probabilistic systems, is to use fully the
structural model obtained from reconstructability analysis to obtain the relationship between
generating and generated variables, rather than using only a subsystem of the model. The model
subsystems amot viewed as directed systems themselves, independently producing the output
variable(s); conditional probabilities linking generating and generated variables which these
subsystems offer are not utilized. Only the overall system is regarded as a directed system, and
only the overall reconstructed probability distribution is used to obtain conditional probabilities.
Thus, when generated variables are shared by these subsystems, one is not forced to choose one
subsystem to derive the generating relationship. Instead, one obtains the generating conditional
probabilities from the calculated multivariate distribution, this distribution having been derived by
applying the maximum uncertainty condition to the subsystem distributions as constraints. One
uses the information iall of the subsystems, not just one.

3. EXAMPLE-1: A THREE-VARIABLE PROBABILISTIC SYSTEM

3.1 Approach Based Upon "Control Uniqueness”

Consider the directed system where A and B are the generating variables and C is the generated
variable. The levels of the lattice of structures (including variable permutations, but not showing
linkages of descent between the models) are shown in Table-1.

Table-1.Levels of Structures for 3-Variable System

1. ABC

2. AB:AC:BC

3. AB:AC AB:BC AC:BC
4. A:BC B:AC C:AB
5. A:B:C

Consider AC:BC, the third structure at level 3, which might be graphically represented by Figure-

1. (An alternative representation will be proposed later in Section 3.2.) The interpretation of the
structure reflected in the figure is problematic. What does it mean to say that C depends
separately on A and on B? If the relationship between generating and generated variables were
reversed, i.e., if C generated A and B (if the arrows in Figure-1 had their directions reversed),
there would be no problem, as there is no reason why one variable cannot determine two others.
But, with A and B as the generating variables and C as the generated variable, interpretation is not
straightforward. How can A and B independently aeparatelydetermine, i.e., control, C?
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Figure 1. (Probabilistic system example) One view of the AC:BC model: as two coupled directed systems.

This is the issue raised by Klir of "control uniqueness.” His solution, for the present example,
would be to choose one of the two subsystems as the controlling one. In effect this eliminates the
AC:BC model and replaces it with either AC or BC, with the choice between the two governed by
the minimum uncertainty principle, i.e., by whichever of H(C|A) or H(C|B) is smaller. If A

reduces the uncertainty of C more than B does, the subsystem AC is chosen to represent the
system. (If, alternatively, one were not committed to A and B as the generating and C as the
generated variables, but yet wanted the system to be directed, one might choose between

A - C-B and B- C- A by comparing H(C|A) + H(B|C) with H(C|B) + H(A|C).)

In effect this solution eliminates from consideration, among the set of structures considered in
reconstructability analysis, all structures with subsystems sharing generated variables. The
analysis is somewhat more complicated if there is more than one generated variable, but the
principle is the same, and so for reasons of simplicity, the two examples discussed in this paper
involve systems with only one generated variable.

The procedure for dealing with control uniqueness can be illustrated with an example of a three-
variable contingency table (ABC) given in Table-2a with its two-variable subtables. This example
is borrowed from the log-linear analysis of Knoke and Burke [1980] who derived their data from
the 1977 General Social Survey. A, B, and C are age (A0 = young, Al = old), geographic region
(BO = South, B1 = non-South), and education level (CO = no college, C1 = college).
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Table-2. Example-1: A Three-Variable Probabilistic System

2a. Three-variable contingency table, ABC, and its subtables, AC, BC, and AB [Knoke & Burke, 1980, p.44].
(Entries are counts; total count = 1478.)

Co C1
BO Bl BO Bl
A0 143 253 77 182
Al 227 411 46 139

ABC table
CoO C1 CO C1 BO B1l
A0 396 | 259 BO 370 | 123 AO 220/ 435
Al 638 | 185 Bl 664 | 321 Al 273| 550
AC subtable BC subtable AB subtable

2b. The Reconstructed Distribution Based on AC:BC

Co C1
BO Bl BO Bl
A0 142 | 254 72| 187
Al 228 | 410 51| 134

The results of reconstructability analysis, given in Table-3, show that the ABC table (the data) has
the property that there is no significant loss of information in reconstructing the system from its
AC and BC subsystems, i.e., that the AC:BC model with its degree of freedom of five is
equivalent to the more complex (seven parameter) ABC model. This is seen from values of a, the
probability of making an error in rejecting the null hypothesis that a specific model is statistically
indistinguishable from the data. One wants a model, simpler than the data, with high a, i.e., a
simple model where one is very likely to be in error if one rejects the (statistical) identity of the
model to the data. If one is to depart at all from ABC, this model is AC:BC and not AB:AC:BC.
(Note that one doa®ot seek a small a; see the discussion of Knoke and Burke of the differences
between this type of analysis and the more conventional use of Likelihood-Ratio statistics.)

The reconstructed ABC distribution is given in Table-2b. If one had started from this distribution,
the AC:BC model would not merely be statistically indistinguishable from ABC, but as
numerically identical with it as discrete counts permit.
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Table-3. Reconstructability analysis ofhe ABC distribution of

Example-1.L2, df, & a, the Likelihood Ratio Chi-Squarand the
degrees of freedoffnom the dateand alpha, the probability oflype |

error are given, as i$or conveniencethe df for each model. The
analysis was done by the program, AMLAT, by Doug Anderson.

From the data (ABC) Model
Model L2 df df a
ABC 00.00 0 7 1.000
AB:AC:BC 00.76 1 6 0.382
AB:AC 10.58 2 5 0.005
AB:BC 51.71 2 5 0.000
AC:BC 01.31 2 5 0.518
AB:C 61.00 3 4 0.000
AC:B 10.61 3 4 0.014
BC:A 51.74 3 4 0.000
A:B:C 61.03 4 3 0.000

To proceed with the control uniqueness analysis: given the model AC:BC, a single subsystem
must be chosen to control C. The uncertainty of C is H(C) = 0.8818, and generative (conditional)
uncertainties are as follows: H(C|A) = 0.8572 and H(C|B) = 0.8772; so one chooses subsystem
AC to model the overall system (i.e., one chooses model AC:B). From this subsystem, one
obtains the conditional probabilities, p(C|A), given in Table-4. These are the probabilities one
would use to predict C from A. If one were given also B, one would simply ignore this
information.

Table-4. Conditional Probabilities from the AC Subsystem

p(COJAO) = .605 p(C1|A0) = .395
p(CO|AL) = .775 p(C1|Al) = .225

Note that by choosing AC:B, one is choosing a model whose a values (see Table-3) indicate that
the model is clearly different from the data, i.e., the probability of making an error in denying the
statistical identity of AC:B and ABC erysmall (0.014).

3.2 An Alternative: Using the Reconstructed Distribution

The alternative procedure recommended here is to retain the information in both the AC and BC
subsystems, that is, to retain the interaction of both A and B with C. This can be done if one does
not regard AC and BC as directed subsystems themselves, i.e., if one rejects an interpretation such
as is given in Figure-1, where the boxes are considered to contain the p(C|A) and p(C|B)
information, which do indeed conflict.

Instead, one regards the AC and BC subsystems as constraints to be satisfied in a calculated
maximum-uncertainty ABC distribution. It is only this overall three-variable distribution which
one interprets as a directed system, and from it one calculates the necessary conditional
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probabilities for C. This follows closely what one is actually doing in reconstruction; this
interpretation of the AC:BC model is represented in Figure-2.

p(A,C) ——— | Maximum

Uncertainty— g, . (AB,.C) —, d,..(CIAB)
pP(B,.C) — | Principle '

2a. Generating the calculated ABC probability distributivot & model of a physical process) and, from it, the
C|AB conditional probability distribution

A —

qAC:BC(ClA’B) . ch:Bc(C)

B —»

2b. Generating the probabilities of C values via the calculated conditional distribution; a model of the directed
system based on the AC:BC structure

Figure-2. Alternative view of the AC:BC model

The calculated overall distribution and probabilities derived from it are represented by the letter q
to distinguish them from the original ("observed") data and probabilities derived from it, referred
to by the letter p. The calculated three-variable distribution is

(A,B,C) = p(A,C) p(BIC) = p(B,C) p(AIC) = p(A.C) p(B.C) /p(C)

qAC:BC

This is the maximum uncertainty solution for the ABC distribution, i.e., the distribution which
maximizes

H(AB,C) =-2q,...(AB,C) log q,...(AB,C)

where the AC:BC subscript on ¢ indicates that the AC and BC observed distributions are treated
as constraints on q, i.e.,

qAC:BC('A\’C) = Z q@(};sc(A7B’C) p(A’C)E Z p(pl\?:B,C)

Upcec(B.C)= 2 Gpcpc(AB.C) = PB.CE 2 P(AB.C)

From this solution, one obtains the conditional probabilities,

qAC:BC(ClA’B) = c1\(3:BC('A\’B’C) / qAC:BC(A’B)’
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where

qAC:BC(A’B) = Z gAC:BC(A’B’C)

Note that the above equations for the reconstructed ABC distribution and for the conditional
probabilities it determines are based upon both AC and BC subsystems and indeed are completely
symmetric with respect to these subsystems. The values of the conditional probabilities are given
in Table-5.

Table-5. g, ,.(C|A,B): Conditional Probabilities, from the Reconstructed
Distribution based on the AC:BC Model

q(COJA0,BO) = .664 q(C1|A0,BO) = .336
q(COJA0,B1) = .576 q(C1]A0,B1) = .424
q(CO|A1,B0) = .817 q(C1|A1,B0) = .183
q(COJA1,B1) = .754 q(C1|A1,B1) = .246

Clearly, the description of the system given in Table-5 is different from the description given

before in Table-4. Table-5 is preferred since it preserves information about the dependency of C
also upon B (as noted above, it treats the two subsystems symmetrically), while Table-4 omits this
information. Since the original ABC table was selected so that an AC:BC model suffers no major
loss of information, predictions of C based on Table-5 are nearly the same predictions which
would be made from the original data table. This would be less true for predictions made from
Table-4.

The information in the two tables can also be compared by considering the conditional
uncertainties of the generated variable, C, given the generating variables, either A alone in the
approach of Section 3.1 or A and B in the approach of this section. From the original (or
reconstructed) ABC table, H(C|AB) = 0.8520, to be compared with H(C|A) = 0.8572, noted
before. Using knowledge of both A and B gives slightly lower uncertainty about C than
knowledge of A alone. The difference is admittedly small, but this is specific to this data set; data
sets could easily be constructed where this difference was much larger. More importantly, Table-
3 shows that AC:B is not a good approximation to ABC, while AC:BC is.

4. EXAMPLE-2: A FOUR-VARIABLE SELECTION SYSTEM

4.1 General Approach

The same issues arise for selection systems defined set-theoretically ("crisp possibilistic" systems).
This section gives a general discussion of this fact, and the following section offers an illustrative
example. Consider, for example, a directed system defined by a mapping from generating
variables A, B, and C, onto the generated variable, D, i.e.,
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m: AOB O C - D (O = cartesian product).
Because the system maps the cartesian product of A, B, and C onto D, there are no constraining

relations between A, B, and C; we can thus ignore such relations. The possible dependencies of D
define a lattice of structures whose levels are shown in Table-6.

Table-6. Possible dependencies of D

1. ABCD

2. ABD:ACD:BCD

3. ABD:ACD (or ABD:BCD or ACD:BCD)
4. ABD:CD (or ACD:BD or BCD:AD)
5. ABD (or ACD or BCD)

6. AD:BD:CD

7. AD:BD (or AD:CD or BD:CD)

8. AD (or BD or CD)

9.D

Reconstructability analysis is done by finding the simplest structure, whose subsystems, treated as
constraints, coupled with the maximum uncertainty condition, yield exactly the original mapping
(ABCD). For probabilistic systems, uncertainty was defined by the familiar Shannon entropy
expression; here, for selection systems involving crisp possibilities, uncertainty is defined as the
log of the cardinality of the set of possible values [Hartley, 1928]. Maximum uncertainty in this
context means the least constrained relation, i.e., the largest cardinality possible (allowed by the
constraints) for the set defining the relation.

Operationally, a reconstructed system can be obtained by first "expanding" each subsystem
relation by calculating its cartesian product with sets of values of the variables absent in the
relation, and then taking the intersection of these expanded relations. Each expanded relation is
the result of maximum uncertainty operating on one subsystem; it joins to the restricted set of
values for the subsystem variables, which defines the subsystem relation, all possible values of
variables omitted in the subsystem. The intersection of the expanded relations reflects the joint
imposition of all the constraints reflected in the model under consideration.

4.2 A Specific Case
Consider a specific mapping: the ABCD table, and those of its immediate subtables which involve
the generated variable, D, shown in Table-7.
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Table-7. Example-2: A 3-variable to 1-variable mapping (ABCD) and its immediate subtables
involving D. Values of variables omitted in the subtable are denoted by ".". Values of the
generated variable, D, which deth0 and 1 are denoted by "*", e.g., (A,B,,D) = (0,1,,*) means
that both (0,1,,0) and (0,1,,1) tuples occur in the AB.D relation. (The "*" notation gives the
subtables a compact form.) Note that the ABCD table is a mapping, but the three subtables are
relations.

ABC D ABC D ABC D ABC D
000 1 00 1 0. 0 * .00 1
001 1 01 * 0.1 1 .01 ~
0100 10 * 1. 0 * .100
011 1 11 0 1 10 .11 *
100 1

1010 ABD subtable ACD subtable BCD subtable
1100

1110

ABCD table

First consider the structure, ABD:ACD:BCD, at level #2 of Table-6. Its reconstructed relation,
R', is given by

R'=(ABDO C)= (ACD O B) = (BCD O A),

where, since ABD (see Table-7) is {00.1, 01.*, 10.*, 11.0},
ABD O C ={0001,0011, 0100,0101,0110,0111, 1000,1001,1010,1011, 1100,1110},

and similarly for the other two terms on the right side of the equation. R'turns out to be a
mapping identical to the original mapping, m, and hence level #2 provides an acceptable
simplification of the original data. Note that each of the subtables is a relation, i.e., is stochastic,
since the dependent variable D is not uniquely specified by the independent variables of the
subsystem. However, the intersection of the expanded subtables is a mapping, i.e., is
deterministic, as D is uniquely specified given A, B, and C.

We now descend to level #3, and consider whether our original mapping can be decomposed into
two of the three triadic reations. It indeed can, namely with the ACD and BCD relations, i.e.,

R"=(ACDO B)=(BCD O A)
turns out also to be identical to m. However, descending to the next level by eliminating either

ACD or BCD produces a relation, and not a mapping, which is necessarily different from m.
Thus, the simplest model which fully specifies the original mapping is ACD:BCD.
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Note that the subsystems in levels #2 and #3 in Table-6 can be (and, as shown in Table-7, are in
fact) relations, which by composition yield mappings; in contrast, structures on levels #1, 5, and 8
have only a single component which, to agree with the data, must be a mapping. (In level #9, D is
a constant.)

4.3 The Issue of Control Uniqueness

The same question arises here as was discussed for the probabilistic system: how should one
interpret the subsystems ACD and BCD? If each of these is regarded as a directed system as in
Figure-3 (analogous to Figure-1), how can AC and BC separately determine, i.e., control, D?

A —

cC —

B —»
cC—

Figure-3. (Selection system example) One view of the ACD:BCD model: as two coupled
directed systems

The answer is the same. One should not interpret the subsystems as directed components of the
system, sufficient in themselves to represent the system. As with the probabilistic system example
discussed earlier, one obtains the reconstructed higher-order relation (in this case, actually a
mapping) by using the maximum uncertainty principle, with the subsystems treated as constraints
(Figure-4, analogous to Figure-2).

D _» | Maximum
AC Uncertainty] — ABCD

BCD > | Principle

4a. Generating the calculated ABCD relation

A —
B——| ABCD|— D
C—>

4b. Generating the possible values of D from the calculated relation; a model of the directed
system based on the ACD:BCD structure

Figure-4. Alternative view of the ACD:BCD model

In this case, invoking control uniqueness to select one subsystem as the controller of D would be
especially unsatisfactory since it would alter the character of the system. Each of the level #2
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subsystems is stochastic (i.e., is a relation), while the original system is deterministic (i.e., is a
mapping). If this is expressed in terms of uncertainties, the result is similar to that found in the
previous probabilistic example: using the full distribution calculated from the model gives lower
uncertainty than using the distribution for a single model subsystem, selected because of control
uniqueness. Specifically, H(D|A,B,C) = 0 if the reconstructed mapping is used to generate D, but
since H(A,B,D) and H(A,B) are g and log4, respectively,

H(DJA,B) = H(A,B,D) - H(A,B) = = log1.5 = H(D|A,C) = H(D|B,C).

Thus there is nonzero uncertainty if either the ABD or the ACD or the BCD relation is used
exclusively to generate D. This supports the proposition that the structural model should be
thought of as providing constraints for a maximum uncertainty reconstruction, and not as a
description of the system as composed of three directed subsystems from which one must choose
only one subsystem to control the generated variable.

In this selection systems modeling exercise, the simplified ACD:BCD model exactly reproduces
the original mapping, as compared to the earlier probabilistic example where the simplified

AC:BC model is only indistiguishable statistically from the original distribution. One could,
however, here too allow the reconstructed relation to deviate from the original mapping as long as
it met some criterion of acceptance, e.g., an acceptable distance to the original data).

It is interesting to note, that while "control uniqueness" need not be considered in interpreting a
multi-subsystem structure, and should not in fact be used to reduce this structure to a single one
of its subsystems, there still occurs in this particular example (that is, in the se@qﬁcmlsible
mappings of three binary variables onto a fourth) a phenomenon bearing a strong resemblance to
the control uniqueness problem. It turns out that only 6 of the dependencies listed in Table-6
need be considered; levels #4, 6, and 7 do not occur, leaving only the six structural types of #1, 2,
3, 5, 8, 9 (Zwick & Shu, 1993). Structures on these missing levels appear to have the common
property of overlapping in the generated variable, D, but not overlapping in any of the generating
variables, A, B, and C. Whether this finding is specific to the case considered here or is more
general is being investigated; this may yield further insight into the issue of "control uniqueness."

5. DISCUSSION

The central issue here is the interpretation and use of the simplified models obtained by the
reconstructability analysis. If these models are to be used in the conceptualization of physical
systems built by linking directed components (e.g., in the decomposition of Boolean functions in
terms of primitive operations for logic design), then confrontation with the problem of control
uniqueness is necessary, as two or more physical components indeed cannot independently control
the same output variable.

However, if the object of reconstructability analysis is to obtain a mathematical model simpler

than but adequate to the original data, then the control uniqueness principle unnecessarily
sacrifices information contained in other subsystems, and the procedure proposed in this paper
should instead be adopted. Subsystems are not regarded as physical black boxes which output the
generated variables, because in the reconstruction procedure they do not individually generate
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variable values, but only do sollectivelyand onlyin conjunction witlthe additional principle of
maximum uncertainty. This is illustrated strikingly in the selection system example, wherein the
individual subsystems are stochastic, and only collectively are deterministic, as is necessary to
model a mapping.

Structural models in reconstructability analysis do not constitute a complete description of how
generated variables are to be obtained. That is, the models do not offer any indication, in either
their graphical or symbolic form, that their subsystems are to be used in conjunction with a
maximum uncertainty (or other) principle. Nor do they indicate the precise nature of the
interconnection between the subsysteifise object of reconstructability analysis is not the
derivation of a set of simpler distributions (or relations or mappings) to replace the original
higher order distribution, but rather the derivation of a distribution of the same order as the
original, agreeing satisfactorily with the original distribution, yet based on fewer parameters.
One final qualification: while the structural model is not intended to provide a black box
specification for the physical construction of a system, one can, byaduiigpnalintermediate,
variables, use it to guide such purposes. Specifically, the mapping discussed in Section 4.2 could
be implemented as shown in Figure-5.

A —

c D" 7]

B —»
cC——

DH P

Figure-5. A possible design for the mapping described in Section 4.2 using intermediate variables,
D'and D". The two boxes on the left implement the expanded ABD and BCD relations (the
subtables of Table-7), while the box on the right implements the intersection operation.

Note that the argument in this paper applies also to the "identification problem” [Klir, 1985] in
directed systems, in which one does not have an original higher order distribution, but in which
one also calculates a maximum uncertainty distribution subject to the known (subtable)
constraints (assuming the subtables are mutually consistent). In this situation as well, one can
make use of multiple subtables involving the same generated variable(s).

In summary, in the reconstructability analysis of directed systems, when the purpose is
mathematical modeling and not physical design, generated variables need not be defined by a
unique subsystem but rather should be defined by the reconstructed probability distribution (or
relation). Even where the purpose of the analysis is physical design, use of all of the subsytems is
possible if one uses Figure-2 or Figure-4 (or, in the latter case, alternatively, Figure-5) as a basis
for design, i.e., if one includes in one's physical design the implementation of maximum

uncertainty and the satisfaction of the constraints.
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Another most important implication of this proposal is for the study of dynamic systems, in which
one typically first determines, using mask analysis, which lagged variables are most predictive of
the state variables, and then proceeds to a simplification of the model defined by sampling
variables using reconstructability analysis. The imposition of control uniqueness has been
proposed as part of the reconstructability analysis in such applications [Klir, 1990]. With the
present proposal one would alternatively retain the full information about the generated variables
from all of the subsystems in the model obtained from the reconstructability analysis.
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