Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

11-21-2014

Evaluating the Level-of-Service of Protected Bike Lanes

Nick Foster *Kittelson & Associates*

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation

Foster, Nick, "Evaluating the Level-of-Service of Protected Bike Lanes" (2014). *PSU Transportation Seminars*. 28. https://pdxscholar.library.pdx.edu/trec_seminar/28

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Evaluating the Level-of-Service of Protected Bike Lanes

Nick Foster, AICP Senior Planner, Kittelson & Associates 11/21/14

Outline

- Introduction
- Previous Research
- Project Methods
- Results
- Implications/Limitations

LOS Model for Protected Bike Lanes

 Segments Only
 Readily Available Inputs

 Comparison to Other Facilities

Protected Bike Lanes

Evaluating the Level-of-Service of Protected Bike Lanes

Measuring User Perception

- Quality of Service (QOS)
 Level of Service (LOS)
- Comfort/Stress/Safety
- Typically 'A-F' scale

Motivation

- Increased Interest in Non-Capacity Performance
- No North American-based Model

Previous Research

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

Select Previous Efforts

Method	Form	# of Participants	# of Study Sites	Considers Protected Bike Lanes?
HCM 2010 BLOS	OLS Regression	145	30*	No
Danish BLOS	Logistic Regression	407	56*	Yes
FDOT BLOS	OLS Regression	60-150	21-30*	No
FHWA BCI	OLS Regression	202	78*	No
Level of Traffic Stress	Index	Not Based on Empirical Data		Yes
San Francisco BEQI	Index	Not Based on Empirical Data		Partially

*All Sites Not Shown at Each Viewing

Typical Factors Considered

- Motor Vehicle Speeds/Volumes
- Facility Type
- Space

Methods

Evaluating the Level-of-Service of Protected Bike Lanes

Video Collection

Evaluating the Level-of-Service of Protected Bike Lanes

Site Selection

- Protected Bike Lanes & Reference Videos
- 20-30 Seconds Length
- 23 clips
- Criteria
 - Buffer & Facility Type
 - -1-way vs. 2-way
 - Traffic Volumes

Selected Clip Examples

Evaluating the Level-of-Service of Protected Bike Lanes

Selected Clip Examples

#4 – NE Knott St

#13 – SW Barbur Blvd

Evaluating the Level-of-Service of Protected Bike Lanes

Survey Administration

• Online & In-Person

Neighborhood Street Study

#3

Video Clip Questionnaire

Please circle the letter grade that best represents how comfortable you would feel riding a bicycle in each situation shown. Please match the clip # on this survey sheet to the number shown on the video. Thank you!

A = Extremely Comfortable, F = Extremely Uncomfortable

Clip #	Rating					
1	А	В	С	D	E	F
2	А	В	С	D	E	F
3	A	В	с	D	E	F

Evaluating the Level-of-Service of Protected Bike Lanes

Video Clip Example

 <u>https://www.youtube.com/watch?v=</u> <u>F7gXQX54-HE</u>

Results – In Person Survey

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

Demographics – Age & Gender

• 53% Female

Demographics – Riding Habits

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. I Port

Demographic Impacts

Factor	Correlation with Ratings
Age	0.06*
Gender (0=Male)	0.03
Riding Habits	0.10**

*=Significant at the 95% confidence level **=Significant at the 99% confidence level

Score by Infrastructure Type¹

Better <-- Mean Score --> Worse

Portland State

¹Some infrastructure types have only one location. Chart is shown for informational purposes and should not be considered an absolute preference rating hierarchy.

Score by Buffer Type

Other Factors

Factor	Correlation	
MV Volume (Adjacent Lane)	0.06	
MV Volume (Total in Video)	0.06	
MV Volume (ADT)	0.09	
MV Speed	0.03	
Unsignalized Conflicts/Mile	0.03	
# of Travel Lanes	0.18	
Buffer Width	-0.002	

Significant at 99% confidence level – all protected bike lanes

Significant at 99% confidence level – after controlling for oneway vs. two-way travel

Models

- Index Table
- Regression Models (OLS & Logistic)
- Variables Considered
 - Buffer Type
 - -1-Way vs. 2-Way
 - MV Speed
 - # of Travel Lanes
 - MV Volume (ADT)

Regression Models

Model 1	Model 2	Model 3		
	One-way vs. Two-Way			
MV Speed		MV Volume (Adjacent Lane)		
# of MV Lanes	MV Volume (ADT)	Buffer Width		
Log Likelihood= -3,676	-3,671	-3,657		

Model Distribution Comparison

Comparison to Intercept Surveys

Evaluating the Level-of-Service of Protected Bike Lanes

Example Application

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

Existing Conditions

• 11,000 ADT • HCM Link LOS `D'

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

Build Conditions

Evaluating the Level-of-Service of Protected Bike Lanes

Build Conditions LOS Calcs

- Probability of an 'A' rating = $1/(1+e^{(-(-1.60)-1.38-0.001*(30*11,000/1,000))}) = 0.53$
- $p(B) = 1/(1+e^{(-(0.05)-1.38-0.001*(30*11,000/1,000))}) 0.53 = 0.32$

Build Conditions LOS

Predicted Response Distribution

Evaluating the Level-of-Service of Protected Bike Lanes

Index Table

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

Index Table

	Comfort Score		
Variable	Α	В	
Buffer Type	Planters Parked Cars	Posts	
Motor Vehicle Speed (MPH)	<=30	35	
ADT (vehicles/day)	<15,000	>=15,000	
# of MV Travel Lanes	2	3	

Index Table Performance

	Predicted Median	Observed Median	
Clip #1	Score	Score	Difference
1 (1-way - P)	A	А	None
2 (2-way - PC)	А	В	Better
5 (1-way – PC)	А	А	None
6 (2-way – PC)	В	В	None
8 (1-way – PO)	В	В	None
11 (1-way – P)	А	А	None
12 (1-way – PO)	А	А	None
15 (1-way – PC)	В	В	None
16 (2-way – PC)	В	В	None
17a (1-way – P)	А	А	None
18 (1-way – PC)	А	А	None
19 (1-way – R)	В	В	None
20a (2-way – PC)	A	В	Better
20b (1-way - PO)	В	В	None

¹Directionality and buffer type indicated in parentheses. P = Planters; PC = Parked Cars; PO = Posts; R = Raised/Parking (mostly unoccupied)

Results – Online Survey

Evaluating the Level-of-Service of Protected Bike Lanes

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

Comparison to In-Person Survey

Older

– Mean age 43 vs. 36 years

More Male

- -65% vs. 47%
- Bicycle More Often
- Administration Method Effect
 0.28 points less comfortable

Conclusions

Recommended Model

 Regression Model #2 Readily Available Data Model Valid Ranges - ADT: 9,000-30,000 vehicles/day – MV Speed: 25-35 MPH -Buffers: Planters, Parked Cars, Posts, Raised w/ Unoccupied Parking

Secondary Conclusions

- Protected Bike Lanes > Other On-Street Infrastructure
- Buffer Type Significant
- One-way vs. Two-way Matters
- MV Volumes Significant
- Online Surveys Produce Different Results
 - Advertising Method Matters

Limitations

- Variety of Protected Bike Lanes
- Range of Traffic Conditions
- No Intersections
- Video Production Methods
- Sample Demographics

Implications/Future Work

- Model is Ready for Use
 within identified ranges only
- Future Work:
 - Intersection Research
 - Overall Method for All On-Street Infrastructure

Acknowledgments

Thesis Committee

- Chris Monsere
 (Chair)
- Jennifer Dill
- Kelly Clifton

• Questions?

- <u>nfoster@kittelson.com</u>
- Thesis available at:
 - <u>http://www.its.pdx.ed</u>
 <u>u/publications.php</u>

