Three Speed 3D Printed Magnetic Gear

Robert J. Rutherford
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/mcecs_mentoring
Part of the Computer-Aided Engineering and Design Commons, and the Semiconductor and Optical Materials Commons

Citation Details
https://pdxscholar.library.pdx.edu/mcecs_mentoring/28
3D Printed Magnetic Gear

Robert J. Rutherford, Jonathan Z. Bird

Introduction

Gear reduction and power transmission is typically achieved through mechanical gears. These gears require maintenance, cause vibration, and have no overload protection. Magnetic gears (MGs) are an innovative solution to these drawbacks. The 3D printed three speed axial magnetic gear prototype was assembled for demonstration of theory.

Concept and Design

All permanent magnets have invisible lines of force known as magnetic flux. The amount of magnetic flux in a volume is known as flux density. A very powerful magnet has great flux density. This flux density is used in magnetic gears and results in a flux linkage, where the ratio of magnetic poles act like physical teeth in a traditional mechanical gear.

\[\frac{n_2}{n_2 - p_3} \cdot \frac{n_3}{n_3 - p_1} = \alpha \]

Angular Velocity

Mechanical gears and magnetic gears can be used to transmit power, converting low speed, high torque motion into high speed, low torque motion, or vice versa, through a gear ratio. This 3D printed magnetic gear uses a ratio of magnetic poles to accomplish power transmission.

Full 3D Printed Mechanical Assembly

Measured Data

Flux density was measured with a gauss meter as a function of degrees around the face of both the high speed and low speed rotor. This measurement was compared to the magnitude of the flux density which was simulated in the finite element analysis (FEA) software.

Conclusion

The 3D printed three speed magnetic gear was assembled successfully for demonstrational purposes. Magnetic flux density measurements were gathered and compared against simulations with results showing excellent correlation. The prototype is currently on display in the Laboratory of Electromechanical Energy Conversion in the Fourth Avenue Building Room 25.

Acknowledgements

The author of this poster would like to thank Adriane Burk, Jonathan Bird, Danielle Vournas, Mojtaba Bahrami, David Ho Yin Wong, Hossein Baninajar and PSU MCECS for all the support.