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Capillary channel flow experiments aboard the International Space Station
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3European Commission, Institute for Energy and Transport, Petten, The Netherlands
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In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena
over unearthly large length scales. In current experiments aboard the International Space Station, partially
open channels are being investigated to determine critical flow rate-limiting conditions above which the free
surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such
ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under
investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal
fluids circulation, and water processing for life support. Present and near future experiments focus on transient
phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive
phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is

desired.

DOI: 10.1103/PhysRevE.88.063009

I. INTRODUCTION

Direct contact fluid transport equipment such as bubble
columns, trickle beds, and cooling towers [1] inherently rely
on buoyancy via gravitational acceleration. To perform such
vital unit operations without the aid of gravity, we can instead
rely on surface tension in microfluidic systems where the
relative influence of gravity is dramatically reduced—as in the
case of screen separators, wicks, membranes, capillary pipes,
and other devices [2—4]. In the microgravity environment
of many orbiting spacecraft the microfluidic limit no longer
applies and capillary-dominated systems are permissible that
are 1000-fold larger than their terrestrial counterparts. In this
article, ongoing experiments currently aboard the International
Space Station (ISS) are reported concerning forced flows
along partially open conduits. In contrast to similar terrestrial
flows that are mainly dominated by viscous resistance [5], the
ISS experiments are largely and uniquely inertia dominated,
motivating in part our efforts to further explore them. It is
found for such flows that an abrupt transition occurs between
steady-state and unsteady “choked” flow conditions, leading
to large surface deformations and periodic gas ingestion [6].
The instability mechanism is related to those of liquid jets [7]
and rivulets [8-12].

II. PREVIOUS INVESTIGATIONS

Three representative capillary channel geometries that have
received significant attention are depicted in Fig. 1. The means
to study them in a microgravity (1 g) environment have been (i)
the drop tower Bremen with about 4.7 s ug time, (ii) sounding
rockets of the TEXUS program launched from Esrange near
Kiruna in Sweden with about 6 min of ©g time, and now (iii)
the International Space Station ISS with long-term permanent
ug time. The g quality is approximately 10~ g, for both the
drop tower and on ISS and 10~*g, aboard a sounding rocket.
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The parallel plate geometry of Fig. 1(a) was first studied in
connection with capillary imbibition both on Earth and in mi-
crogravity [13—15]. Particularly in space, such open capillary
channels are considered “liquid acquisition devices” since they
may be exploited to passively imbibe and, hence, control large
amounts of liquid over large distances in the near absence of
gravity [16—18]. The channels may also be exploited to support
forced flows at higher flow rates than are possible by wicking
alone. Such was demonstrated in drop tower tests employing
a variety of liquids and parallel plate channels to observe
both capillary driven and forced flow behavior [19]. Sounding
rocket experiments have been conducted to isolate the choking
phenomena [20], expand the database [21,22], and add bubbly
two-phase flows [23,24]. Progress of analytical and numerical
model development for the parallel plate channel geometry
has been reported [21,22,25,26]. The choking effect in “U”
-shaped grooves typified in Fig. 1(b) was examined using
drop tower tests [27,28], and the triangular wedge geometry
of Fig. 1(c) has been investigated both experimentally and
numerically [29]. The unique opportunity to conduct such
experiments in the long duration low-gravity environment
aboard the ISS provides the ability to establish nearly ideal
steady-state conditions. From such it is possible to detect
the stability limit with greater accuracy, while significantly
broadening the database for further theory development. The
overall experiment is called the capillary channel flow (CCF)
experiment and the present article reports an early look at a
subset of the experimental data collected for steady flow in
the parallel plate geometry for the unique parametric regimes
possible in a laboratory aboard an orbiting spacecraft.

III. THE CCF ISS EXPERIMENT

The CCF experiment is a robotic ISS experiment com-
manded remotely from Earth. Astronaut involvement is
required only for its installation and removal from the
Microgravity Science Glovebox (MSG), which is located in
the Destiny Module of the ISS [30]. The hardware functions
are complicated by the unusual environment. The details of

©2013 American Physical Society
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FIG. 1. (Color online) Capillary channel configurations that have
been studied over the past decades. (a) Parallel plates, (b) groove,
and (c) wedge. The channels have a width a, a height b, and a length
of the free surface /. A pressure gradient between channel inlet and
outlet is applied to generate a liquid flow with a flow rate Q.

setup, commanding, and control are described elsewhere [31].
Here we describe only the features of relevance to forced
capillary channel flow between two parallel plates. Figure 2
displays the parallel plate configuration as seen from profile
and cross-section views, respectively. The coordinate system
and most relevant dimensions are labeled. The glass channel
has width @ = 5 mm, height » = 25 mm, and independently
variable free surface length [ between 1 and 48 mm using
two rigid sliding “lids” called sliders. The liquid is a hy-
drofluorether purchasable as HFE7500 and the ambient gas is
nitrogen. At an ambient temperature of (30 &£ 5) °C, the liquid
has a density p = (1610 £ 10) kg/m?, kinematic viscosity
v = (0.715 £ 0.055) x 107® m?/s, and surface tension o =
(16.16 £ 0.5) mN/m. The liquid is perfectly wetting with zero
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FIG. 2. (Color online) Parallel plate channel geometry: (a) yz
plane with the cross-sectional area of the flow A(x) and the radius
R(x) at the surface. (b) xz plane with the channel inlet at x = 0 and
the channel outlet at x = [ with free surface contour k(x) (flow in
the x direction). The liquid pressure in the channel is lower than the
outside pressure due to the curvature of the free surface.

degree contact angle along all walls. The liquid flow rate Q is
less than 20 ml/s and is driven by a pump. The pressure in the
loop is determined primarily by the meniscus curvature in a
compensation tube located near the inlet, as identified in Fig. 3.
The absolute ambient pressure is p, = (105 £ 10) kPa. The
liquid accelerates from a reservoir through a converging nozzle
and into the channel at Reynolds numbers less than 900. Thus,
the flow possesses a developing velocity profile, the degree
of which varies with flow rate and channel length. The free
surface is pinned at the edges of both the inlet and outlet. At
low flow rates the free surface also pins along the side edges
of the channel, but as the flow rate increases the contact lines
depin along these edges and are free to move inward along
the channel walls. The profile k(x) of the free surface along
the channel is observed by high-speed video photography, as
sketched in Fig. 2 and as recorded in Fig. 4.

IV. GENERAL EFFECTS

Up to a critical flow rate, the surface pressure due to
capillary curvature is able to withstand the inward suction
forces caused by the liquid as it accelerates through the
increasingly occluded passageway. In this steady subcritical
regime, the free surface is only slightly deformed and remains
stationary apart from minor oscillations originating at the

063009-2
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FIG. 3. (Color online) Schematic of the flow configuration and
boundary conditions of the CCF ISS experiment. A reference pressure
is provided by the meniscus in the compensation tube, the nozzle
delivers the flow conditions at x = 0, and the flow rate Q sets the
mean velocity at the outlet.
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FIG. 4. (Color online) Choking phenomenon with periodical gas
ingestion in a supercritical capillary channel flow (flow is upward).
The free surfaces are depicted by bold curved lines in the lower
half of each image. In this example / = 25 mm and the flow rate
0 = 5.72 ml/s is 1% above the critical value. The time step between
two frames is 0.41 s and about one bubbles in 4 s is ingested into the

channel.
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pump. But as the flow rate exceeds a critical value, the interface
motion and flow become unsteady as is the case in Fig. 4. In
such situations the capillary pressure is too weak to prevent
a temporary collapse of the free surfaces which are drawn
inward, leading to gas ingestion and what is referred to herein
as the choking phenomenon. This phenomenon is analogous to
compressible gas flows through nozzles as velocities approach
the local speed of sound [32], when elastic tubes collapse with
local decreases in pressure [33], or in magnetohydrodynamic
flows in what is referred to as the electromagnetic pinch
effect [34]. In all these examples, a flow path is substantially
constricted by the flow itself. It is a stability phenomenon
because it happens rather suddenly when a critical threshold
value is exceeded. The flow is either stable or unstable
and thus can easily be identified by observation. However,
choking in capillary channel flows does not lead to a complete
severing of the flow path as occurs for forced or falling liquid
jets and columns due to the Rayleigh-Plateau instability [7].
Instead, the free surfaces deflect increasingly inward, creating
fingerlike intrusions that eventually pinch off ingesting bubbles
into the flow. Once a bubble is ingested, the process period-
ically repeats, as seen in Fig. 4. In the reduced gravitational
environments of spacecraft, such bubbles enter the flow path
and convect downstream, where they are capable of degrading
system performance by any number of means, such as by
displacing liquid, plugging passageways, and stalling pumps
to name a few. This makes the control of bubbles a high priority
in such applications [35]. Such ingested bubbles may or may
not pose a threat to terrestrial systems such as microfluidic
devices, but they are certainly easier to anticipate and manage
in a strong, persistent gravitational environment.

V. MODELING THE FREE SURFACE

A string of assumptions reduces the three-dimensional
visco-inertial-capillary flow equations to a single equation
that describes the predominantly one-dimensional flow and
predicts the free surface contour along the channel at steady
subcritical flow conditions [6,25]. The essential elements of
the model are depicted in Fig. 3 with further details provided
in the appendix. The region of interest is the capillary channel
between the inlet and outlet identified in Fig. 3. In this
region the steady model reduces to a simplified nonlinear
momentum equation in the x direction such that pudu/dx =
—dp/dx +dwy/dx, where terms left to right represent
convective acceleration, channel capillary pressure gradient,
and viscous resistance, respectively. The local pressure in the
channel is governed by the curvature of the free surface. In
the “no flow” state, the pressure in the channel is determined
solely by the capillary meniscus curvature in the compensation
tube as identified in Fig. 3. For nonzero velocities the pressure
decreases within the channel due to convective acceleration
and viscous resistance wy. Considering the steady flow of
an incompressible liquid, the flow rate Q = u A is constant,
where A = A(x)is the flow cross section. The smaller the cross
section A, the higher the mean flow velocity u. The pressure
decreases along the channel due to w . The momentum loss
rate is constant for a fully developed flow but varies along the
channel when the flow is developing, as is the case for the CCF
experiment. Developing flows possess boundary layers with
large velocity gradients and accompanying increases in ws.

063009-3
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Our governing equation requires two boundary conditions.
The first is given by the constant pressure pg at the channel
inlet, where py is the sum of the no-flow static pressure and
the pressure losses due to viscous friction and convective
acceleration within the entrance nozzle. While the static
pressure is defined by the capillary meniscus pressure in
the compensation tube, the flow rate-dependent terms are
complicated by the flow path geometry requiring full nu-
merical computations to assess the inlet pressure boundary
condition for the otherwise analytic channel flow problem. The
second boundary condition requires knowledge of the velocity
distribution at the channel inlet. In this way wy(x = 0) is
known. But the entrance flow cannot be described analytically
for this combined nozzle-channel conduit and we instead
opt to model the channel entrance velocity using the two
limiting cases of a fully developed Poiseuille flow [32] and
a uniform plug flow. For the plug flow inlet assumption an
analytical solution for the subsequent developing entrance
flow is available for the parallel plate geometry [36]. Once both
boundary conditions are known, the free surface contour can be
found by solving the model equation numerically using a finite
difference method [37]. The critical flow rate is identified using
a Newton iteration scheme between subcritical conditions that
can be computed and supercritical conditions that cannot.

VI. RESULTS

A. Ciritical free surface profiles

Figure 5 shows three surface contours typical of these
CCF ISS experiments. Each interface contour corresponds
to the last stable surface just before choking occurs. Our
model predictions are provided for comparison. As identified
in Fig. 2, k denotes the distance of the free surface to the
channel centerline. The free surface is pinned at k = 12.5 mm
at both the inlet x = 0 and outlet x =/, as shown in Fig. 3.
In all cases, the surfaces bend inwards to form a neck where
k ~ 10 mm and where the surface first becomes unstable. The
highly simplified model proves as adequate tool to predict the
free surface at subcritical flow rates. As can be seen in Fig. 5,
the predictions of both limiting inlet conditions, i.e., plug
flow and Poiseuille flow, practically coincide. Nonetheless,
deviations between experiments and predictions are evident.
Both the experiments as well as three-dimensional numerical
simulations have confirmed that the neck region generates a
wake leading to downstream separation and a clear violation
of the laminar flow assumption.

B. Critical flow rate

Figure 6 presents the critical flow rate for the accessible
range of channel lengths for these experiments. In contrast
to previous experiments where the channel length was fixed,
the slider surfaces of the CCF ISS experiment are used to
vary the channel length. The long duration low-g environment
~107g, aboard ISS [38] provides ample time to sweep the
flow domain and determine accurate critical flow rates. It
shows that for long channels the experimental data agree well
with the predictions. Here, the measured values are bracketed
by the limiting cases of Poiseuille and plug flow between
which the real inlet flow condition is expected. For shorter

PHYSICAL REVIEW E 88, 063009 (2013)
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FIG. 5. (Color online) Three representative free surface contours
for parallel plate channels of different lengths for the maximum
flow rate with stable deformations. The combined systematic and
statistic error of the contour position k(x) due to flow rate adjustment
and image processing is below 0.2 mm. The critical flow rates
in experiment, model with plug inflow, and model with Poiseuille
inflow were (i) for / =20 mm: Q. = 5.87,5.84,6.29 ml/s, (ii) for
[ =35 mm: Q. =5.55,5.31,5.82 ml/s, and (iii) for / =48 mm:
Q. =5.27,5.06,5.58 ml/s. Further increases of the flow rate would
lead to choking as shown in Fig. 4.

channels, however, there is considerable deviation where the
model overestimates the critical flow rate by underpredicting
pressure losses. Qualitative agreement is preserved despite the
increasing violation of the laminar flow assumption.

VII. CONCLUSIONS AND OUTLOOK

Experimental data for an extended parameter range inacces-
sible to terrestrial research was collected using the Capillary
Channel Flow experiment aboard the International Space
Station (CCF ISS). One of the primary experiment objectives

063009-4
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FIG. 6. (Color online) Dependence of critical flow rate on
open channel length for both experimental results and numerical
predictions for the parallel plate channel. The experimental error is
less than 0.2 ml/s.

of the effort is reported here concerning the prediction of
dynamic surface contours and critical flow rates between a
partially open channel consisting of two parallel plates, to
which the applicability of a simplified model is demonstrated.
Significantly more CCF ISS data have been and are being
collected on other aspects of the flow, such as supercritical
flow phenomena with gas ingestion, critical transient flows,
and all flow types in the groove and wedge channel geometries
(Fig. 1). Bubbly two-phase flows in the wedge channel
are also studied at length, with attention paid to interface
stabilization via bubble injection, bubble mergers, free surface
coalescence, and conditions where such conduits perform the
passive function of bubbly-flow phase separations in a low
acceleration environment. The CCF experiment hardware is
currently residing on the ISS and further experiments are
scheduled in the near future.
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APPENDIX: ONE-DIMENSIONAL MODEL OF FREE
SURFACE PROFILE

The flow is assumed to be steady, incompressible, isother-
mal, laminar, and one dimensional with a mean velocity u
in the x direction. The open channel is connected to closed
ducts at both the inlet and outlet. For these conditions, the
conservation of momentum reads

du dp dwy

— =—- — — Al
o dx dx + dx (AD
—— —— ——

convective acceleration pressure  irreversible pressure loss

1. The convective acceleration term in Eq. (A1)

The liquid is incompressible, therefore it follows from flow
continuity that the flow rate Q = uA is constant along the
channel, i.e., in the x direction. It is

dA n Adu 0
u— — =0,
dx dx
where u(x) is the average velocity and A(x) the flow cross
section along the channel. Rearranged, Eq. (A2) gives
du 0%dA
— == A3
Y A3 dx (A3)
which can be inserted into the momentum conservation
Eq. (Al).

(A2)

2. The pressure in Eq. (A1)

When the liquid is flowing, the pressure p also varies along
the channel and is dictated by the ambient pressure p, and the
pressure jump at the free surface due to surface tension o and
surface curvature h. This is expressed by the Young-Laplace

equation
(7 %)
p—pa=—ch=—o(—+—],

Ad
® TR (A4)

where the curvature can also be given by the two principal
radii R, and R, on each point of the surface. Viewed along
the surface contour k(x), which is shown in the lower picture
of Fig. 2, the first principal radius of curvature R;(x) lies in
the plane orthogonal to this direction of view. We assume that
the two free surfaces are mirror symmetric with respect to
z = 0 and restrict our considerations to positive k(x) at the
region with z > 0. If the surface contour has a slope of zero,
R, lies in the cross-sectional yz plane of the channel; see
the upper picture of Fig. 2. The second principal radius of
curvature is applied along the channels xz center plane; see
the lower picture of Fig. 2. The first derivative of pressure used
in Eq. (A1) reads

d dh d (1 1
—p:—a—:—a—(—+ )

— (AS)
dx dx dx \ R R,
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Not only curvature but also the flow cross section A is
connected to R (see upper picture of Fig. 2). Due to the slope
dyk = dk/dx of the free surface along the channel, the R in
Fig. 2 is not identical to R;. Two cases are distinguished:

ab +a(k +R-— %) —2R%arcsin (5%) for k>

Ak) =
a® + 2ak — za2
4
with the radius R being
24 (b —2k)?
aHC-2" ks
R(k) = ; 4(b — 2k)
- for k<
2

The first principal radius of curvature becomes

a? + (b —2k)*(1 + (dk)?)

R =

2

with a difference between the range of k here at R; and in the
cross-sectional area A due to the slope d, k of the free surface.
The second principal radius of curvature can be derived from
the surface contour k(x) in the xz plane and becomes

)8
o L@k}

A9
2 £k (A9)

3. The irreversible pressure loss in Eq. (A1)

The irreversible pressure loss depends on the geometry and
boundaries of the flow path but also on whether the flow is
yet developed. In general, this work consumed by friction w ¢
contains one component for the fully developed Poiseulle flow
wpr and another component for the entrance region flow that
can be modeled with an approach of Sparrow [36] denoted
wst. Hence,

Wf = Wpr + Wss. (A10)

Figure 3 gives an impression on the flow conditions in the
CCF ISS experiment. Coming from a liquid reservoir, there is
a rectangular duct flow through a nozzle, then the channel
flow between the parallel plates, which is the region of
interest, followed by a duct flow again. And, indeed, the
flow in the channel is not fully developed but still part of
the entrance region of the flow. A law for the fully developed
flow component can be found in fluid mechanics textbooks
like [32] and is

K N
wep = Ly 2 (A11)
2 ReDh
or
dwpr Kpr
Wpr P o Aprf (A12)

dx 2" ReD,’

46— 2k)(1 + (d:k)?)172
a

PHYSICAL REVIEW E 88, 063009 (2013)

(i) the contact line is pinned along the edge of the plate so
k < b/2 — a/2 and (ii) the contact line is not pinned and free
to move with a zero degree contact angle so k > b/2 —a/2.
The flow cross-sectional area is

b a
2R 272
for & b a (A6)
or < — — —
272
a
3 ) (A7)
2
b a
for k=3 = 0T @z
2 d, (A8)
for k<o—— ¢
T T A @)

with D;, being the hydraulic diameter (4 times the flow
cross section divided by the wetted perimeter) and Kp¢ being
a configuration-dependent coefficient. In the parallel plates
geometry, see Ref. [32],

Dy =2a, Kpr=96 (A13)
and the Reynolds number Re is
D
Re = =21 (A14)
v

Incorporating the effect of the entrance region in a duct of
constant cross section, Sparrow [36] finds
p o, 1

wy = —u? —— (Kpex + 16Ks¢(x))

- AlS
2" ReD, (ALS)

or

dwy p , 1
—_— = —Uu
dx 2 ReDy
where the coefficient K's¢ depends on the length x along which
the flow develops and Kgy is the gradient of Kgf in the x
direction. This length x is transformed into a scaled length X
as

(Kpt + 16Kse(x)), (A16)

16x
ReDh ’
for which the dependence of Ky is formulated. For the CCF
model, Sparrows solution in terms of infinite rows is not

applied in its original form but approximated by a more
convenient expression. It is found that

(A17)

1=

Ksi(%) = co + ¢ exp(c2X?) (A18)
and

Kse(%) = creacs exp(cat )2 ™! (A19)
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FIG. 7. (Color online) Pressure loss factor Kg; and its gradient
Ksr in dependence of the transformed entrance length £ for the
entrance flow between two parallel plates.

with the constant factors ¢y = 0.6511, ¢; = —0.6203, ¢, =
—9.9948, and c3 = 0.6576. Figure 7 shows the trends of both
Ksr and K.

4. Boundary conditions of Eq. (A1)
At the inlet at x = 0 and the outlet at x = [, respectively,
the boundary conditions read
x=0:A)=ab;
x=1:A; = Ap;

k=0>b/2
k=0b/2;

ug = Q/Ao;

u; = ugp.

p=npo; *
(A20)

The two last boundary conditions at x = 0 require special
attention. The first one is the pressure pg at the inlet, and the

PHYSICAL REVIEW E 88, 063009 (2013)

second is how developed the flow already is which is expressed
by a the transformed flow development length *.

5. Boundary condition inlet pressure

The contour of the free surface depends on the pressure
jump across the free surface, and therefore the initial pressure
po at the channel inlet at x = 0 is a necessary boundary con-
dition. For a given system such as the CCF ISS experimental
setup, the pressure loss along the flow path between a reference
location with known pressure and the channel inlet has to be
evaluated with numerical simulations. The reference location
with known pressure is the compensation tube with a meniscus
of given curvature. Due to viscous losses along the flow path, a
part pp o Q is expected. And due to convective acceleration,
a part py o< Q7 is expected. Accordingly, a relation for the
pressure difference across the interface at the channel inlet is
found to be

20 %

PO—Pa=—+K

_z A21
Rer 2D, Ao (A2)

P2

+ Ko — 07,
0+K, 242 0

with Rcr = 30 mm being the radius of the compensation tube
and, from numerical simulations, K; = 527 and K, = 1.68.

6. Boundary condition inlet flow profile

The degree of flow development at the channel inlet
determines the irreversible pressure loss dw/dx along the
channel. However, the channel is fed through a rectangular duct
nozzle with a variable cross section which cannot be described
analytically. We pose therefore as two possible inlet conditions
(1) undeveloped flow, i.e., £ = 0, and (ii) fully developed flow,
ie., X > 0.24, leading to K5y = 0 in Egs. (A19) and (A16).
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