Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

11-6-2015

Model-Based Analytics and Processes for Transportation Investment Alternatives Analyses: From Least Cost Planning to Multi Criterion Evaluation

Jeff Frkonja Oregon Metro Research Center

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Public Policy Commons, Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation

Frkonja, Jeff, "Model-Based Analytics and Processes for Transportation Investment Alternatives Analyses: From Least Cost Planning to Multi Criterion Evaluation" (2015). *PSU Transportation Seminars*. 29. https://pdxscholar.library.pdx.edu/trec_seminar/29

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Decision Support for Transportation Investments

What to do with all those travel model outputs?

Portland State University, TREC November 6, 2015 Jeff Frkonja, Director, Oregon Metro Research Center Version 3b

Agenda

What are the decisions at hand?

What information is most useful to the decisions?

What analysis techniques provide useful information?

What 'process' elements should be in place to ensure successful decision support?

Decisions

Choose which alternative: - a OR b OR c OR... **Rank** alternatives: b BEFORE a, b and a BEFORE c **Design** alternatives: c BETTER THAN a, c & a both BETTER **THAN** b, therefore, **COMBINE BEST PARTS OF a and c to PRODUCE** d

Decisions

Capital Investments

Policies (e.g. limited access facilities, pricing)

Programs (e.g. commute trip reduction, TDM, TSM)

What information? What analysis?

How does the outcome affect ME? e.g. corridors' travel times from travel model

Source: Metro Mobility Corridors Atlas at http://www.oregonmetro.gov/mobility-corridors-atlas

What information? What analysis?

How does the result affect US? e.g. total system delay, etc. from travel model

enicie i	Hours of	Delay			vivi per	Capita			
Vehicle Hours	of Delay (VHD)				Average Wee Intra-UGB	k Day (AWD)	Vehicle Mil	es Traveleo	(VMT)
	<u>2010</u>	<u>2040NB</u>	<u>2040FC</u>	<u>2040ST</u>		<u>2010</u>	<u>2040NB</u>	2040FC	2040S
PM2	4,160	20,810	13,490	12,510	VMT/capita	13.06	12.39	12.27	12.22
MD1	280	1,480	1,120	1,010					
					% Reduction		-5.1%	-6.0%	-6.4%
Average wee	of Walk	& Bike	Trips		Bicycle N	1iles Tra	weled (BMT)	
Average wee	of Walk	& Bike 2040NB	Trips 2040FC	<u>2040ST</u>	Bicycle N	1iles Tra	aveled (BMT)	
Average wee	of Walk	& Bike 2040NB	Trips 2040FC	<u>20405T</u>	Bicycle N	1iles Tra	oveled (BMT)	
Average wee	kday, Intra-UGB of Walk 2010 505,500	& Bike 2040NB 814,100	Trips 2040FC 835,900	<u>20405T</u> 823,900	Bicycle N	1iles Tra 2010	aveled (2040 NB	BMT) 2040 FC	2040 S
Average wee	kday, Intra-UGB of Walk 2010 505,500	& Bike 2040NB 814,100	Trips 2040FC 835,900	<u>20405T</u> 823,900	Bicycle N	1iles Tra 2010 443,400	2040 NB 729,800	BMT) 2040 FC 801,500	2040 S 793,20
Average wee Number Walk Bike	kday, Intra-UGB of Walk 2010 505,500 178,400	& Bike 2040NB 814,100 293,300	Trips 2040FC 835,900 306,600	<u>20405T</u> 823,900 302,700	Bicycle N	1iles Tra 2010 443,400 1,483,506	2040 NB 729,800 2,080,456	BMT) 2040 FC 801,500 2,080,456	2040 s 793,20 2,080,45

Source: Metro Staff Presentation During 2014 RTP Planning Process

What information? What analysis?

What do we get for our \$ (economic outcome)? ...hmmmm...

Benefit-Cost Analysis! (and Economic Impact Analysis too!)

What is the outcome for the environment? ...hmmmm...

Emissions, noise, water-quality, habitat analyses!

What are the social/health outcomes?

...hmmmm...

Environmental Justice analysis, health impact assessments!

Plenty of decision/analytic frameworks

...you can probably think of several more...

How can we make sense of all this information?

Multi-Criteria Evaluation Analytic Hierarchy Processing

Metro | Making a great place

Conceptual Architecture for the "Toolkit"

Tools & References

USDOT

- 2015 VOT Guidance: http://www.transportation.gov/administrations/officepolicy/2015-value-travel-time-guidance
- TIGER grant BCA resource guide: https://www.transportation.gov/office-policy/transportationpolicy/benefit-cost-analysis-bca-resource-guide
- AASHTO "Red Book" (project-level BCA)
 - American Association of State Highway and Transportation Officials. User and Non-User Benefit Analysis for Highways. 2010
- ODOT Mosaic MCE Tool
 - <u>http://www.oregonmosaic.org/</u>
- TRB Transportation Economics Committee
 - <u>http://bca.transportationeconomics.org/home</u>

CALTRANS BCA Tool

 http://www.dot.ca.gov/hq/tpp/offices/eab/LCBC_Analysis_M odel.html

Metro | Making a great place

Categories & Indicators

Click on the icons below to learn more about each Mosaic Category and its General and Specific Indicators.

Example: Mobility Evaluation (part of economic leg)

Sources:

- Transportation 2040 Final Environmental Impact Statement, Appendix D. Puget Sound Regional Council. 2010.
- Metro Mobility Corridors Atlas -- http://www.oregonmetro.gov/mobility-corridors-atlas

Example: Economic Evaluation

Source:

• Transportation 2040 Final Environmental Impact Statement, Appendix D. Puget Sound Regional Council. 2010.

Example: Environmental Evaluation

Source:

• Transportation 2040 Final Environmental Impact Statement, Appendix D. Puget Sound Regional Council. 2010.

Example: "Rollup"

Build Scenarios Relative to Baselin	ne (No-Build) Scenario		
Description			
Build Scenario	RC	H	ypothetical
Number of years	58		58
Summary			
Lifecycle Benefits	\$53,752,288,102	\$6	3,884,869,250
Lifecycle Costs	\$29,153,987,133	\$4	2,546,985,120
Net Present Value	\$24,598,300,969	\$2	4,598,300,969
Benefit / Cost Ratio	1.84	Rt-ava	1.50
Internal Rate of Return (%)	10.8%	- 10 mar	7.2%
	the second se		

Total Lifecycle Benefits by Category for Build Scenarios Relative to Baseline

	Scenario:	RC	Hypothetical
Mobility - Residents		\$33,936,027,894	\$25,611,958,902
Mobility - Trucks / Commercial		\$9,143,327,429	\$6,337,078,938
Emissions		-\$394,015,321	\$2,729,979,286
Accidents		\$1,523,838,864	\$1,987,327,688
Reliability		\$478,016,975	\$678,056,799
Vehicle Operating		\$6,337,078,938	\$23,408,823,856
Auto Ownership		\$2,729,979,286	\$3,123,173,814
Physical Activity		-\$1,965,964	\$8,469,967
Total		\$53,752,288,102	\$63,884,869,250

Economic Economic Environmental Health/Safety Economic Economic Economic Health/Safety

Source:

· Author's archive of DRAFT work done by RSG, Inc. for San Diego Association of Governments

Example: Equity Evaluations

Source:

• Transportation 2040 Final Environmental Impact Statement, Appendix D. Puget Sound Regional Council. 2010.

Metro | Making a great place

Example: Equity/Social Justice Evaluation

POVERTY COC					
	Total	COC Poverty	Non-COC Poverty	COC Poverty	Non-COC Poverty
Mobility - Residents	\$33,936,027,894	\$12,234,571,104	\$21,701,456,790	36.1%	63.9%
Mobility - Trucks / Commercial	\$9,143,327,429	\$6,337,078,938	n/a		
Emissions	-\$394,015,321	\$2,729,979,286	n/a		
Accidents	\$1,523,838,864	\$1,987,327,688	n/a		
Reliability	\$478,016,975	\$678,056,799	n/a		- FR
Vehicle Operating	\$6,337,078,938	\$23,408,823,856	n/a		flittages
Auto Ownership	\$2,729,979,286	\$1,089,639,193	\$1,640,340,093	39.9%	60.1%
Physical Activity	-\$1,965,964	-\$1,171,576	-\$794,387	59.6%	40.4%
Total	\$53,752,288,102	\$48,464,305,288	\$23,341,002,496	67.5%	32.5%

Source:

· Author's archive of DRAFT work done by RSG, Inc. for San Diego Association of Governments

Summary: what can MCE do for a region like Portland Metro?

- More apples-to-apples comparison*
- Benefit-cost analysis findings
 - Summarizes region-wide outcomes ("rolls things up")
 - Simultaneous cost and benefit accounting
 - Enables geographic and market segment benefit reporting (e.g. by Council District)
- More robust criteria evaluations
 - Equity
 - Health & Safety
 - Reliability

* To the extent methods enable.

Principles of Successful MCE

- All Criteria taken together should provide a comprehensive evaluation
- Criteria should be *mutually exclusive*
- Weights should be set using information from the actual decision-makers (*democratic*)
- Process should be *transparent*
 - Engage stakeholders meaningfully
 - Publish both overall and component evaluation results
 - Fully disclose all analytic methods, assumptions, and limitations
 - Fully disclose all criteria composition and weights

Potential Analytic Complications

- Many criteria may be relevant but not monetizable
- Some criteria may not be quantifiable at all
- Apples-to-apples criteria comparability may not be possible *

* Best-practice principle: Even if criteria are not quantifiable or directly comparable they should still be explicitly treated in some way

BCA Founded in Economic Theory

Where GenCost = (Cost of Travel Time) + (Out-of-Pocket Costs) + (Cost of Unreliability) + (Costs Related to Effects on Consumer Options)

Source: Bernardin, et. al. for Ohio DOT : "Enhancement of Economic Analysis Capabilities: Initial Review and Recommendations". 2011

In-Vehicle Travel Time (auto and transit)

Trips on work tours

- c(i) = -0.15/\$ / [((income(i) / 30,000 ^0.6) * (occupancy(i) ^ 0.8))]
- b(i) = -0.030/min

Trips on non-work tours

- c(i) = -0.15/\$ / [((income(i) / 30,000 ^0.5) * (occupancy(i) ^ 0.7))]
- b(i) = -0.015/min

Where c(i) is the cost coefficient for user (i) in 1/\$
And b(i) is the time coefficient for users in 1/minutes
In the Mode Choice logit utility expressions

In-Vehicle Value of Travel Time (\$/hr for trucks)

	Heavy Trucks	Light Trucks
ATRI, 2010	89.23	
Smalkowski & Levinson, 2005	58.10	
Outwater & Kitchen, 2008	53.32	42.66
Miao et al., 2011	33.94 - 57.65	
Almy et al., 2010	45.15	
Mei et al., 2013	33.29 - 52.22	26.06 - 46.14
BLA, EDRG & RSG, 2013	36.05	22.26 - 27.24
Kawamura, 1999	32.25	
Kawamura, 2003	21.96 - 34.94	
Cal-BC	28.70	
USDOT*	26.43	

*Driver's time only, USDOT acknowledges there is value to commodities' time

Travel Time Reliability (auto & freight / truck)

Calculate "Total Equivalent Delay"

Link-level calculation

- Segmentation limited to assignment classes
- Trucks / auto
- Set VOR equal to IVTT VOT Source: SHRP2 L05

Collisions

- Segmented by collision type
- Link-level calculation
 - Facility type segmentation only
 - SANDAG staff updating VMT-based rates using SWITRS
- Auto only
- Source: USDOT Memo (2/28/2013) on the value of statistical life, Cal-B/C

Collision Type	Value
Fatality	\$9,100,000
Injury	\$427,700
Property damage only	\$10,200

Emissions

Pollutant	Monetization
CO2	\$55.35 / ton
PM2.5	to be imputed from MTC monetization factors and SANDAG weighted distribution of PM2.5 by type
NOx	\$7,800 / ton
ROG	to be imputed from MTC monetization factors and SANDAG weighted distribution of ROG by type
SO2	\$40,500 / ton
	Segmented by pollutant Link-level calculation Source: BAAQMD

Auto Ownership Costs

- MTC = \$6,290 / year
- AAA = \$6,000 / year
- Household-level calculation
- Source: MTC

What does the **Process** look like?

Multi-Criterion Evaluation (or pick your label...)

- Identify the *actions* that will be decided
- Choose *criteria* that inform the decision
- Devise evaluation methods that make the criteria comparable *
- Engage decision-makers to weight the criteria
- Apply the evaluation to the actions
- Report the evaluation findings to the decision-makers

Some **Process** Observations A few lessons learned...

- "Rollup" intended to simplify discussion but still need to ensure participants understanding & trust methods
- People care about different things: transparently report every criterion even when you report the "rollup"
- Be forthright about assumptions, methods, and analytic limitations
- Have a communications plan—MCE produces a lot of information
- Stakeholders will always disagree about validity of analytic methods for both tangible and tactical reasons

Discussion

Are MCE techniques valuable for regional stakeholders?

What technical features are particularly important to this region?

What outreach, education, and information should regional stakeholders be given to best understand and participate in this type of decision-support process?

Background

Least Cost Planning:

- Originated in power generation industry, based on benefitcost analysis
- A structured planning *process* that provides *decision* support information to the decision-makers
- Analytic tools are necessary but not sufficient. Decisionmaker consultation and stakeholder involvement are also required
- Has evolved since its inception and during its applications to transportation decisions
- Proven *successful applications* in transportation are better described in current terminology as *multi-criteria evaluation (MCE)*
- Technical and best-practice successful transportation examples exist

Aggregate vs. Activity-Based Analysis

- Aggregate potential level of detail:
 - Zone
 - Market Segment (e.g. Home-Based-Work-Low-Income)
- Activity-based potential level of detail:
 - Person, along any characteristic (e.g. HH income, age, etc.)
 - Person-trips

Environmental Justice ("Communities of Concern"): In aggregate modeling the zone becomes a proxy for the people

Typical: Green is an "EJ" zone because threshold percent of residents meet EJ criteria; assume global proportion of trips

Environmental Justice ("Communities of Concern"): In ABM modeling we know exactly who the EJ individuals are (dark green arrows) because model simulates individual characteristics: ABM enables more-precise accounting by person and characteristic

Physical Activity Threshold=22 min/day

- Aggregate model sees three trips below threshold

Physical Activity Threshold=22 min/day

 ABM sees one daily activity that in total crosses threshold

Geographic Subarea Analysis

