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Abstract 

A customizable operating system is one that can adapt to improve its functionality 
or performance. The need for customizable and application-specific operating systems 
has been recognized for many years, but they have yet to appear in the commercial mar
ket. This paper explores the notion of operating system customizability and examines 
the limits of existing approaches. The paper begins by surveying system structuring 
approaches for the safe and efficient execution of customizable operating systems. Then 
it discusses the burden that existing approaches impose on application software, and 
explores techniques for reducing this burden. Finally, support for customizability in 
the Synthetix project is described and illustrated through two examples: a dynamically 
specialized file system read call, and an adaptive Internet-based MPEG video player. 

Restructuring Operating Systems for Customizability 
A key dilemma faced by operating system developers is the need to produce software that 

is both general-purpose and performance-criticaL Operating systems must execute correctly 

under all conditions, but must also exhibit high performance in common circumstances. The 

conventional approach to this dilemma is to write code that is general-purpose, but optimized 

for a single anticipated common case. The result is an implementation with functionality and 

performance characteristics that are fixed throughout the lifetime of the operating system. 

"This research is partially supported by ARPA grant N00014-94-1-0B45, NSF grant CCR-9224375, and 
grants from the Hewlett-Packard Company and Tektronix. 



The need for customizability arises when the anticipated common case doesn't match 

the characteristics of some important application. This can occur when the application was 

developed after the operating system, or when the operating system developer simply failed 

to recognize the importance of this application or class of applications. The problem can be 

serious when the optimizations embedded in the operating system are particularly bad for 

the new application [23]. 

An important lesson for operating system developers is that their systems must perform 

well for many common cases. Some of these cases can be anticipated, but others - such as 

those that arise because of new applications - can not. Moreover, optimizations for one case 

are likely to be particularly bad for some other case. Hence, the conventional approach of 

optimizing for a small number of common cases is not viable. 

A basic principle that helps to improve the customizability of operating systems is the 

separation of mechanism from policy. Policies embedded in the operating system are often 

the cause of the poor performance of applications for which they are inappropriate. One 

solution to this problem is to allow applications to specify their own policies, in the form of 

specialized operating system components. In general, this approach requires that interfaces, 

previously hidden within the kernel, be defined and exposed to application developers. 

Hydra [16] was an early example of a customizable operating system. The goal of the 

Hydra kernel was to implement mechanisms, while allowing application-level software to 

define policies. The invocation of application-level software on each policy decision was 

deemed to be impractical due to the high cost of protection domain crossing. Therefore, 

Hydra implemented parameterized policies such that application-level software could select 

the appropriate parameters but leave the enforcement of the application-specified policy to 

the kerneL The success of this approach depends on the ability to anticipate appropriate 

policies for future applications. 

Micro-kernel operating systems take an alternative approach by encapsulating some op

erating system functionality in application-level servers [3, 13, 14, 19, 22]. The interfaces 

within such operating systems are implemented using message passing facilities provided by 

the micro-kerneL These systems can be customized by providing additional or replacement 

servers that implement the desired policies while making use of existing mechanisms pro

vided by the micro-kernel or other servers. Using this approach, customization is supported 

at a coarse granularity. through the replacement of entire servers. Depending on whether 

the kernel needs to be recompiled and rebooted to load new servers, customization can be 
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characterized as static or dynamic. 

The customizability that comes from restructuring operating systems as collections of 

application-level servers is not free, however. System calls that previously involved only 

procedure calls and accesses to shared data within the kernel now incur the overhead of 

virtual memory context switches, thread switches, and marshaling and unmarshalling of data, 

all of which are associated with message passing across protection boundaries. This inter

server communication overhead leads to the use of coarse grain servers and hence coarse grain 

customizability. In view of the fact that fine-grain adaptivity is desirable and performance 

really does matter, operating system researchers have explored several alternatives to the 

micro-kernel approach. 

Second-generation micro-kernels reduce message passing overhead by moving performance

critical servers back down into the kernel address space [5, 22]. In this way, inter-server 

communication can be highly optimized because there is no longer any address space or 

protection domain crossing when invoking another kernel-resident server. 

Some researchers believe that the problem with the micro-kernel approach is that func

tionality was split at the wrong level, and so micro-kernels require too much communication 

among servers. Proponents of this position argue that more kernel functionality should be 

moved up to a higher level, but that the right destination is application-level shared libraries 

rather than server processes [7, 10]. In this way, operating system code is accessible for 

customization at a fine granularity, but the cost of invoking a customized service is the cost 

of a procedure call rather than a system call or message. We refer to this approach as the 

shared library approach. 

Both shared libraries and second-generation micro-kernels optimize performance at the 

expense of protection. In the second-generation micro-kernel approach, neither the micro

kernel itself nor other kernel-resident servers are protected from downloaded application

specific servers. In the shared library approach, elevated operating system code runs in a 

write-protected section of the application's address space, but its data is not protected from 

regular application code. 

A key problem for operating system developers is how to support customizability with

out losing either performance or protection. Application-specific code should execute with 

performance at least comparable to generic kernel code, but should not be able to read or 

write arbitrary locations in the kernel address space, unfairly consume system resources, or 

compromise the integrity of other operating system components. 
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To meet these challenges, operating system designers are revisiting language-level solu

tions to protection and encapsulation. For example, the SPIN operating system [2] allows 

components to be downloaded into the kernel, but they must be written in Modula-3 and 

compiled using the SPIN compiler to ensure protection. Other systems use lower level 

software-based protection techniques such as sandboxing to isolate new components without 

incurring a large performance overhead [11, 24]. 

Object-oriented operating systems support protection through encapsulation [4J. All 

operating system components are defined as objects. New custom objects are defined using 

inheritance and specialization. An added benefit of object-oriented approaches is that they 

can provide some guidance for customization by requiring that the type of a new custom 

object conforms to the type of the object that it replaces. 

All of the approaches outlined above address customization from the standpoint of op

erating system structure: how should operating systems be structured so that specialized 

components can be added in a controlled way? In early systems, the ability to add a spe

cialized component in a clean way was considered useful, even if it required the system to 

be rebuilt and rebooted. More recently, however, the need for dynamic customization has 

been recognized. 

Gopal et al [12] categorize systems as customizable, extensible, or adaptable, according 

to the following criteria. A customizable operating system allows applications to specify 

their requirements so that appropriate specialized operating system components can be used 

for the application. An extensible operating system allows new, unforeseen customizations 

to be incorporated into a running system without requiring it to be rebuilt and rebooted. 

An adaptable operating system allows the customizations to change dynamically during ex

ecution to match changing application requirements. Restructuring alone does not support 

adaptable or extensible operating systems. Such systems require mechanisms for detecting 

when specialized components are no longer appropriate, and for replacing them dynamically. 

Supporting Adaptable and Extensible Operating Systems 
In many of the systems discussed above, applications that wish to customize the system 

must either add their own specialized components or ensure that appropriate specialized 

components have been installed in advance. Typically, the addition of a specialized compo

nent requires that the application download the appropriate code into the kernel. We call 

such approaches low level and explicit because applications explicitly specify the changes 
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they need, and they do so by providing kernel code rather than a high level description of 

the behavior that they would like to see. In such systems the responsibility for tuning the 

operating system's performance has effectively been abdicated to the application. 

While approaches based on low level and explicit customization allow precise tuning 

to application needs, they also have several problems. First, the fact that customization 

requirements are specified in the form of kernel code means that a high degree of kernel 

programming expertise is required at the application level. Second, an individual applica

tion may not have the global system view necessary to implement specialized components 

successfully in the presence of conflicting customizations from other applications. For this 

reason, the approach does not scale well to large systems with many applications. Third, 

supporting adaptable operating systems is difficult because it requires the application to 

respond dynamically to changes in the system, which may be caused by events external to 

the application. Again, the lack of a global system view by any particular application makes 

it difficult to provide such support. Finally, explicit customization does not support "dusty

deck" applications, or applications that are unwilling or unable to take on the responsibility 

for tuning operating system performance. 

An alternative to explicit customization is inferred customization. Operating systems 

that support inferred customization generate and select appropriate specialized components 

dynamically and automatically using information that is available through the normal system 

call interface. Such systems provide some support for dusty deck applications; however 

the limited information used to drive customization means that many opportunities for 

optimization are missed. An early example of a system based on inferred customization was 

the Synthesis kernel [17, 21]. Synthesis was a precursor to Synthetix. which is discussed 

later. 

In order to gain the benefits of both explicit and inferred customization, it is possible 

to combine the techniques in a single system. For example, a system based on inferred 

customization could infer customizations solely from the system call behavior of applications, 

or it could use additional hints passed to it from the application via a meta-interface [15, 25]. 

Meta-interfaces can take many different forms. They can support abstract specifications 

of an application's intended use of a system, or they can provide the means for applications 

to download code directly into the kernel. We call the former a high-level meta-interface and 

the latter a low-level meta-interface. Orthogonally, meta-interfaces may allow applications 

to inform the operating system of their intentions, or they may allow applications to direct 

5 




the operating system's behavior [15]. 

Table 1 summarizes the various attributes of customizable operating systems. Table 2 

summarizes the approaches taken by the systems that we have described. Table 2 also lists 

the Synthetix project. In the following sections we outline the Synthetix model for building 

fine-grain adaptable operating systems that support inferred customization, but also use a 

high-level hint-based meta-interface. The practical application of this model is described in 

two side bars that outline the implementation of a dynamically specialized read system call 

in HP-UX, and an adaptable Internet-based video player. 

The Synthetix Specialization Model 
The Synthetix project seeks to define a systematic approach to building adaptable oper

ating systems. We begin by establishing a high-level specification of system properties that 

are exploitable by customization using invariants. A true invariant, like a classical invariant, 

is a state property of the system that is guaranteed to be true at all times. A quasi-invariant 

is a state property that is momentarily true, but may become false at some future time. 

Once invariants have been established, specialized components can be prepared to replace 

their generic counterparts in the system. A specialized component can be either a specializa

tion of mechanism or of policy. A specialized mechanism is a more efficient implementation of 

the same functionality, optimized using partial evaluation with respect to the invariants [8]. 
A specialized policy component provides the same interface as its generic counterpart, but 

changes the behavior of the component to provide improved performance to the application. 

An example of this approach would be a file system pre-fetching policy specialized for the 

access patterns of a particular application. 

Quasi-invariants can become false, potentially making their corresponding specialized 

components either inefficient or invalid. Thus, quasi-invariants must be guarded. A guard 

is a test placed at a location in the system where a quasi-invariant might be invalidated: 

if execution invalidates the quasi-invariant, then the guard re-plugs all the specialized com

ponents that depend on that quasi-invariant with less specialized components that do not 

depend on it. Because a specialized component that depends on quasi-invariants can be 

removed, possibly even before it is used, we refer to the use of such specialized components 

as optimistic specialization. 

Specialized components can be installed whenever the appropriate set of invariants and 

quasi-invariants is discovered to be true. Discovering that an invariant is true requires 
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• replace 

infer 

Generator of customization 

The application selects among choices offered by the op
erating system. 

The application replaces a module within the operating 

system. 

The operating systems replaces its own modules. Deci
sions are transparent to the application. 

Location of customization 
Label 

kernel 

library 

server 

Description 

I The specialized module resides in the same address space 
! as the operating system. 

The specialized module resides in an application-level li
brary. Application has access to module via procedure 
call and memory references. 
The specialized module resides in an application-level 
server process. Application has access to module via 
messages. 

-

Allows specialization of procedures and small objects. 
coarse Restricts specialization to entire servers or libraries. 

Protection Enforcement 
r7~~----'--------------

Label Description 

native Protection enforced by existing protection mechanisms 
such as 
calls. 

virtual memory, IPC, capabilities, and system 

super-user Only kernel programmer or super-user can place the cus
tomization into the kernel. Similar to policy used with 
UNIX third-party device drivers. 

low-level Protection maintained by low-level mechanisms such as 
sand boxing and transactions. 

language Protection maintained by type-safe languages in conjunc
tion with a secure compiler, linker, and loader. 

Table 1: Attributes of Customizable Operating Systems 
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System 
Generator of 
Customization 

Location of 
Customization 

I Granularity of 
Customization Protection 

Aegis replace libraryl fine low-level 
Apertos replace kernel fine super-user 
Cache Kernel replace server/library fine native 
Choices replace kernel fine super-user 
Chorus replace kerneP coarse super-user 
Flex replace kerneP coarse super-user 
Hydra select kernel coarse native 
Lipto replace library fine native 
SPIN replace kernel fine language 
Spring replace server fine native 

I Synthetix infer kernel fine native 

1 Aegis also allows sandboxed code to be downloaded into the kernel. 
2 Servers can be run outside the kernel for debugging purposes. 

Table 2: Customizable Operating Systems 

the same set of checks as discovering that an invariant is false, and so the aforementioned 

guards can be used to trigger the use of specialized components, allowing the operating 

system to infer the specializations that should be used. Sometimes, however, invariants are 

discovered to be true at different points in time. In that case, the specialized component 

may be replaced with one that is more specialized than the current component. We call 

this approach incremental specialization. Sidebar 1 describes an experimental modification 

of the HP-UX operating system to exploit the techniques of optimistic and incremental 

specialization. 

The HP-UX experiment is an example of mechanism specialization. In contrast, a policy 

specialization is a customization of the behavior of an operating system component so as 

to improve the performance provided to an application. For instance, if some particular 

properties of an application's locality of reference are known, then the virtual memory system 

can be specialized to cater to that reference pattern. Policy specialization encompasses any 

form of adaptation of the function of a component. 

The Synthetix project is examining a particular form of policy specialization called soft

ware feedback [18] in which policy is specialized according to a feedback mechanism. In a 

system containing producer and consumer processes, software feedback proposes that the 
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consumer feed back properties of its input to the producer so as to balance and optimize 

the data flow. Sidebar 2 describes our distributed video/audio player, which uses software 

feedback to adapt dynamically to the changing bandwidth provided by the Internet. This 

example illustrates two concepts. First, the feedback messages produced by the consumer 

explicitly change the behavior of the system; thus feedback constitutes a policy specialization 

rather than a mechanism specialization. 

Second, software feedback re-specializes the behavior of the system between invocations 

of the system call to fetch data. Thus software feedback is a much finer-grained example of 

specialization than has previously been discussed. Instead of replacing a component once 

and for all, as in a microkernel, or once a specialization opportunity is discovered, as in our 

HP-UX experiment, software feedback continuously re-specializes the system. Nonetheless, 

software feedback can still be understood using the Synthetix model for specialization: the 

consumer describes the properties of its input data stream as quasi-invariants; when these 

quasi-invariants are violated a feedback message is sent to the producer to correct the data 

stream so that the quasi-invariants will again be true. 

The techniques outlined so far enable the implementation of an adaptable operating sys

tem that preserves an existing interface: no explicit specifications of desired customizations 

are necessary, and thus "dusty deck" applications can experience performance improvements 

without any knowledge of customization. However, there are limits to the invariants that 

the operating system can infer from the behaviour of the application. 

To extend the ability of the operating system to specialize itself, we propose to extend the 

operating system's interface with micro/anguages. A microlanguage is a small, application

specific, mostly declarative specification of the invariants that the application would like the 

operating system to use. This approach allows the application to state its desired properties 

without any knowledge of the internal structure of the operating system: specified invariants 

that are not relevant to a particular operating system implementation can simply be ignored. 

Microlanguages are intended to be small and have simple syntax, but deep semantics. 

In summary, Synthetix defines a model for supporting both inferred and high-level ex

plicit customization in an adaptable operating system. Guards are used to manage conflicts 

among specialized components and support optimistic specializations. Invariants and mi

crolanguages constitute a high-level meta-interface through which applications can specify 

the specialized behavior that they would like the operating system to exhibit. The two 

sidebars outline our experience using this model in a commercial operating system and in a 
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distributed Internet-based application. These examples show that the Synthetix model is not 

limited to coarse-grain, infrequent specializations, but is suitable even when respecialization 

must take place at a finer grain than a system call. Finally, the customization techniques 

outlined here are orthogonal to operating system structure. One of our case studies has been 

performed in a monolithic kernel; however, we could easily have applied the same approach 

in a micro-kernel or an object oriented operating system. 

Sidebar 1: Specializing HP-UX 
The experiment presented in [20} sought to evaluate the effectiveness of mechanism spe

cialization in a commercial operating system. Previous work [.1.8, 21} had already shown 

that specializing operating system mechanisms could provide performance benefits of up to 

a factor of 56 [17}, but this work did not clearly distinguish between the benefits provided by 

specialized mechanisms and benefits provided by other means, such as a kernel hand-coded 

in assembler. 

In this experiment we produced a specialized implementation of the read system call in 

HP-UX. Figure 1 shows the flow graph for the standard HP-UX implementation of read, and 

Figure 2 shows the specialized implementation of read. The specialized read implementation 

exploits several true invariants and quasi-invariants to produce a simpler and faster read 

mechanism. For instance, the generic read mechanism is forced to interpret numerous data 

structures that descri be the type of the object being read (file, socket, etc.), the type of 

the file system (local or network), and the parameters of the file system (block size, etc.). 

However, once a specific file is opened, these values all become fixed as true invariants. Thus 

a faster implementation of the read mechanism, specialized for the file being opened, can 

be created at open time. Hence, rather than checking these parameters, it hard-codes them 

directly. 

The generic read mechanism also acquires several concurrency locks on kernel data struc

tures to protect against interference that may occur if more than one process concurrently 

accesses these data structures. However, it is possible to determine at open time whether 

there are any concurrent processes accessing the file. The quasi-invariant that the file is not 

shared characterizes this situation; when it holds, the acquisition of the concurrency locks 

can be omitted from the specialized read mechanism. This is an important saving, because 

lock acquisition can be expensive on shared memory multiprocessors [I}. 

Non-sharing of files is a quasi-invariant because at any time another process may open 
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1. System call startup 

2. Identify file & file system type, 

translate into inode number 

3. Lock the inode 

6. Data transfer 

8. Unlock the inode 

9 Update file offset 

10. System call cleanup 

Figure 1: HP-UX read Flow Graph 

4. Translate file offset into 

logical block number 

5. 	 Translate logical block number 

into physical block number, 

get the buffer cache block 

containing the data 
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I. System call startup 

No 

4. Translate file offset into 

logical block number 

5. 	 Translate logical block number 

into physical block number, 

get the buffer cache block 

containing the data 

6. 	 Data transfer 

.: 6a. Data transfer y JJ 
9 Update file offset 

'1 
[ 10. System call cleanup 

Figure 2: Specialized read Flow Graph 
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the file and access it. To protect against this possibility, guards are placed in all locations 

in the kernel where files may be opened (open, creat, etc.). If it is detected that the file 

being opened has a specialized read mecha.nism associated with it then the quasi-invariant 

has been violated, and the specialized read mechanism is replaced with a more generic 

mechanism that does not depend on the "non-shared" quasi-invariant. 

This approach to customization requires the system programmer to identify common 

cases, such as common access patterns to files, to represent them using invariants and quasi

invariants, and then to place the appropriate guards to support automatic replacement of 

specialized components. It also requires support for dynamic replacement of kernel com

ponents that may be executing [9]. The performance improvements that result from the 

approach depend on the ability to move interpretation code out of the operating system's 

commonly accessed "fast paths"; the necessary guard code is placed in other, less frequently 

accessed, code paths. Our experiments show that, in the case of read, this technique can 

reduce the software overhead of a system call by more than a factor of three, even in an 

optimized commercial operating system. Such a reduction in system call overhead not only 

improves application performance, it also enables a more flexible use of operating system 

calls. 

Sidebar 2: Policy Specialization Through Software Feedback 
Two of the hottest topics in computer systems are the Internet and multimedia. Unfor

tunately, they don't work well together: multimedia presentations demand real-time perfor

mance, while the bandwidth and latency characteristics of the Internet are highly variable 

and impossible to control. It is therefore necessary for distributed multi-media systems to 

adapt to the changing conditions found in a distributed network. This experiment showed 

how the use of feedback to make multimedia presentations adaptive enables video to be played 

across an irregular network such as the Internet without benefit of resource reservation [6]. 

We use software feedback [18], reminiscent of hardware feedback, to adapt multi-media 

presentations to the changing conditions of the Internet. Our video player has a distributed 

client-server architecture as shown in Figure 3. The client measures various properties of the 

video stream it is receiving from the network, and feeds them back to the server, allowing 

both the client and the server to adapt to changing Internet conditions. 

Software feedback takes the form of quasi-invariants and guards. If the present state is 

within tolerance, a quasi-invariant is true and no feedback is required. If the quasi-invariant 
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Video stream 


Network 
 )';0010ClientServer 
Buffer 

L __________ _ Feedback _ ________ J 

Figure 3: Architecture of the player 

is violated, then some property has exceeded tolerance, and some form of feedback action is 

necessary. Guards detect the violation of the quasi-invariants, and induce feedback events 

which undertake to make the quasi-invariant true again. 

For instance, it is desirable that the server send only as many frames per second as the 

network can support; sending additional frames just wastes bandwidth, because these frames 

are either dropped by the network, or discarded by the client because they arrived to late to 

be useful. Thus, we use a quasi-invariant that the server's frame transmission rate is within 

t of the client's frame display rate. If a guard detects that this quasi-invariant has been 

violated, then a feedback message is sent to tell the server to adjust its frame transmission 

rate so that the client and server's frame rates will again be within t of one another. 

A more involved example of policy specialization is the use of a software feedback system 

to adapt simultaneously to changes in network latency and network jitter. Network jitter 

is short-term variation in the inter-arrival time of frames: the client must buffer a sufficient 

number of frames to mask jitter, so as to present the frames to the user in a smooth, regular 

fashion. Network latency is the delay between the server sending a frame and the client 

receiving the frame: network delay is an important factor in determining how far ahead the 

server should be working from the client's current play position so as to keep the client's 

buffer at an optimum fill level. Note that latency typically changes more slowly than jitter. 

Both network jitter and changes in network latency are manifested as changes in the 

arrival time offrames at the client. However, the policy required to adapt to each is different: 

rising jitter requires allocating additional buffer space in the client, while changes in network 

latency require changes in the work-ahead position of the server. The feedback system 

determines which of these two policies to apply by using filters on the feedback data. Both 

network jitter and changes in network latency are measured using an aging average of frame 

arrival time, but different aging factors are used to identify the two different phenomena. 
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Selecting policies in this way can be viewed as specialization of a specialization: the particular 

policy specialization to be applied is selected adaptively based on current circumstances. 

The invariants and guards used in software feedback are similar to those used in mecha

nism specialization. However, the actions taken by the guards that detect violations of quasi

invariants are different. Rather than replacing one mechanism with another, the guards take 

explicit actions that cause components of the system to change their operational behavior, 

effectively changing the component's policy. Thus, software feedback is a form of policy 

specialization. 

The guards are also triggered much more frequently, and the corrective actions they take 

are much cheaper than replacing one mechanism with another. Thus software feedback is 

much finer-grained than mechanism specialization. However, it is not always the case that 

policy specialization is fine-grained. In future research, we will examine the prospects for 

larger-scale policy specializations in an operating system, such as paging policy, or file system 

pre-fetching policy. 
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