
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

11-1995

Customizable Operating Systems Customizable Operating Systems

Jonathan Walpole
Portland State University

Crispin Cowan

Andrew P. Black
Portland State University, black@cs.pdx.edu

Jon Inouye

Calton Pu

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Walpole, Jonathan, et al. Customizable Operating Systems. Report CSE-95-023, Dept. of Computer
Science and Engineering, Oregon Graduate Institute, Portland, OR, 1995.

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if
we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/30
mailto:pdxscholar@pdx.edu

Authors Authors
Jonathan Walpole, Crispin Cowan, Andrew P. Black, Jon Inouye, Calton Pu, and Shanwei Cen

This technical report is available at PDXScholar: https://pdxscholar.library.pdx.edu/compsci_fac/30

https://pdxscholar.library.pdx.edu/compsci_fac/30

Customizable Operating Systems *

Jonathan Walpole, Crispin Cowan,

Andrew Black, Jon Inouye, Calton Pu, and Shanwei Cen

Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology

(synthetix-request@cse. agio edu)

November 15, 1995

Abstract

A customizable operating system is one that can adapt to improve its functionality
or performance. The need for customizable and application-specific operating systems
has been recognized for many years, but they have yet to appear in the commercial mar
ket. This paper explores the notion of operating system customizability and examines
the limits of existing approaches. The paper begins by surveying system structuring
approaches for the safe and efficient execution of customizable operating systems. Then
it discusses the burden that existing approaches impose on application software, and
explores techniques for reducing this burden. Finally, support for customizability in
the Synthetix project is described and illustrated through two examples: a dynamically
specialized file system read call, and an adaptive Internet-based MPEG video player.

Restructuring Operating Systems for Customizability
A key dilemma faced by operating system developers is the need to produce software that

is both general-purpose and performance-criticaL Operating systems must execute correctly

under all conditions, but must also exhibit high performance in common circumstances. The

conventional approach to this dilemma is to write code that is general-purpose, but optimized

for a single anticipated common case. The result is an implementation with functionality and

performance characteristics that are fixed throughout the lifetime of the operating system.

"This research is partially supported by ARPA grant N00014-94-1-0B45, NSF grant CCR-9224375, and
grants from the Hewlett-Packard Company and Tektronix.

The need for customizability arises when the anticipated common case doesn't match

the characteristics of some important application. This can occur when the application was

developed after the operating system, or when the operating system developer simply failed

to recognize the importance of this application or class of applications. The problem can be

serious when the optimizations embedded in the operating system are particularly bad for

the new application [23].

An important lesson for operating system developers is that their systems must perform

well for many common cases. Some of these cases can be anticipated, but others - such as

those that arise because of new applications - can not. Moreover, optimizations for one case

are likely to be particularly bad for some other case. Hence, the conventional approach of

optimizing for a small number of common cases is not viable.

A basic principle that helps to improve the customizability of operating systems is the

separation of mechanism from policy. Policies embedded in the operating system are often

the cause of the poor performance of applications for which they are inappropriate. One

solution to this problem is to allow applications to specify their own policies, in the form of

specialized operating system components. In general, this approach requires that interfaces,

previously hidden within the kernel, be defined and exposed to application developers.

Hydra [16] was an early example of a customizable operating system. The goal of the

Hydra kernel was to implement mechanisms, while allowing application-level software to

define policies. The invocation of application-level software on each policy decision was

deemed to be impractical due to the high cost of protection domain crossing. Therefore,

Hydra implemented parameterized policies such that application-level software could select

the appropriate parameters but leave the enforcement of the application-specified policy to

the kerneL The success of this approach depends on the ability to anticipate appropriate

policies for future applications.

Micro-kernel operating systems take an alternative approach by encapsulating some op

erating system functionality in application-level servers [3, 13, 14, 19, 22]. The interfaces

within such operating systems are implemented using message passing facilities provided by

the micro-kerneL These systems can be customized by providing additional or replacement

servers that implement the desired policies while making use of existing mechanisms pro

vided by the micro-kernel or other servers. Using this approach, customization is supported

at a coarse granularity. through the replacement of entire servers. Depending on whether

the kernel needs to be recompiled and rebooted to load new servers, customization can be

2

characterized as static or dynamic.

The customizability that comes from restructuring operating systems as collections of

application-level servers is not free, however. System calls that previously involved only

procedure calls and accesses to shared data within the kernel now incur the overhead of

virtual memory context switches, thread switches, and marshaling and unmarshalling of data,

all of which are associated with message passing across protection boundaries. This inter

server communication overhead leads to the use of coarse grain servers and hence coarse grain

customizability. In view of the fact that fine-grain adaptivity is desirable and performance

really does matter, operating system researchers have explored several alternatives to the

micro-kernel approach.

Second-generation micro-kernels reduce message passing overhead by moving performance

critical servers back down into the kernel address space [5, 22]. In this way, inter-server

communication can be highly optimized because there is no longer any address space or

protection domain crossing when invoking another kernel-resident server.

Some researchers believe that the problem with the micro-kernel approach is that func

tionality was split at the wrong level, and so micro-kernels require too much communication

among servers. Proponents of this position argue that more kernel functionality should be

moved up to a higher level, but that the right destination is application-level shared libraries

rather than server processes [7, 10]. In this way, operating system code is accessible for

customization at a fine granularity, but the cost of invoking a customized service is the cost

of a procedure call rather than a system call or message. We refer to this approach as the

shared library approach.

Both shared libraries and second-generation micro-kernels optimize performance at the

expense of protection. In the second-generation micro-kernel approach, neither the micro

kernel itself nor other kernel-resident servers are protected from downloaded application

specific servers. In the shared library approach, elevated operating system code runs in a

write-protected section of the application's address space, but its data is not protected from

regular application code.

A key problem for operating system developers is how to support customizability with

out losing either performance or protection. Application-specific code should execute with

performance at least comparable to generic kernel code, but should not be able to read or

write arbitrary locations in the kernel address space, unfairly consume system resources, or

compromise the integrity of other operating system components.

3

To meet these challenges, operating system designers are revisiting language-level solu

tions to protection and encapsulation. For example, the SPIN operating system [2] allows

components to be downloaded into the kernel, but they must be written in Modula-3 and

compiled using the SPIN compiler to ensure protection. Other systems use lower level

software-based protection techniques such as sandboxing to isolate new components without

incurring a large performance overhead [11, 24].

Object-oriented operating systems support protection through encapsulation [4J. All

operating system components are defined as objects. New custom objects are defined using

inheritance and specialization. An added benefit of object-oriented approaches is that they

can provide some guidance for customization by requiring that the type of a new custom

object conforms to the type of the object that it replaces.

All of the approaches outlined above address customization from the standpoint of op

erating system structure: how should operating systems be structured so that specialized

components can be added in a controlled way? In early systems, the ability to add a spe

cialized component in a clean way was considered useful, even if it required the system to

be rebuilt and rebooted. More recently, however, the need for dynamic customization has

been recognized.

Gopal et al [12] categorize systems as customizable, extensible, or adaptable, according

to the following criteria. A customizable operating system allows applications to specify

their requirements so that appropriate specialized operating system components can be used

for the application. An extensible operating system allows new, unforeseen customizations

to be incorporated into a running system without requiring it to be rebuilt and rebooted.

An adaptable operating system allows the customizations to change dynamically during ex

ecution to match changing application requirements. Restructuring alone does not support

adaptable or extensible operating systems. Such systems require mechanisms for detecting

when specialized components are no longer appropriate, and for replacing them dynamically.

Supporting Adaptable and Extensible Operating Systems
In many of the systems discussed above, applications that wish to customize the system

must either add their own specialized components or ensure that appropriate specialized

components have been installed in advance. Typically, the addition of a specialized compo

nent requires that the application download the appropriate code into the kernel. We call

such approaches low level and explicit because applications explicitly specify the changes

4

they need, and they do so by providing kernel code rather than a high level description of

the behavior that they would like to see. In such systems the responsibility for tuning the

operating system's performance has effectively been abdicated to the application.

While approaches based on low level and explicit customization allow precise tuning

to application needs, they also have several problems. First, the fact that customization

requirements are specified in the form of kernel code means that a high degree of kernel

programming expertise is required at the application level. Second, an individual applica

tion may not have the global system view necessary to implement specialized components

successfully in the presence of conflicting customizations from other applications. For this

reason, the approach does not scale well to large systems with many applications. Third,

supporting adaptable operating systems is difficult because it requires the application to

respond dynamically to changes in the system, which may be caused by events external to

the application. Again, the lack of a global system view by any particular application makes

it difficult to provide such support. Finally, explicit customization does not support "dusty

deck" applications, or applications that are unwilling or unable to take on the responsibility

for tuning operating system performance.

An alternative to explicit customization is inferred customization. Operating systems

that support inferred customization generate and select appropriate specialized components

dynamically and automatically using information that is available through the normal system

call interface. Such systems provide some support for dusty deck applications; however

the limited information used to drive customization means that many opportunities for

optimization are missed. An early example of a system based on inferred customization was

the Synthesis kernel [17, 21]. Synthesis was a precursor to Synthetix. which is discussed

later.

In order to gain the benefits of both explicit and inferred customization, it is possible

to combine the techniques in a single system. For example, a system based on inferred

customization could infer customizations solely from the system call behavior of applications,

or it could use additional hints passed to it from the application via a meta-interface [15, 25].

Meta-interfaces can take many different forms. They can support abstract specifications

of an application's intended use of a system, or they can provide the means for applications

to download code directly into the kernel. We call the former a high-level meta-interface and

the latter a low-level meta-interface. Orthogonally, meta-interfaces may allow applications

to inform the operating system of their intentions, or they may allow applications to direct

5

the operating system's behavior [15].

Table 1 summarizes the various attributes of customizable operating systems. Table 2

summarizes the approaches taken by the systems that we have described. Table 2 also lists

the Synthetix project. In the following sections we outline the Synthetix model for building

fine-grain adaptable operating systems that support inferred customization, but also use a

high-level hint-based meta-interface. The practical application of this model is described in

two side bars that outline the implementation of a dynamically specialized read system call

in HP-UX, and an adaptable Internet-based video player.

The Synthetix Specialization Model
The Synthetix project seeks to define a systematic approach to building adaptable oper

ating systems. We begin by establishing a high-level specification of system properties that

are exploitable by customization using invariants. A true invariant, like a classical invariant,

is a state property of the system that is guaranteed to be true at all times. A quasi-invariant

is a state property that is momentarily true, but may become false at some future time.

Once invariants have been established, specialized components can be prepared to replace

their generic counterparts in the system. A specialized component can be either a specializa

tion of mechanism or of policy. A specialized mechanism is a more efficient implementation of

the same functionality, optimized using partial evaluation with respect to the invariants [8].
A specialized policy component provides the same interface as its generic counterpart, but

changes the behavior of the component to provide improved performance to the application.

An example of this approach would be a file system pre-fetching policy specialized for the

access patterns of a particular application.

Quasi-invariants can become false, potentially making their corresponding specialized

components either inefficient or invalid. Thus, quasi-invariants must be guarded. A guard

is a test placed at a location in the system where a quasi-invariant might be invalidated:

if execution invalidates the quasi-invariant, then the guard re-plugs all the specialized com

ponents that depend on that quasi-invariant with less specialized components that do not

depend on it. Because a specialized component that depends on quasi-invariants can be

removed, possibly even before it is used, we refer to the use of such specialized components

as optimistic specialization.

Specialized components can be installed whenever the appropriate set of invariants and

quasi-invariants is discovered to be true. Discovering that an invariant is true requires

6

• replace

infer

Generator of customization

The application selects among choices offered by the op
erating system.

The application replaces a module within the operating

system.

The operating systems replaces its own modules. Deci
sions are transparent to the application.

Location of customization
Label

kernel

library

server

Description

I The specialized module resides in the same address space
! as the operating system.

The specialized module resides in an application-level li
brary. Application has access to module via procedure
call and memory references.
The specialized module resides in an application-level
server process. Application has access to module via
messages.

-

Allows specialization of procedures and small objects.
coarse Restricts specialization to entire servers or libraries.

Protection Enforcement
r7~~----'--------------

Label Description

native Protection enforced by existing protection mechanisms
such as
calls.

virtual memory, IPC, capabilities, and system

super-user Only kernel programmer or super-user can place the cus
tomization into the kernel. Similar to policy used with
UNIX third-party device drivers.

low-level Protection maintained by low-level mechanisms such as
sand boxing and transactions.

language Protection maintained by type-safe languages in conjunc
tion with a secure compiler, linker, and loader.

Table 1: Attributes of Customizable Operating Systems

7

System
Generator of
Customization

Location of
Customization

I Granularity of
Customization Protection

Aegis replace libraryl fine low-level
Apertos replace kernel fine super-user
Cache Kernel replace server/library fine native
Choices replace kernel fine super-user
Chorus replace kerneP coarse super-user
Flex replace kerneP coarse super-user
Hydra select kernel coarse native
Lipto replace library fine native
SPIN replace kernel fine language
Spring replace server fine native

I Synthetix infer kernel fine native

1 Aegis also allows sandboxed code to be downloaded into the kernel.
2 Servers can be run outside the kernel for debugging purposes.

Table 2: Customizable Operating Systems

the same set of checks as discovering that an invariant is false, and so the aforementioned

guards can be used to trigger the use of specialized components, allowing the operating

system to infer the specializations that should be used. Sometimes, however, invariants are

discovered to be true at different points in time. In that case, the specialized component

may be replaced with one that is more specialized than the current component. We call

this approach incremental specialization. Sidebar 1 describes an experimental modification

of the HP-UX operating system to exploit the techniques of optimistic and incremental

specialization.

The HP-UX experiment is an example of mechanism specialization. In contrast, a policy

specialization is a customization of the behavior of an operating system component so as

to improve the performance provided to an application. For instance, if some particular

properties of an application's locality of reference are known, then the virtual memory system

can be specialized to cater to that reference pattern. Policy specialization encompasses any

form of adaptation of the function of a component.

The Synthetix project is examining a particular form of policy specialization called soft

ware feedback [18] in which policy is specialized according to a feedback mechanism. In a

system containing producer and consumer processes, software feedback proposes that the

8

consumer feed back properties of its input to the producer so as to balance and optimize

the data flow. Sidebar 2 describes our distributed video/audio player, which uses software

feedback to adapt dynamically to the changing bandwidth provided by the Internet. This

example illustrates two concepts. First, the feedback messages produced by the consumer

explicitly change the behavior of the system; thus feedback constitutes a policy specialization

rather than a mechanism specialization.

Second, software feedback re-specializes the behavior of the system between invocations

of the system call to fetch data. Thus software feedback is a much finer-grained example of

specialization than has previously been discussed. Instead of replacing a component once

and for all, as in a microkernel, or once a specialization opportunity is discovered, as in our

HP-UX experiment, software feedback continuously re-specializes the system. Nonetheless,

software feedback can still be understood using the Synthetix model for specialization: the

consumer describes the properties of its input data stream as quasi-invariants; when these

quasi-invariants are violated a feedback message is sent to the producer to correct the data

stream so that the quasi-invariants will again be true.

The techniques outlined so far enable the implementation of an adaptable operating sys

tem that preserves an existing interface: no explicit specifications of desired customizations

are necessary, and thus "dusty deck" applications can experience performance improvements

without any knowledge of customization. However, there are limits to the invariants that

the operating system can infer from the behaviour of the application.

To extend the ability of the operating system to specialize itself, we propose to extend the

operating system's interface with micro/anguages. A microlanguage is a small, application

specific, mostly declarative specification of the invariants that the application would like the

operating system to use. This approach allows the application to state its desired properties

without any knowledge of the internal structure of the operating system: specified invariants

that are not relevant to a particular operating system implementation can simply be ignored.

Microlanguages are intended to be small and have simple syntax, but deep semantics.

In summary, Synthetix defines a model for supporting both inferred and high-level ex

plicit customization in an adaptable operating system. Guards are used to manage conflicts

among specialized components and support optimistic specializations. Invariants and mi

crolanguages constitute a high-level meta-interface through which applications can specify

the specialized behavior that they would like the operating system to exhibit. The two

sidebars outline our experience using this model in a commercial operating system and in a

9

distributed Internet-based application. These examples show that the Synthetix model is not

limited to coarse-grain, infrequent specializations, but is suitable even when respecialization

must take place at a finer grain than a system call. Finally, the customization techniques

outlined here are orthogonal to operating system structure. One of our case studies has been

performed in a monolithic kernel; however, we could easily have applied the same approach

in a micro-kernel or an object oriented operating system.

Sidebar 1: Specializing HP-UX
The experiment presented in [20} sought to evaluate the effectiveness of mechanism spe

cialization in a commercial operating system. Previous work [.1.8, 21} had already shown

that specializing operating system mechanisms could provide performance benefits of up to

a factor of 56 [17}, but this work did not clearly distinguish between the benefits provided by

specialized mechanisms and benefits provided by other means, such as a kernel hand-coded

in assembler.

In this experiment we produced a specialized implementation of the read system call in

HP-UX. Figure 1 shows the flow graph for the standard HP-UX implementation of read, and

Figure 2 shows the specialized implementation of read. The specialized read implementation

exploits several true invariants and quasi-invariants to produce a simpler and faster read

mechanism. For instance, the generic read mechanism is forced to interpret numerous data

structures that descri be the type of the object being read (file, socket, etc.), the type of

the file system (local or network), and the parameters of the file system (block size, etc.).

However, once a specific file is opened, these values all become fixed as true invariants. Thus

a faster implementation of the read mechanism, specialized for the file being opened, can

be created at open time. Hence, rather than checking these parameters, it hard-codes them

directly.

The generic read mechanism also acquires several concurrency locks on kernel data struc

tures to protect against interference that may occur if more than one process concurrently

accesses these data structures. However, it is possible to determine at open time whether

there are any concurrent processes accessing the file. The quasi-invariant that the file is not

shared characterizes this situation; when it holds, the acquisition of the concurrency locks

can be omitted from the specialized read mechanism. This is an important saving, because

lock acquisition can be expensive on shared memory multiprocessors [I}.

Non-sharing of files is a quasi-invariant because at any time another process may open

10

1. System call startup

2. Identify file & file system type,

translate into inode number

3. Lock the inode

6. Data transfer

8. Unlock the inode

9 Update file offset

10. System call cleanup

Figure 1: HP-UX read Flow Graph

4. Translate file offset into

logical block number

5. 	 Translate logical block number

into physical block number,

get the buffer cache block

containing the data

11

I. System call startup

No

4. Translate file offset into

logical block number

5. 	 Translate logical block number

into physical block number,

get the buffer cache block

containing the data

6. 	 Data transfer

.: 6a. Data transfer y JJ
9 Update file offset

'1
[10. System call cleanup

Figure 2: Specialized read Flow Graph

12

the file and access it. To protect against this possibility, guards are placed in all locations

in the kernel where files may be opened (open, creat, etc.). If it is detected that the file

being opened has a specialized read mecha.nism associated with it then the quasi-invariant

has been violated, and the specialized read mechanism is replaced with a more generic

mechanism that does not depend on the "non-shared" quasi-invariant.

This approach to customization requires the system programmer to identify common

cases, such as common access patterns to files, to represent them using invariants and quasi

invariants, and then to place the appropriate guards to support automatic replacement of

specialized components. It also requires support for dynamic replacement of kernel com

ponents that may be executing [9]. The performance improvements that result from the

approach depend on the ability to move interpretation code out of the operating system's

commonly accessed "fast paths"; the necessary guard code is placed in other, less frequently

accessed, code paths. Our experiments show that, in the case of read, this technique can

reduce the software overhead of a system call by more than a factor of three, even in an

optimized commercial operating system. Such a reduction in system call overhead not only

improves application performance, it also enables a more flexible use of operating system

calls.

Sidebar 2: Policy Specialization Through Software Feedback
Two of the hottest topics in computer systems are the Internet and multimedia. Unfor

tunately, they don't work well together: multimedia presentations demand real-time perfor

mance, while the bandwidth and latency characteristics of the Internet are highly variable

and impossible to control. It is therefore necessary for distributed multi-media systems to

adapt to the changing conditions found in a distributed network. This experiment showed

how the use of feedback to make multimedia presentations adaptive enables video to be played

across an irregular network such as the Internet without benefit of resource reservation [6].

We use software feedback [18], reminiscent of hardware feedback, to adapt multi-media

presentations to the changing conditions of the Internet. Our video player has a distributed

client-server architecture as shown in Figure 3. The client measures various properties of the

video stream it is receiving from the network, and feeds them back to the server, allowing

both the client and the server to adapt to changing Internet conditions.

Software feedback takes the form of quasi-invariants and guards. If the present state is

within tolerance, a quasi-invariant is true and no feedback is required. If the quasi-invariant

13

Video stream

Network
)';0010ClientServer
Buffer

L __________ _ Feedback _ ________ J

Figure 3: Architecture of the player

is violated, then some property has exceeded tolerance, and some form of feedback action is

necessary. Guards detect the violation of the quasi-invariants, and induce feedback events

which undertake to make the quasi-invariant true again.

For instance, it is desirable that the server send only as many frames per second as the

network can support; sending additional frames just wastes bandwidth, because these frames

are either dropped by the network, or discarded by the client because they arrived to late to

be useful. Thus, we use a quasi-invariant that the server's frame transmission rate is within

t of the client's frame display rate. If a guard detects that this quasi-invariant has been

violated, then a feedback message is sent to tell the server to adjust its frame transmission

rate so that the client and server's frame rates will again be within t of one another.

A more involved example of policy specialization is the use of a software feedback system

to adapt simultaneously to changes in network latency and network jitter. Network jitter

is short-term variation in the inter-arrival time of frames: the client must buffer a sufficient

number of frames to mask jitter, so as to present the frames to the user in a smooth, regular

fashion. Network latency is the delay between the server sending a frame and the client

receiving the frame: network delay is an important factor in determining how far ahead the

server should be working from the client's current play position so as to keep the client's

buffer at an optimum fill level. Note that latency typically changes more slowly than jitter.

Both network jitter and changes in network latency are manifested as changes in the

arrival time offrames at the client. However, the policy required to adapt to each is different:

rising jitter requires allocating additional buffer space in the client, while changes in network

latency require changes in the work-ahead position of the server. The feedback system

determines which of these two policies to apply by using filters on the feedback data. Both

network jitter and changes in network latency are measured using an aging average of frame

arrival time, but different aging factors are used to identify the two different phenomena.

14

Selecting policies in this way can be viewed as specialization of a specialization: the particular

policy specialization to be applied is selected adaptively based on current circumstances.

The invariants and guards used in software feedback are similar to those used in mecha

nism specialization. However, the actions taken by the guards that detect violations of quasi

invariants are different. Rather than replacing one mechanism with another, the guards take

explicit actions that cause components of the system to change their operational behavior,

effectively changing the component's policy. Thus, software feedback is a form of policy

specialization.

The guards are also triggered much more frequently, and the corrective actions they take

are much cheaper than replacing one mechanism with another. Thus software feedback is

much finer-grained than mechanism specialization. However, it is not always the case that

policy specialization is fine-grained. In future research, we will examine the prospects for

larger-scale policy specializations in an operating system, such as paging policy, or file system

pre-fetching policy.

References

[1] 	 Brian N. Bershad, David D. Redell, and John R. Ellis. Fast Mutual Exclusion for
Uniprocessors. In Fifth International Conference on Architectural Support for Program
ming Languages and Operating Systems (A SPL OS- V), pages 223-233, Boston, MA,
September 1992.

[2] 	 Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, Marc Fiuczyn
ski, David Becker, Susan Eggers, and Craig Chambers. Extensibility, Safety and Perfor
mance in the SPIN Operating System. In Symposium on Operating Systems Principles
(SOSP) , Copper Mountain, Colorado, December 1995.

[3] 	 D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, R.W. Dean, A. Forin,
J. Barrera, H. Tokuda, G. Malan, and D. Bohman. Microkernel Operating System
Architecture and Mach. In Proceedings of the Workshop on Micro-Kernels and Other
Kernel Architectures, pages 11-30, Seattle, WA, April 1992.

[4] 	 Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices: Frameworks and Refine
ment. Computing Systems, 5(3):217-257, 1992.

[5] 	 John B. Carter, Bryan Ford, Mike Hibler, Ravindra Kuramkote, Jeffrey Law, Lay Lep
reau, Douglas B. Orr, Leigh Stoller, and Mark Swanson. FLEX: A Tool for Building
Efficient and Flexible Systems. In Proceedings of the Fourth Workshop on Workstation
Operating Systems, pages 198-202, Napa, CA, October 1993.

[6] 	 Shanwei Cen, Calton Pu, Richard Staehli, Crispin Cowan, and Jonathan Walpole. A
Distributed Real-Time MPEG Video Audio Player. In Proceedings of the 1995 Inter

15

national Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV'95), New Hampshire, April 1995.

[7] 	 David R. Cheriton and Kenneth J. Duda. A Caching Model of Operating System Kernel
Functionality. In Symposium on Operating Systems Design and Implementation (OSDI) ,
pages 179--193, November 1994.

[8] 	 Charles Consel and Francois Noel. A general approach to run-time specialization and its
application to C. In 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL '96), St. Petersburgh Beach, FL, January 1996. To
appear.

[9] 	 Crispin Cowan, Tito Autrey, Calton Pu, and Jonathan Walpole. Fast Concurrent Dy
namic Linking for an Adaptive Operating System. Report CSE-95-019, Dept. of Com
puter Science and Engineering, Oregon Graduate Institute, Portland, OR, October 1995.
Submitted for review.

[10] 	 Peter DruscheL Efficient Support for Incremenal Customization of OS Services. In Pro
ceedings of Third International Workshop on Object Orientation in Operating Systems
(IWOOOS-III), pages 186~190, Asheville, NC, December 1993.

[11] 	 Dawson R. Engler, M. Frans Kaashoek, and James O'Toole Jr. Exokernel: An Operating
System Architecture for Application-level Resource Management. In Symposium on
Operating Systems Principles (SOSP), Copper Mountain, Colorado, December 1995.

[12] Ajei Gopal, Nayeem Islam, Beng-Hong Lim, and Bodhi Mukherjee. Structuring Oper
ating Systems using Adaptive Objects for Improving Performance. In Proceedings of the
Fourth International Workshop on Object-Orientation in Operating Systems (IWOOOS
'95), pages 130~133, Lund, Sweden, August 1995.

[13] 	 Graham Hamilton, Michael L. Powell, and James G. Mitchell. Subcontract: A flexible
base of distributed programming. In Proceedings of the Fourteenth ACM Symposium on
Operating System Principles (SOSP'93), pages 69~79, Asheville, NC, December 1993.

[14] 	 Dan Hildebrand. An Architectural Overview of QNX. In Proceedings of the USENIX
Workshop on Micro-kernels and Other Kernel Architectures, pages 113-123, Seattle,
WA, April 1992.

[15] 	 Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

[16] 	 R Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/Mechanism Separa
tion in Hydra. In Proceedings of the 5th Symposium on Operating System Principles
(SOSP'75), pages 132-140, November 1975.

[17] 	 Henry Massalin and Calton Pu. Threads and Input/Output in the Synthesis Kernel. In
Symposium on Operating Systems Principles, 1989.

[18] 	 Henry Massalin and Calton Pu. Fine-Grain Adaptive Scheduling Using Feedback. Com
puting Systems, 3(1):139-173, Winter 1990.

16

[19] 	 S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse, and H. van Staveren.
Amoeba - A distributed Operating System for the 1990's. IEEE Computer, 23(5), May
1990.

[20] 	 Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye,
Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic Incremental Special
ization: Streamlining a Commercial Operating System. In Symposium on Operating
Systems Principles (SOSP) , Copper Mountain, Colorado, December 1995.

[21] 	 Calton Pu, Henry Massalin, and John Ioannidis. The Synthesis Kernel. Computing
Systems, 1(1):11-32, Winter 1988.

[22] 	 M. Rozier, V. Abrossimov, F. Armand, 1. Boule, M. Gien, M. Guillemont, F. Her
rman, C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Overview of the Chorus
Distributed Operating System. In Proceedings of the Workshop on Micro-Kernels and
Other Kernel Architectures, pages 39-69, Seattle, WA, April 1992.

[23] 	 Michael Stonebraker. Operating system Support for Database Management. Commu
nications of ACM, 24(7), 198L

[24] 	 Robert Wah be, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the Fourteenth A CM Symposium on
Operating System Principles (SOSP'93), pages 203-216, Asheville, NC, December 1993.

[25] 	 Yasuhiko Yokote. The Apertos Reflective Operating System: The Concept and Its
Implementation. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '92), Vancouver, BC, October 1992.

17

	Customizable Operating Systems
	Let us know how access to this document benefits you.
	Citation Details
	Authors

	tmp.1389724798.pdf.hcc7R

