An Analysis of LoRa Low Power Technology and its Applications

Gomathy Venkata Krishnan
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/mcecs_mentoring

Part of the Digital Communications and Networking Commons, and the Electronic Devices and Semiconductor Manufacturing Commons

Let us know how access to this document benefits you.

Citation Details
https://pdxscholar.library.pdx.edu/mcecs_mentoring/29

This Poster is brought to you for free and open access. It has been accepted for inclusion in Undergraduate Research & Mentoring Program by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
An Analysis of LoRa Low Power Technology and its applications

Gomathy Venkata Krishnan, Prof. Ehsan Aryafar
Maseeh College of Engineering and Computer Science

INTRODUCTION

LoRa: Long Range, low power wireless platform is a prevailing choice for IOT platforms. Creating smart IOT applications will improve the way we address some of the biggest challenges faced by cities, healthcare industries, agricultural sectors, and other businesses. LoRa technology if used intelligently, can make the world a smart planet. LoRa Technology is a Semtech innovation that uses the LoRaWAN protocol specification. It uses the 915MHz unlicensed ISM (Industry, Scientific and Medical) band to enable low power, wide area network communication.

FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>LoRa</td>
</tr>
<tr>
<td>Modulation</td>
<td>OFDM</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>125 – 500 kHz</td>
</tr>
<tr>
<td>Data Rate</td>
<td>50kbps – 200 kbps</td>
</tr>
<tr>
<td>Max # messages a day</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Max Output power</td>
<td>20 dBm</td>
</tr>
<tr>
<td>Link budget</td>
<td>154 dBm</td>
</tr>
<tr>
<td>Battery lifetime</td>
<td>10+ months</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>Very High</td>
</tr>
<tr>
<td>Interference Immunity</td>
<td>Very High</td>
</tr>
<tr>
<td>Convergence</td>
<td>Yes</td>
</tr>
<tr>
<td>Security</td>
<td>Yes</td>
</tr>
<tr>
<td>Availability</td>
<td>N/A</td>
</tr>
</tbody>
</table>

LoRa Technology enables GPS-Free tracking. A single base station provides deep penetration in dense urban/indoor regions and the technology uses end to end AES128 encryption.

BACKGROUND

Figure 1: MultiTech Conduit
Figure 2: mDot End Device

The two main devices used will be the Multitech conduit that acts as a gateway and the mDot end device which is a node. The programmer beside the mDot end device in Figure 2 is used to reprogram the mDot to enhance the functionality.

RESULTS

Figure 3: Node-RED

Once the Multitech Conduit and the end device were setup, messages could be sent from the node to the gateway and then to the IBM BlueMix IOT platform. It can currently send information like temperature, pressure, accelerometer readings, location in terms of latitude and longitude to the conduit and then to the IOT platform. The information can then be used to plot graphs at any point of time.

CONCLUSION

The mDot End device will be programmed further using the MTMDK-ST-mDot and MTMDK2-ST-mDot. An Arduino shield will be used to interface additional sensors or devices. The programming platform will change from Node-Red to the current system to a Linux server to enable effective programming of the nodes.

The MultiTech Conduit (LoRa Gateway/Server) and node will be installed with additional accessory cards to transmit and receive data using UART/COM monitors, communicate with the MQTT server and store information in the IBM BlueMix IOT platform. The final step will be to set up a LoRa base station with antennas using the OpenChirp Infrastructure.

CONTACT

Gomathy Venkata Krishnan
gomathy@pdx.edu
Dr. Ehsan Aryafar
earyafar@pdx.edu

REFERENCES