Portland State University

PDXScholar

Political Science Faculty Publications and Presentations

Political Science

8-2008

A Stranger's Welcome: Political Attitudes and the Tolerance of Immigrants

Birol A. Yeşilada Portland State University, yesilada@pdx.edu

Craig Carr Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/polisci_fac

Part of the Political Science Commons Let us know how access to this document benefits you.

Citation Details

"A Stranger's Welcome: Political Attitudes and the Tolerance of Immigrants," Birol Yesilada and Craig Carr. Paper presented at the Annual Conference of the American Political Science Association, Boston MA, August 28-31, 2008.

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Political Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

A Stranger's Welcome: Political Attitudes and the Tolerance of Immigrants¹

Birol Yesilada Hatfield School of Government Portland State University

&

Craig L. Carr Hatfield School of Government Portland State University

The purpose of this essay is to explore correlations between political attitudes and the reception immigrants are likely to receive in their host state. We take up this topic in order to explore empirically what there is to be said for the view, common among political theorists, that there is a tension between universalist liberal values and the nationalist convictions of citizens. As Margaret Canovan has stressed, "The universalist terms in which liberal political philosophies have often been framed imply obligations to humanity in general that are hard to reconcile with borders of any kind, let alone with the ethnic selection of potential citizens."¹ Anthony Birch has supplied some support for this view in his study of national integration and concludes that, "A government that diversifies its society by authorizing immigration that will have that effect is necessarily creating a potential social problem."²

Underlying these concerns is the belief that national identities matter for citizens and that they just may matter enough to offset more liberal sympathies in the citizenry of even the most liberal states that might incline citizens to be more tolerant of immigrants. In the case of the US, some support for this can be found in John Higham's monumental study of nativism in America and Rogers Smith's equally monumental study of American immigration laws.³ Smith finds, for example, that liberal sentiments in the US, which would encourage tolerance of immigrants, have been offset historically by a tradition of ascriptive Americanism that tends to define what it means to be an American in familiar WASPish terms.

Standing in juxtaposition to this more alarmist perspective is the view, familiar in the literature on American political culture, that the more traditionally liberal a political culture happens to be, the more the citizens will be inclined to tolerate immigrants. Though few writers are inclined to argue that tolerance toward immigrants is a readily displayed virtue, liberal ideals are still supposed to provide a powerful protection for immigrants in liberal cultures, and correspondingly, the story of immigrant assimilation is generally believed to expand and further instantiate liberal ideals within the culture. Thus states with a history of pluralism engendered through immigration mature as liberal cultures.⁴ States with less time-honored histories of pluralism, but with rising immigrant populations, may also be well-advised to negotiate identities, as Riva Kastoryano has put it, by cultivating liberal ideas.⁵ If liberal ideals have a degree of currency in the citizenry, they provide strategies by which immigrant assimilation might profitably be pursued.

¹Paper prepared for presentation at the 2008 Annual Conference of the American Political Science Association in Boston, August 28-31.

Authors would like to thank Peter Noordijk for his assistance in SPSS analysis.

Our objective here is to see if liberal attitudes in the citizenry do in fact have any measurable affect on citizen willingness to welcome immigrants into the state. To achieve this end, we intend to measure the effect liberal beliefs have on citizen views toward immigrants and to compare this with the effect more nationalistic beliefs have on citizen views toward immigrants. The standard view, once again, is that the more liberal one's outlook, the more likely one will welcome immigrants, while the more nationalistic one's outlook, the less likely one will welcome immigrants.

Some reason to be suspicious of this standard view has been suggested, in the American context, is provided by Sullivan, Piereson, and Marcus who found, in their study of political tolerance in America, that education and political participation do not generate greater tolerance.⁶ The underlying presumption is that greater education and political involvement are indicators of a more liberal attitude, and while this may be true, their research indicates that this does not translate to a more tolerant attitude. The Sullivan, Piereson, and Marcus study, on the other hand, rightly takes tolerance to be at issue only with regard to groups that citizens happen to oppose.⁷ Opposition is to be understood here in terms of what might be called normative rivalries (religious, ideological, or moral opposition) or allocational rivalries (economic, logistical, or interest driven) rivalries.⁸ Since immigrants are not necessarily or automatically citizen rivals in either sense, we might expect citizens with more liberal sentiments to me more accommodating toward them at least in the abstract. When, say, economic rivalry is anticipated, however, we might suppose citizens to be less accommodating of immigrants. Thus liberal attitudes might indicate only a misleading citizen inclination to welcome immigrants, an inclination that holds only in the absence of perceived normative or allocational rivalry.

This study necessarily stays at the level of abstract principle because our concern is to see if liberal sentiments tend in principle to override nationalist sentiments. Thus perceived rivalries do not factor into the analysis, though again in principle, some economic considerations will surface in the discussion. This means, in effect, that what follows does not specifically get to citizen tolerance of immigrant groups insofar as tolerance involves putting up with normative and allocational rivalries. Instead, the study reaches general citizen attitudes about immigrants as such. We want to see if liberal sentiments mollify citizen tendencies to oppose immigrants for largely nationalistic reasons. If so, then the more liberal the citizenry happens to be, the more likely it will be to take a welcoming view toward immigrants, and the less likely immigrant presences will be a source of discord in the state. Once specific normative and allocational rivalries are introduced, questions of tolerance more properly arise, but they would arise by virtue of the rivalries themselves which might follow from existing state pluralism as well as a pluralism brought about as a consequence of immigration. It is the rivalry, and not the immigrant status of rival groups, that is the source of tolerance problems under this scenario. Needless to say, however, such rivalry when focused upon immigrant groups will likely trigger a practical concern for immigration policy, as it has historically done in the US.⁹

Methodology

For testing attitudes toward immigrants/foreign workers as neighbors and immigration policy, we initially decided to use data from the combined World Values Surveys (WVS) waves 1-5 for Canada and United States in North America and France, Italy, Germany, the Netherlands, Sweden, and the United Kingdom in Europe. However, a quick examination of the data set revealed that there are completed data for dependent and independent variables only for Canada, Germany, Sweden, and the US for comparative analysis.

Our dependent variables are: (1) immigrant/ foreign workers as undesirable neighbors and; (2) attitude toward immigrant policy. Variable numbers reflect combined five waves of WVS released in August 2008. Their parameters are:

X1. Immigrant/foreign worker as neighbor (E124_06) is measured as 0=not mentioned and 1=mentioned.

X2. Immigrant policy (143): ranges from 1= let anyone come in; 2= as long as jobs are available; 3=strict limits; and 4=prohibit immigration.

The independent variables are attitude toward democracy, and sense of community. These variables are measured through various indicators respectively.

Y1. Indicators of democracy are:

- a. (E115) Having experts make decisions range: 1=very good, 2=fairly good, 3=fairly bad, and 4= very bad.
- b. (E117) Having a democratic system. 1=very good, 2=fairly good, 3=fairly bad, and 4= very bad.
- c. (E124) Respect for human rights. 1=there is a lot of respect for human rights, 2= there is some respect, 3= there is not much respect, and 4= there is no respect at all.
- d. E(235) importance of democracy. 1= not important at all10=absolutely important
- e. Essential elements of democracy is measured through several indicators and has a range of 1=not an essential characteristic of democracy to 10=an essential characteristic of democracy:
 - a. E224: governments tax the rich and subsidize the poor.
 - b. E225: Religious authorities interpret the laws
 - c. E226: People choose their leaders in free elections.
 - d. E227: People receive state aid for unemployment.
 - e. E228: The army takes over when government is incompetent.
 - f. E229: Civil rights protect peoples' liberty against oppression.
 - g. E230: The economy is prospering
 - h. E231: Criminals are severely punished.
 - i. E232: People can change the laws in referendums.
 - j. E233: Women have the same rights as men.

Y2. Indicators of Community are:

- a. G026: Mother immigrant (0=no, 1=yes)
- b. G027: Father immigrant (0=No and 1=Yes)
- c. G006: How proud of nationality (1= very proud, 2= quite proud, 3= not very proud, 4=not at all proud)
- d. Sense of community is measured through various indicators (1=strongly agree, 2=agree, 3=disagree, and 4=strongly disagree):
 - a. G019: I see myself as a world citizen
 - b. G020: I see myself as member of my local community.
 - c. G021: I see myself as citizen of the [country] nation
 - d. G022B: I see myself as citizen of North America (for Canada and USA)
 - e. G022C: I see myself as citizen of the European Union (for the EU countries).
- e. Requirement for citizenship is measured through different indicators as well
 - (1=very important, 2=rather important, 3=not important):
 - a. G028: Having ancestors from my country
 - b. G029: Being born on my country's soil

- c. G030: adopting the customs of my country
- d. G031: abiding by my country's laws
- f. G032: Ethnic diversity (1=ethnic diversity erodes a country's unity ... 10=ethnic diversity enriches my life).

Data Analysis

To test these relationships we run crosstabulations and logistic regression analysis. Crosstabulations with significance test (with Kendall's tau-b) gives a quick estimate of significant correlations between dependent and independent variables and we controlled for WVS wave and country cases to obtained comparisons across countries over time. Results indicate that we have complete data for Canada, Germany, Sweden, and the US only for WVS wave #5. Moreover, even in Wave #5, some questions were not asked in countries like France and Italy thus forcing us to drop these countries from the comparison. In order to analyze causal relationship between these variables we used logistic regression and run binomial logistic regression for immigrant/foreign worker dependent variable and multinomial logistic regression for the immigrant policy dependent variable. Binomial logistic regression (the LOGISTIC procedure) and multinomial logistic regression (the NOMREG procedure) in SPSS yield substantively identical results for the same model and data, but the logistic coefficients may differ because different reference categories may be used. In LOGISTIC regression, procedure will predict the "1" category of the dependent variable, making the "0" category the reference category whereas in NOMREG default uses the highest category as the reference category and thus for a binomial variable, will predict the "0" category, using the "highest" category as the reference.¹⁰

Immigrant/Foreign Worker Neighbor and Democracy Indicators and Community Indicators

Appendix I lists SPSS tables for binomial logistic regression. In the first section we will examine the relationship between attitudes toward immigrant/foreign worker neighbor and democracy indicators. We first looked at raw numbers of responses in these cases to the neighbor question to get a sense of how important the issue might be to residents of those countries. Table 1 provides frequency distribution of responses (not mentioned and mentioned) toward immigrants/foreign workers.

Table 1: Frequency Tables for Neighbor

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not mentioned	2062	96.0	96.0	96.0
	Mentioned	86	4.0	4.0	100.0
	Total	2148	100.0	100.0	

Canada Neighbors: Immigrants/foreign workers^a

a. Country/region = Canada

Only 86 persons mentioned immigrants/foreign workers as undesirable neighbor for Canada.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not mentioned	1675	81.2	86.8	86.8
	Mentioned	255	12.4	13.2	100.0
	Total	1930	93.5	100.0	
Missing	No answer	85	4.1		
	Don't know	49	2.4		
	Total	134	6.5		
Total		2064	100.0		

Germany Neighbors: Immigrants/foreign workers^a

a. Country/region = Germany

In Germany, 255 mentioned these individuals as undesirable neighbors. Germany leads in this category by 13.2 percent.

Sweden Neighbors:	Immigrants/foreign	workers ^a
-------------------	--------------------	----------------------

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not mentioned	985	98.2	98.2	98.2
	Mentioned	18	1.8	1.8	100.0
	Total	1003	100.0	100.0	

a. Country/region = Sweden

In Sweden only 18 (1.8 percent) of respondents identified these neighbors as undesirable.

USA	Neighbors:	Immigrants	/foreign	workers ^a

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not mentioned	1083	86.7	87.3	87.3
	Mentioned	158	12.7	12.7	100.0
	Total	1242	99.4	100.0	
Missing	No answer	7	.6		
Total		1249	100.0		

a. Country/region = United States

In the US, the number of those who do not desire to have immigrants/foreign workers as their neighbors jumps to 158 or 12.7 percent. It is interesting to note the spread of these responses. Germany ranks first with 13.2 percent identifying these individuals as undesirables, US follows by 12.7 percent, Canada by 4 percent, and Sweden has the lowest percentage of 1.8.

Democracy and Neighbor

We run binomial logistic regression to test relationship between peoples' attitudes toward democracy and their likelihood of identifying immigrant/foreign workers as undesirable neighbors. Given the low response rate to "mentioned = 1" for each country the results might not carry too much power. Furthermore, Cox & Snell R-square for each country model is low indicating that they do not have good predictive power. Note that Cox & Snell's pseudo R-squared has a maximum value that is not 1: if the full model predicts the outcome perfectly and has a likelihood of 1, Cox & Snell's is then $1-L(M_{Intercept})^{2N}$, which is less than one. Nevertheless, they can direct future inquiry along these lines.

For Canada, we observe negative and significant coefficients for E233, -0.195, (women have the same right as men on 1-10 scale) and E235, -0.174, (importance of democracy on a 1-10 scale). People who hold strong liberal views and place greater emphasis on women's rights in democracy and view democracy as being very important are less likely to mention immigrant and foreign workers as undesirable neighbors. In Germany, we observe a negative and significant coefficient (-0.116) for E232 which is a liberal democratic view that individuals can change the laws in referendums and a positive but weak significant coefficient (0.090) for E224 which a populist view that the government taxes the rich and subsidizes the poor in democracies. In Germany E232 follows the same trend as similar liberal views in Canada. However, Germans who favor populist social welfare policies are slightly inclined not to want foreign neighbors! In Sweden, we again see a strong relationship between liberal views like E229 (b= -0.639 civil rights) and tendency not to identify foreign workers/immigrants as undesired neighbors and this is further confirmed by individuals who favor strong arm state policies E231 (b=0.2723 for criminals are severely punished is an essential characteristic of democracy) who identify such neighbors as undesirable. The analysis for the US only reveals one significant independent variable E229 (b=-0.107) which is consistent with the above observations.

Community and Neighbor

As for community indicators, we should note that many indicators for community (immigrant status of parents and citizenship requirements) drop out if Canada is to be included in the comparison. The same is also observed below in the analysis of immigrant policy against community in our latter analysis in the next section. Once again, we obtained very low Cox & Snell R-square for these models.

For community indicators for the Canadians, pride in nation has significant coefficients. For the Canadians, pride in nation (G006) has a strong positive coefficient of 0.620 indicating that those who are proud of nationality are more likely to mention immigrant/foreign workers as undesirable neighbors. In Germany, the impact of this variable on neighbor is reversed (b=-0.347). Moreover, G019 (I see myself as world citizen) and G020 (I see myself as member of my local community) have significant coefficients of b=0.483 and b=-0.188 respectively. It seems that almost everyone in Germany is stating that they are proud of their nationality and mention immigrant/foreign worker neighbors as undesirable individuals is not a salient factor. View of one's self as a world citizen, on the other hand, is likely to result in mentioning these neighbors as undesirable. In order to check on this salience factor, we also examined the Germans' view toward other types of neighbors and found that they overwhelmingly object to drug addicts, alcoholics, and criminals as neighbors. In comparison, we found no significant relationship in Sweden. In the US case, G019 has a positive and significant coefficient of b=0.266 whereas G021(I see myself as citizen of the US) has a negative and significant coefficient b=-0.461. In fact, similar to the Germans, Americans who emphasize national identity are likely to choose other types of objectionable neighbors (i.e., drug addicts and alcoholics) rather than immigrants and foreign workers.

Immigrant Policy against Democracy Indicators and Community Indicators

Table 2 provides frequency distribution of responses toward immigrant policy in Canada, Germany, Sweden, and the US. The categories of dependent variable are: 1= let anyone come; 2= as long as jobs are available, 3= strict limits on immigration and 4= prohibit immigration.

Table 2: Frequency distributions for immigrant policy

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Let anyone come	167	7.8	8.1	8.1
	As long as jobs available	1022	47.6	49.4	57.5
	Strict limits	836	38.9	40.4	97.9
	Prohibit people from coming	44	2.0	2.1	100.0
	Total	2069	96.3	100.0	
Missing	No answer	7	.3		
	Don't know	72	3.4		
	Total	79	3.7		
Total		2148	100.0		

Canada: Immigrant policy^a

a. Country/region = Canada

Based on figures above Canadians seem to be closely divided over immigrant policy.

-	•	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Let anyone come	143	6.9	7.5	7.5
	As long as jobs available	915	44.3	48.0	55.5
	Strict limits	781	37.8	41.0	96.5
	Prohibit people from coming	66	3.2	3.5	100.0
	Total	1905	92.3	100.0	
Missing	No answer	29	1.4		
	Don't know	130	6.3		
	Total	159	7.7		
Total		2064	100.0		

Germany: Immigrant policy^a

a. Country/region = Germany

In Germany, we observe a similar distribution where slightly higher percentage of individuals favor options 1 and 2.

Sweden: Immigrant policy^a

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Let anyone come	178	17.7	18.2	18.2
	As long as jobs available	523	52.1	53.5	71.7
	Strict limits	265	26.5	27.2	98.9
	Prohibit people from coming	11	1.1	1.1	100.0
	Total	977	97.4	100.0	
Missing	Don't know	26	2.6		
Total		1003	100.0		

a. Country/region = Sweden

In Sweden, the distribution of answers move toward more open immigrant policy but with the largest percentage remaining at 2 (as long as jobs are available).

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Let anyone come	83	6.6	6.8	6.8
	As long as jobs available	443	35.5	36.6	43.5
	Strict limits	592	47.4	48.9	92.4
	Prohibit people from coming	92	7.4	7.6	100.0
	Total	1209	96.8	100.0	
Missing	No answer	27	2.1		
	Don't know	13	1.0		
	Total	40	3.2		
Total		1249	100.0		

USA: Immigrant policy^a

a. Country/region = United States

In the US, more people favor strict limit on immigrant policy than in any other country and the majority (56.5 percent) favor strict limit and prohibition of immigration.

Immigrant Policy and Democracy Indicators

Multinomial logistic regression results are presented in Appendix I. For Canada, the Cox & Snell Pseudo R-Square is 0.111 and the Nagelkerke Pseudo R-Square is 0.129 While the explanatory power of the model is not high, likelihood ratio tests show a number of significant independent variables in the model. Keeping in mind that the reference category of dependent variable is to prohibit (option 4), we examined the likelihood of respondents choosing the response category of the dependent variable as a function of the independent variables.

In Canada, variables associated with liberal democratic views (E117, E233, and E235) increase the likelihood of respondents choosing a dependent response category rather than the reference category. In other word, the more democratic the respondents are the more likely they are to not prefer prohibiting immigration. Similarly, individuals with authoritarian leanings, those who identified E228 and E231, prefer the reference category

(prohibit immigration) over alternative categories (let everyone in, as long as jobs are available, or even strict limits).

In Germany, the results most of the respondents are in the two middle dependent categories – as long as jobs are available and strict limit on immigration. People who hold strong views on punishment of criminals (E231), having experts make decisions (E115), and the army takes over when government is incompetent (E228) seem to favor the reference category prohibit immigration. Those who hold liberal views (E124, E224, E226, and Ee124) tend to favor alternative categories over prohibit immigration.

The results for Sweden are quite different than above. Individuals who hold liberal democratic values (E233 and E124) are less likely to favor prohibiting immigration. However, the most interesting result is over E230 (prospering economy is an essential component of democracy). This variable is significant and negative in all three alternative models ($b_1 = -0.507$, $b_2 = -0.487$, and $b_3 = -0.500$). It suggests that people who see democracy in terms of economic prosperity are likely to be hostile to immigrants.

For the US results are mixed in three categories of dependent variable. Anti-democratic value of military taking over when government is incompetent (E228) has a negative and significant coefficient in dependent categories 1 and 2. These individuals are likely to favor prohibiting immigration. Individuals who hold liberal civil rights values (E229) are likely to favor letting people into the country. Moreover, E117 (view of democracy as a preferred political system) is likely to favor letting people into the country. However, state aid in democracies (E227) has a significant and negative coefficient (b = -0.128) for dependent category 2. These populist individuals are less likely to favor letting people into the country. A similar observation is seen in another populist category E232 (people can change laws in referendums) for dependent variable categories 2 and 3 but is narrowly insignificant (sig. 0.07) in dependent category 1.

Immigrant Policy and Community Indicators

Results for Canada show two significant community indicators against immigrant policy. They are G019 (I see myself as a world citizen) and G021 (I see myself as citizen of Canada). Both indicators have significant and negative parameters. The response in these independent variables is 1 = strongly agree, 2 = agree, 3 = disagree, and 4 = strongly disagree. This increases the likelihood of choosing alternative dependent category relative to the reference category.

In Germany, world citizen variable (G019) and citizen of the European Union (E022C) are significant and negative for alternative dependent categories 1 and 2 increasing the likelihood of letting people into the country. Pride in nation (G006) is significant and positive for all three alternative categories indicating that individuals who hold nationalism high are more likely to favor prohibiting immigration.

For Sweden, only one independent variable G021 is significant and consistently negative across alternative dependent variable categories: -1.755 (sig. 0.058) for let everyone come in, -2.230 (sig. 0.009) for as long as jobs are available, and -2.525 (sig. 003) for strict limits. Individuals who view themselves as citizens of Sweden are more likely to not to favor prohibiting immigration.

Results for the US are interesting. The trend we see is that people who identify themselves as citizens of the world are likely to favor prohibiting immigration. When we looked at crosstabulation for citizens of the world and immigrant policy in the US we also see that 83 people favored prohibiting immigration and of those people 55 strongly agreed or agreed with the statement that they see themselves as citizens of the world. The results for crosstab are significant at 0.001 with Pearson Chi-Square of 29.35. These results are similar to what we saw earlier about democracy and immigration where liberal minded individuals also favored prohibiting immigration in the US.

CONCLUSIONS

The study suggests some support for the traditional view that liberal beliefs tend to incline citizens to be more welcoming to immigrants. Interestingly enough, one puzzling case is the US. In the US people who have a liberal attitude of seeing themselves as citizens of the world tend not to welcome immigrants/foreign workers as neighbors and tend to prefer prohibiting immigration. Opposite results are observed for Sweden, Canada, and Germany where liberal view of citizen of the world favors immigration. In Germany and the US, strong nationalists oppose immigration. For neighbor and community variables we did not find many significant relationships. Our comparison of immigrant/foreign worker neighbor to other categories of undesirable neighbors (drug addicts etc.) suggests that this is not a salient issue for the respondents and more detailed analysis is necessary. Democracy variables support the belief that liberal attitudes generally lead to welcoming immigrants. The less democratic the attitude the more likely is the individual to not welcome immigrants and similar neighbors. We also discovered that people who see democracy in terms of economic welfare (E230) are inclined not to welcome immigrants. More detailed study looking at traditionally pluralist versus emerging pluralist states might shed additional light to questions explored in this study.

APPENDIX I – SPSS TABLES

(X1): FOREIGN WORKER/IMMIGRANT NEIGHBOR

1. Neighbor and Democracy Variables - LOGISTIC REGRESSION

CANADA

Case Processing Summary

Unweighted Cases ^a		Ν	Percent
Selected Cases	Included in Analysis	1593	74.2
	Missing Cases	555	25.8
	Total	2148	100.0
	Unselected Cases	0	.0
	Total	2148	100.0

a. If weight is in effect, see classification table for the total number of cases.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	29.023	15	.016
	Block	29.023	15	.016
	Model	29.023	15	.016

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	445.519 ^a	.018	.070

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
		Neighbours: Immigrants/foreign workers				
	Observed		Not mentioned	Mentioned	Percentage Correct	
Step 1	Neighbours: Immigrants/	Not mentioned	1566	1	99.9	
foreign workers	Mentioned	54	0	.0		
		Overall Percentage			96.6	

a. The cut value is .500

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	X003R	.079	.092	.738	1	.390	1.082
	E115	.089	.147	.363	1	.547	1.093
	E117	224	.215	1.091	1	.296	.799
	E124	.231	.210	1.210	1	.271	1.260
	E224	025	.064	.157	1	.692	.975
	E225	015	.070	.046	1	.830	.985
	E226	.057	.096	.356	1	.551	1.059
	E227	.100	.078	1.635	1	.201	1.106
	E228	.089	.051	3.062	1	.080	1.093
	E229	111	.072	2.388	1	.122	.895
	E230	.077	.074	1.096	1	.295	1.080
	E231	.016	.059	.077	1	.781	1.016
	E232	008	.063	.018	1	.894	.992
	E233	195	.076	6.597	1	.010	.823
	E235	174	.089	3.833	1	.050	.841
	Constant	-1.927	1.243	2.402	1	.121	.146

Variables in the Equation

GERMANY

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	elected Cases Included in Analysis 1		76.7
	Missing Cases	480	23.3
	Total	2064	100.0
	Unselected Cases	0	.0
	Total	2064	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
Not mentioned	0
Mentioned	1

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	40.862	15	.000
	Block	40.862	15	.000
	Model	40.862	15	.000

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	1069.508 ^a	.027	.051

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
			Neighbours: Immigrants/foreign workers			
	Observed		Not mentioned	Mentioned	Percentage Correct	
Step 1	Neighbours: Immigrants/	Not mentioned	1336	0	100.0	
foreign workers	Mentioned	181	0	.2		
		Overall Percentage			88.1	

a. The cut value is .500

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	X003R	004	.050	.007	1	.933	.996
	E115	052	.095	.294	1	.588	.950
	E117	.159	.140	1.290	1	.256	1.172
	E124	.189	.122	2.412	1	.120	1.208
	E224	.090	.038	5.543	1	.019	1.095
	E225	.007	.051	.020	1	.886	1.007
	E226	023	.064	.123	1	.725	.978
	E227	.076	.049	2.357	1	.125	1.079
	E228	.060	.043	1.988	1	.159	1.062
	E229	087	.052	2.788	1	.095	.916
	E230	067	.042	2.598	1	.107	.935
	E231	.084	.045	3.511	1	.061	1.088
	E232	116	.039	8.724	1	.003	.890
	E233	.038	.055	.477	1	.490	1.038
	E235	046	.066	.478	1	.490	.955
	Constant	-2.074	1.066	3.781	1	.052	.126

Variables in the Equation

SWEDEN

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	Included in Analysis	926	92.3
	Missing Cases	77	7.7
	Total	1003	100.0
	Unselected Cases	0	.0
	Total	1003	100.0

a. If weight is in effect, see classification table for the total number of cases.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	13.453	15	.567
	Block	13.453	15	.567
	Model	13.453	15	.567

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	133.327 ^a	.014	.098

a. Estimation terminated at iteration number 8 because parameter estimates changed by less than .001.

Classification Table^a

				Predicted Neighbours: Immigrants/foreign workers			
	Observed		Not mentioned	Mentioned	Percentage Correct		
Step 1 Neighbours: Immigrants/ foreign workers	Neighbours: Immigrants/	Not mentioned	912	0	100.0		
	Mentioned	14	0	.0			
		Overall Percentage			98.5		

a. The cut value is .500

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	X003R	.044	.176	.063	1	.803	1.045
	E115	.507	.343	2.180	1	.140	1.660
	E117	.063	.543	.013	1	.908	1.065
	E124	187	.508	.136	1	.712	.829
	E224	.063	.136	.213	1	.644	1.065
	E225	.074	.269	.076	1	.783	1.077
	E226	.889	.632	1.978	1	.160	2.432
	E227	.035	.146	.056	1	.813	1.035
	E228	.049	.079	.389	1	.533	1.050
	E229	639	.289	4.892	1	.027	.528
	E230	098	.125	.609	1	.435	.907
	E231	.273	.124	4.829	1	.028	1.314
	E232	.159	.250	.403	1	.525	1.172
	E233	582	.768	.576	1	.448	.559
	E235	.068	.337	.040	1	.841	1.070
	Constant	-6.746	8.325	.657	1	.418	.001

Variables in the Equation

USA

Case Processing Summary

Unweighted Cases	N	Percent	
Selected Cases	1149	92.0	
	Missing Cases	100	8.0
	Total		100.0
	Unselected Cases	0	.0
	Total	1249	100.0

a. If weight is in effect, see classification table for the total number of cases.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	22.424	15	.097
	Block	22.424	15	.097
	Model	22.424	15	.097

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	846.864 ^a	.020	.037

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table^a

	_		Predicted			
			Neighbours: Immigrants/foreign workers			
	Observed		Not mentioned	Mentioned	Percentage Correct	
Step 1	Neighbours: Immigrants/ foreign workers	Not mentioned Mentioned Overall Percentage	992 145	0 0	100.0 .0 87.2	

a. The cut value is .500

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	X003R	003	.060	.002	1	.962	.997
	E115	.070	.108	.422	1	.516	1.073
	E117	.034	.139	.060	1	.807	1.035
	E124	084	.126	.447	1	.504	.919
	E224	.009	.040	.048	1	.827	1.009
	E225	048	.046	1.101	1	.294	.953
	E226	045	.046	.943	1	.332	.956
	E227	.004	.042	.009	1	.924	1.004
	E228	.064	.036	3.155	1	.076	1.066
	E229	107	.049	4.835	1	.028	.899
	E230	.086	.055	2.397	1	.122	1.089
	E231	.052	.046	1.295	1	.255	1.053
	E232	009	.049	.035	1	.853	.991
	E233	059	.061	.934	1	.334	.943
	E235	.056	.061	.837	1	.360	1.057
	Constant	-1.809	.823	4.826	1	.028	.164

Variables in the Equation

2. Neighbor and Community Variables - LOGISTIC REGRESSION

CANADA

Case Processing Summary

Unweighted Cases	N	Percent	
Selected Cases	Included in Analysis	2002	93.2
	Missing Cases	146	6.8
	Total		100.0
	Unselected Cases	0	.0
	Total	2148	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
Not mentioned	0
Mentioned	1

Omnibus Tests of Model Coefficients

	-	Chi-square	df	Sig.
Step 1	Step	21.065	6	.002
	Block	21.065	6	.002
	Model	21.065	6	.002

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	670.549 ^a	.011	.036

a. Estimation terminated at iteration number 6 because

parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
		Neighbours: Immigrants/foreign workers				
	Observed		Not mentioned	Mentioned	Percentage Correct	
Step 1	Neighbours: Immigrants	Not mentioned	1909	0	100.0	
	/foreign workers	Mentioned	83	0	.0	
		Overall Percentage			95.8	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	G019	.139	.163	.723	1	.395	1.149
	G020	186	.210	.785	1	.376	.830
	G021	210	.233	.810	1	.368	.810
	X003R	.146	.073	4.001	1	.045	1.157
	G022B	.298	.171	3.022	1	.082	1.347
	G006	.620	.179	11.994	1	.001	1.859
	Constant	-4.773	.604	62.454	1	.000	.008

GERMANY

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	Included in Analysis	1616	78.3
	Missing Cases	448	21.7
	Total	2064	100.0
	Unselected Cases	0	.0
	Total	2064	100.0

a. If weight is in effect, see classification table for the total number of cases.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	52.478	6	.000
	Block	52.478	6	.000
	Model	52.478	6	.000

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	1209.278 ^a	.034	.060

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table^a

-			Predicted			
				Neighbours: Immigrants/foreign workers		
	Observed		Not mentioned	Mentioned	Percentage Correct	
Step 1	Neighbours:	Not mentioned	1319	0	100.0	
Immigrants /foreign wo	Immigrants	Mentioned	220	0	.0	
	/loreign workers	Overall Percentage			85.7	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	G019	.483	.089	29.660	1	.000.	1.620
	G020	188	.108	3.052	1	.081	.829
	G021	.135	.124	1.195	1	.274	1.145
	X003R	068	.050	1.864	1	.172	.934
	G006	347	.104	11.241	1	.001	.707
	G022C	030	.095	.098	1	.754	.971
	Constant	-1.894	.414	20.982	1	.000	.150

SWEDEN

Case Processing Summary

Unweighted Cases	N	Percent	
Selected Cases	Included in Analysis	927	92.4
	Missing Cases	76	7.6
	Total	1003	100.0
	Unselected Cases	0	.0
	Total	1003	100.0

a. If weight is in effect, see classification table for the total number of cases.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	4.013	6	.675
	Block	4.013	6	.675
	Model	4.013	6	.675

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	174.541 ^a	.004	.025

a. Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
		Neighbours: Immigrants/foreign workers				
	Observed		Not mentioned	Mentioned	Percentage Correct	
Step 1	Neighbours:	Not mentioned	909	0	100.0	
	Immigrants /foreign workers	Mentioned	18	0	.0	
		Overall Percentage			98.0	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	G019	208	.425	.239	1	.625	.812
	G020	.620	.523	1.407	1	.236	1.860
	G021	125	.506	.061	1	.804	.882
	X003R	.104	.152	.471	1	.493	1.110
	G006	209	.360	.336	1	.562	.812
	G022C	.459	.334	1.883	1	.170	1.582
	Constant	-5.573	1.509	13.633	1	.000	.004

USA

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	Included in Analysis	1163	93.1
Missing Cases		86	6.9
	Total	1249	100.0
	Unselected Cases	0	.0
	Total	1249	100.0

a. If weight is in effect, see classification table for the total number of cases.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	17.179	6	.009
	Block	17.179	6	.009
	Model	17.179	6	.009

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	854.286 ^a	.015	.028

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classin	cation rable						
			Predicted Neighbours: Immigrants/foreign workers				
	Observed		Not mentioned	Mentioned	Percentage Correct		
Step 1	Neighbours:	Not mentioned	1011	0	100.0		
Immigran foreign workers	Immigrants/ foreign	Mentioned	145	0	.0		
	workers	Overall Percentage			87.5		

Classification Table^a

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	G019	.266	.115	5.328	1	.021	1.305
	G020	.234	.146	2.566	1	.109	1.264
	G021	461	.199	5.349	1	.021	.631
	X003R	.025	.059	.176	1	.675	1.025
	G022B	042	.120	.124	1	.724	.959
	G006	065	.160	.163	1	.686	.937
	Constant	-2.261	.502	20.277	1	.000	.104

(X2): IMMIGRANT POLICY

1. Immigrant Policy and Democracy Indicators

Canada:

		N	Marginal Percentage
Immigrant policy	Let anyone come	133.138242	8.4%
	As long as jobs available	822.240375	51.9%
	Strict limits	599.993987	37.9%
	Prohibit people from coming	28.101788	1.8%
	Valid	1583.474391	100.0%
	Missing	564.525609	
	Total	2148.000000	
	Subpopulation	1552a	

Case Processing Summaryb

a. The dependent variable has only one value observed in 1552 (100.0%) subpopulations.

b. Country/region = Canada

Model Fitting Informationa

	Model Fitting Criteria	Likelihood I	Ratio Tests	
Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	3.128E3			
Final	2.942E3	186.590	45	.000

a. Country/region = Canada

Pseudo R-Squarea

Cox and Snell	.111
Nagelkerke	.129
McFadden	.060

a. Country/region = Canada

Likelihood Ratio Testsa

ood Ratio Tests
boc

	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	2.948E3	6.363	3	.095
E115	2.955E3	13.157	3	.004
E224	2.945E3	3.678	3	.298
E225	2.947E3	4.987	3	.173
E226	2.944E3	2.099	3	.552
E227	2.945E3	3.585	3	.310
E228	2.952E3	10.478	3	.015
E229	2.944E3	2.581	3	.461
E230	2.944E3	2.878	3	.411
E231	2.966E3	24.729	3	.000
E232	2.948E3	6.936	3	.074
E233	2.949E3	7.060	3	.070
E235	2.951E3	9.396	3	.024
X003R	2.962E3	20.342	3	.000
E124	2.951E3	9.227	3	.026
E117	2.952E3	10.583	3	.014

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

a. Country/region = Canada

								95% Co	nfidence
		1			i !			Interv	al for
		1	044		i !			Exp	(B)
Immigrant po	licv ^a	В	Sta. Error	Wald	df	Sig.	Ехр(ь)	Lower	Upper
	T to const	2 706	1.008	2 (1000	ل مسر ۱	057	,	DUIIG	Donia
Let anyone	Intercept	3.790	1.998	3.610E0		.057		100	1.0.10
come	E115	424	.241	3.098E0		.078	.654	.408	1.049
	E224	.064	.100	.407	1	.523	1.066	.876	1.297
	E225	.118	.108	1.188E0	1	.276	1.125	.910	1.392
	E226	.168	.129	1.704E0	1	.192	1.183	.919	1.522
	E227	004	.121	.001	1	.976	.996	.787	1.262
	E228	162	.082	3.920E0	1	.048	.850	.724	.998
	E229	.138	.116	1.407E0	1	.236	1.147	.914	1.440
	E230	089	.110	.654	1	.419	.915	.737	1.135
	E231	479	.125	1.479E1	1	.000	.619	.485	.791
	E232	187	.106	3.094E0	1	.079	.830	.674	1.022
	E233	.329	.133	6.158E0	1	.013	1.390	1.072	1.802
	E235	.195	.123	2.528E0	1	.112	1.216	.956	1.547
	X003R	145	.151	.919	1	.338	.865	.644	1.163
	E124	225	.325	.480	1	.489	.798	.422	1.511
	E117	909	.284	1.020E1	1	.001	.403	.231	.704
As long as job	os Intercept	4.133	1.700	5.909E0	1	.015			
available	E115	229	.224	1.048E0	1	.306	.795	.513	1.233
	E224	.057	.092	.383	1	.536	1.059	.884	1.269
	E225	.013	.101	.016	1	.899	1.013	.832	1.234
	E226	.151	.108	1.948E0	1	.163	1.163	.941	1.438
	E227	089	.112	.628	1	.428	.915	.735	1.140
	E228	118	.074	2.552E0	1	.110	.888	.768	1.027
	E229	.144	.103	1.939E0	1	.164	1.154	.943	1.413
	E230	058	.104	.315	1	.575	.943	.770	1.156

Parameter Estimates^b

	_								
	E231	368	.121	9.311E0	1	.002	.692	.546	.877
	E232	093	.100	.859	1	.354	.911	.749	1.109
	E233	.153	.106	2.101E0	1	.147	1.166	.947	1.435
	E235	.283	.105	7.277E0	1	.007	1.328	1.081	1.631
	X003R	.044	.140	.097	1	.756	1.045	.794	1.375
	E124	214	.297	.522	1	.470	.807	.451	1.444
	E117	592	.237	6.221E0	1	.013	.553	.348	.881
Strict limits	Intercept	4.094	1.688	5.885E0	1	.015			
	E115	407	.224	3.318E0	1	.069	.665	.429	1.031
	E224	.011	.092	.015	1	.901	1.012	.844	1.212
	E225	.021	.101	.045	1	.832	1.022	.839	1.244
	E226	.129	.108	1.420E0	1	.233	1.137	.920	1.405
	E227	066	.112	.347	1	.556	.936	.752	1.166
	E228	068	.074	.846	1	.358	.934	.808	1.080
	E229	.109	.103	1.127E0	1	.289	1.115	.912	1.364
	E230	024	.104	.053	1	.818	.976	.797	1.197
	E231	342	.121	8.067E0	1	.005	.710	.561	.899
	E232	082	.100	.671	1	.413	.921	.757	1.121
	E233	.152	.106	2.061E0	1	.151	1.164	.946	1.433
	E235	.195	.104	3.537E0	1	.060	1.216	.992	1.490
	X003R	.134	.140	.917	1	.338	1.144	.869	1.505
	E124	.037	.296	.016	1	.900	1.038	.581	1.853
	E117	537	.236	5.198E0	1	.023	.584	.368	.927

a. The reference category is: Prohibit people from coming.

b. Country/region = Canada

Germany

Case Processing Summary^b

		N	Marginal Percentage
Immigrant policy	Let anyone come	102.344653	6.6%
	As long as jobs available	760.733971	49.4%
	Strict limits	626.723803	40.7%
	Prohibit people from coming	49.968801	3.2%
	Valid	1539.771228	100.0%
	Missing	524.228772	
	Total	2064.000000	
	Subpopulation	1567 ^a	

a. The dependent variable has only one value observed in 1555 (99.2%) subpopulations.

b. Country/region = Germany

Model Fitting Information^a

	Model Fitting Criteria	Likelihood I	Ratio Tests	
Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	3.087E3			
Final	2.868E3	219.081	45	.000

a. Country/region = Germany

Pseudo R-Square^a

Cox and Snell	.133
Nagelkerke	.153
McFadden	.071

a. Country/region = Germany

	Model Fitting Criteria	Likelihood Ratio Tests						
Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.				
Intercept	2.873E3	4.480	3	.214				
E115	2.883E3	15.199	3	.002				
E224	2.873E3	5.161	3	.160				
E225	2.881E3	12.738	3	.005				
E226	2.878E3	9.294	3	.026				
E227	2.882E3	13.370	3	.004				
E228	2.877E3	8.669	3	.034				
E229	2.885E3	16.953	3	.001				
E230	2.872E3	4.207	3	.240				
E231	2.883E3	14.674	3	.002				
E232	2.884E3	15.338	3	.002				
E233	2.881E3	12.480	3	.006				
E235	2.871E3	2.398	3	.494				
X003R	2.904E3	35.238	3	.000				
E124	2.883E3	14.961	3	.002				
E117	2.871E3	2.847	3	.416				

Likelihood Ratio Tests^a

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

a. Country/region = Germany

								95% Confid Interva Exp(B)	lence 11 for)
Immigrant p	oolicy ^a	В	Std. Error	Wald	df	Sig.	Exp(B)	Lowe r Boun d	Upper Boun d
Let anyone	Intercept	2.202E0	2.255E0	.954	1	.329			
come	E115	.554	.226	6.021E0	1	.014	1.739E0	1.118	2.707
	E224	164	.082	4.004E0	1	.045	.849	.723	.997
	E225	.106	.100	1.122E0	1	.289	1.112E0	.913	1.354
	E226	.064	.122	.279	1	.597	1.066E0	.840	1.354
	E227	097	.102	.900	1	.343	.908	.744	1.108
	E228	130	.081	2.565E0	1	.109	.878	.749	1.030
	E229	.211	.120	3.090E0	1	.079	1.235E0	.976	1.564
	E230	078	.087	.816	1	.366	.925	.781	1.096
	E231	193	.093	4.333E0	1	.037	.825	.688	.989
	E232	.283	.099	8.145E0	1	.004	1.327E0	1.093	1.611
	E233	188	.122	2.372E0	1	.124	.829	.652	1.053
	E235	.210	.138	2.329E0	1	.127	1.234E0	.942	1.617
	X003R	413	.116	1.262E1	1	.000	.661	.527	.831
	E124	810	.265	9.361E0	1	.002	.445	.265	.747
	E117	339	.317	1.141E0	1	.286	.713	.383	1.327
As long as	Intercept	2.773E0	1.795E0	2.387E0	1	.122			
jobs	E115	.450	.193	5.434E0	1	.020	1.569E0	1.074	2.291
avallable	E224	090	.072	1.591E0	1	.207	.914	.794	1.051
	E225	.057	.084	.460	1	.498	1.059E0	.898	1.248
	E226	.250	.097	6.585E0	1	.010	1.284E0	1.061	1.554
	E227	142	.089	2.549E0	1	.110	.868	.729	1.033
	E228	190	.063	9.119E0	1	.003	.827	.732	.936
	E229	.141	.092	2.322E0	1	.128	1.151E0	.960	1.380
	E230	013	.074	.030	1	.863	.987	.855	1.140
	E231	069	.081	.715	1	.398	.933	.796	1.095
	E232	.083	.075	1.248E0	1	.264	1.087E0	.939	1.258
	E233	116	.105	1.219E0	1	.270	.890	.724	1.094
	E235	.096	.103	.868	1	.351	1.101E0	.899	1.349
	X003R	042	.094	.196	1	.658	.959	.798	1.153
	E124	846	.224	1.430E1	1	.000	.429	.277	.665
Chail and The state	EII/	122 2.522E0	.238	.222	1	.637	.885	.554	1.468
Strict limits	Intercept	3.322E0	1./8IE0	3.912E0	1	.048			

Parameter Estimates^b

E115	.251	.193	1.683E0	1	.195	1.285E0	.880	1.876
E224	112	.072	2.458E0	1	.117	.894	.777	1.029
E225	058	.084	.478	1	.489	.943	.799	1.113
E226	.183	.096	3.619E0	1	.057	1.200E0	.994	1.449
E227	023	.089	.064	1	.800	.978	.821	1.164
E228	162	.062	6.828E0	1	.009	.851	.754	.960
E229	010	.091	.012	1	.914	.990	.829	1.183
E230	.027	.074	.132	1	.717	1.027E0	.889	1.187
E231	.003	.082	.001	1	.976	1.003E0	.854	1.177
E232	.155	.075	4.279E0	1	.039	1.168E0	1.008	1.353
E233	236	.105	5.096E0	1	.024	.790	.643	.969
E235	.090	.102	.787	1	.375	1.095E0	.896	1.337
X003R	.024	.094	.067	1	.796	1.025E0	.853	1.231
E124	756	.223	1.143E1	1	.001	.470	.303	.728
E117	017	.257	.004	1	.947	.983	.594	1.627

a. The reference category is: Prohibit people from coming.

b. Country/region = Germany

Sweden

Case Processing Summary^b

		N	Marginal Percentage
Immigrant policy	Let anyone come	171.303767	18.9%
	As long as jobs available	481.845790	53.2%
	Strict limits	241.812688	26.7%
	Prohibit people from coming	10.107543	1.1%
	Valid	905.069788	100.0%
	Missing	97.930212	
	Total	1003.000000	
	Subpopulation	900 ^a	

a. The dependent variable has only one value observed in 899 (99.9%) subpopulations.

b. Country/region = Sweden

Model Fitting Information^a

	Model Fitting Criteria	Likelihood I	Ratio Tests	
Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	1.905E3			
Final	1.706E3	199.275	45	.000

a. Country/region = Sweden

Pseudo R-Square^a

Cox and Snell	.198
Nagelkerke	.225
McFadden	.104

a. Country/region = Sweden

	Model Fitting Criteria	Likelihood Ratio Tests						
Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.				
Intercept	1.709E3	3.018	3	.389				
E115	1.709E3	3.091	3	.378				
E224	1.718E3	12.830	3	.005				
E225	1.707E3	.951	3	.813				
E226	1.714E3	8.238	3	.041				
E227	1.709E3	3.095	3	.377				
E228	1.708E3	2.360	3	.501				
E229	1.707E3	1.428	3	.699				
E230	1.712E3	6.246	3	.100				
E231	1.738E3	32.325	3	.000				
E232	1.709E3	3.065	3	.382				
E233	1.714E3	8.595	3	.035				
E235	1.709E3	3.837	3	.280				
X003R	1.740E3	34.917	3	.000				
E124	1.717E3	11.705	3	.008				
E117	1.709E3	3.074	3	.380				

Likelihood Ratio Tests^a

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

a. Country/region = Sweden

								95% Confid Interva Exp(B)	ence 1 for)
Immigrant policy ^a		В	Std. Error	Wald	df	Sig.	Exp(B)	Lower Bound	Upper Bound
Let	Intercept	-6.905	9.192E0	.564	1	.453			
anyone	E115	547	.422	1.684E0	1	.194	.579	.253	1.322
come	E224	.129	.161	.645	1	.422	1.138E0	.830	1.559
	E225	144	.367	.154	1	.695	.866	.422	1.777
	E226	-1.006	.651	2.386E0	1	.122	.366	.102	1.311
	E227	.102	.173	.343	1	.558	1.107E0	.788	1.555
	E228	.004	.111	.001	1	.973	1.004E0	.808	1.248
	E229	.394	.397	.986	1	.321	1.483E0	.681	3.229
	E230	507	.235	4.632E0	1	.031	.602	.380	.956
	E231	432	.182	5.654E0	1	.017	.649	.454	.927
	E232	192	.358	.289	1	.591	.825	.409	1.664
	E233	2.451	.947	6.703E0	1	.010	1.161E1	1.814	74.237
	E235	.421	.281	2.235E0	1	.135	1.523E0	.877	2.644
	X003R	082	.254	.104	1	.747	.921	.560	1.515
	E124	-1.324	.698	3.601E0	1	.058	.266	.068	1.044
İ	E117	535	.593	.815	1	.367	.585	.183	1.873
As long	Intercept	-1.490	8.691E0	.029	1	.864			
as jobs	E115	557	.411	1.834E0	1	.176	.573	.256	1.283
available	E224	.092	.157	.345	1	.557	1.097E0	.806	1.492
	E225	033	.354	.009	1	.926	.968	.484	1.935
	E226	760	.629	1.456E0	1	.228	.468	.136	1.607
	E227	.097	.170	.326	1	.568	1.102E0	.790	1.536
	E228	.048	.106	.209	1	.647	1.050E0	.853	1.292
	E229	.299	.381	.615	1	.433	1.349E0	.639	2.848
	E230	487	.233	4.374E0	1	.036	.614	.389	.970
	E231	257	.179	2.059E0	1	.151	.774	.545	1.098
ĺ	E232	293	.352	.692	1	.405	.746	.374	1.487
ĺ	E233	1.791	.905	3.917E0	1	.048	5.993E0	1.017	35.295
ĺ	E235	.481	.266	3.276E0	1	.070	1.618E0	.961	2.725
	X003R	.162	.248	.428	1	.513	1.176E0	.724	1.910
	E124	-1.719	.686	6.286E0	1	.012	.179	.047	.687
	E117	537	.555	.936	1	.333	.584	.197	1.735
Strict limits	Intercept	588	8.757E0	.005	1	.946	500	222	1 175
mmus	E115	649	.414	2.462E0	1	.117	.522	.232	1.175

Parameter Estimates^b

E224	.229	.159	2.078E0	1	.149	1.257E0	.921	1.716
E225	059	.356	.027	1	.869	.943	.470	1.893
E226	-1.111	.631	3.098E0	1	.078	.329	.095	1.135
E227	.030	.171	.030	1	.862	1.030E0	.737	1.441
E228	.063	.106	.352	1	.553	1.065E0	.865	1.312
E229	.257	.384	.447	1	.504	1.293E0	.609	2.743
E230	500	.234	4.577E0	1	.032	.606	.383	.959
E231	182	.180	1.021E0	1	.312	.834	.586	1.186
E232	200	.354	.321	1	.571	.819	.409	1.637
E233	1.853	.912	4.131E0	1	.042	6.381E0	1.068	38.103
E235	.357	.267	1.785E0	1	.182	1.428E0	.847	2.410
X003R	.364	.250	2.123E0	1	.145	1.439E0	.882	2.346
E124	-1.573	.688	5.223E0	1	.022	.207	.054	.799
E117	261	.556	.220	1	.639	.770	.259	2.292

a. The reference category is: Prohibit people from coming.

b. Country/region = Sweden

USA

Case Processing Summaryb

		N	Marginal Percentage
Immigrant policy	Let anyone come	81.786548	7.2%
	As long as jobs available	411.282929	36.3%
	Strict limits	556.424550	49.1%
	Prohibit people from coming	84.036728	7.4%
	Valid	1133.530755	100.0%
	Missing	115.469245	
	Total	1249.000000	
	Subpopulation	1135a	

a. The dependent variable has only one value observed in 1128 (99.4%) subpopulations.

b. Country/region = United States

Model Fitting Informationa

	Model Fitting Criteria	Likelihood 1	Ratio Tests	
Model	-2 Log Likelihood	Chi-Square	df	Sig.
Intercept Only	2.482E3			
Final	2.286E3	195.562	45	.000

a. Country/region = United States

Pseudo R-Squarea

Cox and Snell	.158
Nagelkerke	.178
McFadden	.078

a. Country/region = United States

	Model Fitting Criteria	Likelihood R	atio Tests	
Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Intercept	2.293E3	6.718	3	.081
E115	2.289E3	2.486	3	.478
E224	2.288E3	1.946	3	.584
E225	2.289E3	3.113	3	.375
E226	2.293E3	7.185	3	.066
E227	2.293E3	6.650	3	.084
E228	2.302E3	16.331	3	.001
E229	2.305E3	18.822	3	.000
E230	2.300E3	13.467	3	.004
E231	2.294E3	7.498	3	.058
E232	2.301E3	15.074	3	.002
E233	2.302E3	15.655	3	.001
E235	2.289E3	3.008	3	.390
X003R	2.298E3	11.947	3	.008
E124	2.308E3	21.800	3	.000
E117	2.293E3	6.848	3	.077

Likelihood Ratio Testsa

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

a. Country/region = United States

								95% Con Interval Exp(B)	nfidence for
Immigrant policy ^a		В	Std. Error	Wald	df	Sig.	Exp(B)	Lower Bound	Upper Bound
Let anyone	Intercept	1.857	1.467	1.603	1	.206			
come	X003R	085	.113	.558	1	.455	.919	.736	1.147
	E115	.075	.197	.144	1	.705	1.078E0	.732	1.586
	E117	619	.253	5.987	1	.014	.538	.328	.884
	E124	031	.232	.018	1	.894	.969	.615	1.528
	E224	.051	.078	.421	1	.516	1.052E0	.903	1.225
	E225	.112	.085	1.728	1	.189	1.118E0	.947	1.321
	E226	.082	.084	.949	1	.330	1.086E0	.920	1.281
	E227	106	.082	1.657	1	.198	.900	.766	1.057
	E228	165	.075	4.815	1	.028	.848	.731	.983
	E229	.441	.107	1.697E1	1	.000	1.554E0	1.260	1.916
	E230	195	.093	4.365	1	.037	.823	.685	.988
	E231	084	.082	1.072	1	.300	.919	.783	1.078
	E232	186	.103	3.231	1	.072	.831	.678	1.017
	E233	012	.109	.012	1	.912	.988	.798	1.223
	E235	086	.112	.589	1	.443	.918	.737	1.143
As long as	Intercept	2.544	1.116	5.200	1	.023			
jobs	X003R	.015	.088	.028	1	.867	1.015E0	.854	1.206
available	E115	.132	.155	.730	1	.393	1.142E0	.843	1.546
	E117	336	.184	3.337	1	.068	.714	.498	1.025
	E124	524	.182	8.309	1	.004	.592	.415	.846
	E224	.070	.061	1.314	1	.252	1.072E0	.952	1.208
	E225	.006	.066	.007	1	.933	1.006E0	.884	1.144
	E226	.164	.065	6.403	1	.011	1.178E0	1.038	1.338
	E227	128	.065	3.901	1	.048	.879	.774	.999
	E228	118	.054	4.751	1	.029	.888	.799	.988
	E229	.199	.067	8.806	1	.003	1.221E0	1.070	1.392
	E230	.028	.080	.123	1	.726	1.028E0	.879	1.203
	E231	101	.067	2.265	1	.132	.904	.793	1.031
	E232	274	.086	1.005E1	1	.002	.761	.642	.901
	E233	.251	.086	8.518	1	.004	1.285E0	1.086	1.521
	E235	117	.082	2.031	1	.154	.889	.756	1.045
Strict limits	Intercept	2.630	1.064	6.114	1	.013			
	X003R	.133	.086	2.407	1	.121	1.142E0	.966	1.350

Parameter Estimates

E115	.008	.149	.003	1	.957	1.008E0	.752	1.351
E117	242	.175	1.905	1	.168	.785	.557	1.107
E124	618	.176	1.232E1	1	.000	.539	.382	.761
E224	.037	.059	.389	1	.533	1.038E0	.924	1.165
E225	005	.063	.006	1	.938	.995	.879	1.126
E226	.150	.062	5.923	1	.015	1.162E0	1.030	1.312
E227	063	.063	.998	1	.318	.939	.829	1.063
E228	023	.052	.195	1	.659	.977	.883	1.082
E229	.200	.064	9.788	1	.002	1.222E0	1.078	1.385
E230	.018	.079	.050	1	.823	1.018E0	.873	1.187
E231	020	.066	.096	1	.757	.980	.862	1.115
E232	290	.085	1.180E1	1	.001	.748	.634	.883
E233	.114	.081	1.992	1	.158	1.121E0	.956	1.314
E235	049	.078	.394	1	.530	.952	.816	1.110

a. The reference category is: Prohibit people from coming.

2. Immigrant Policy and Community Indicators

		Model Fitting Criteria	Likelihood	Ratio Te	ests
Country - wave	Model	-2 Log Likelihood	Chi-Square	df	Sig.
Canada (5)	Intercept Only	3.056E3			
	Final	2.998E3	58.581	18	.000
Germany (5)	Intercept Only	3.034E3			
	Final	2.851E3	1.828E2	18	.000
Sweden (5)	Intercept Only	1.709E3			
	Final	1.610E3	99.102	18	.000
United States (5)	Intercept Only	2.301E3			
	Final	2.233E3	68.608	18	.000

Model Fitting Information

Pseudo R-Square

Canada (5)	Cox and Snell	.030
	Nagelkerke	.035
	McFadden	.015
Germany (5)	Cox and Snell	.113
	Nagelkerke	.129
	McFadden	.058
Sweden (5)	Cox and Snell	.104
	Nagelkerke	.118
	McFadden	.052
United States (5)	Cox and Snell	.058
	Nagelkerke	.066
	McFadden	.028

		Model Fitting Criteria	Likelihood R	atio Te	ests
Country - wave	Effect	-2 Log Likelihood of Reduced Model	Chi-Square	df	Sig.
Canada (5)	Intercept	3.051E3	53.548	3	.000
	X003	3.018E3	20.639	3	.000
	G019	3.007E3	8.901	3	.031
	G020	3.003E3	5.370	3	.147
	G021	3.005E3	7.578	3	.056
	G022Yes	2.998E3	.447	3	.930
	G006	3.005E3	6.754	3	.080
Germany (5)	Intercept	2.873E3	22.148	3	.000
	X003	2.873E3	21.376	3	.000
	G019	2.879E3	28.023	3	.000
	G020	2.853E3	1.502	3	.682
	G021	2.868E3	16.624	3	.001
	G022Yes	2.875E3	23.370	3	.000
	G006	2.894E3	42.261	3	.000
Sweden (5)	Intercept	1.645E3	35.593	3	.000
	X003	1.656E3	45.897	3	.000
	G019	1.614E3	4.542	3	.209
	G020	1.613E3	3.701	3	.296
	G021	1.628E3	18.591	3	.000
	G022Yes	1.616E3	6.180	3	.103
	G006	1.622E3	12.077	3	.007
United States	Intercept	2.247E3	14.163	3	.003
(5)	X003	2.238E3	5.187	3	.159
	G019	2.252E3	18.812	3	.000
	G020	2.234E3	.683	3	.877
	G021	2.236E3	3.262	3	.353
	G022Yes	2.243E3	9.732	3	.021
	G006	2.245E3	12.017	3	.007

Likelihood Ratio Tests

The chi-square statistic is the difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are 0.

95% Confidence Interval for Exp(B)Std. Country -Immigrant Lower Upper policy^{a,b,c,d,e} В df wave Error Wald Sig. Exp(B)Bound Bound Let anyone Intercept 5.091 Canada (5) 1.033 24.298 1 .000 come X003 .010 4.656 .978 .958 .998 .023 1 .031 G019 -.679 .258 6.942 .008 .507 .306 .840 1 G020 .078 .328 .057 1 .811 1.082 569 2.056 G021 .661 .342 3.747 .053 .516 .264 1.008 1 G022Ye .005 .995 .296 .000 1 .985 556 1.778 s G006 .368 302 1.484 .223 .692 382 1.252 1 5.579 .949 1 34.538 .000 As long as Intercept jobs .979 X003 .003 .009 .134 1 .714 .997 1.015 available G019 .642 .224 8.230 .004 .526 .339 .816 1 G020 362 292 1.535 1 .215 1.436 .810 2.547 G021 .773 .298 6.740 1 .009 .462 .258 .828 G022Ye .083 .266 .098 .755 .920 546 1 1.551 s G006 .135 256 .278 .598 .874 .529 1.444 1 4.437 .951 21.771 Strict limits Intercept 1 .000 X003 .002 .009 .046 1 .830 1.002 .984 1.020 G019 .224 5.913 .015 .580 .374 .900 .545 1 G020 .292 1.514 .415 2.013 1 .156 .854 2.686 G021 .624 .297 4.402 1 .036 .536 .299 .960 G022Ye .097 267 .133 1 .716 .907 538 1.531 S G006 .033 255 .017 .897 1.034 .627 1.705 1 Germany (5) Let anyone Intercept 3.153 .933 11.431 1 .001 come X003 .970 .950 .991 .030 .011 7.571 .006 1 G019 .545 .198 7.584 .580 393 .854 1 .006 G020 -.164 .228 .514 1 .473 .849 543 1.328 G021 .132 1 1.141 1.926 .267 .242 .622 .676 G022Ye .848 .219 14.976 1 .000 .428 .279 .658 S G006 1.054 238 19.668 1 .000 2.869 1.801 4.570 As long as Intercept 3.302 .786 17.648 1 .000 jobs

X003

.002

.008

.066

1

.798

1.002

.986

Parameter Estimates

1.019

		G019	263	.157	2.813	1	.094	.769	.566	1.045
		G020	035	.183	.036	1	.849	.966	.675	1.383
		G021	483	.221	4.749	1	.029	.617	.400	.953
		G022Ye s	403	.180	5.035	1	.025	.668	.470	.950
		G006	.886	.201	19.461	1	.000	2.426	1.636	3.597
	Strict limits	Intercept	2.509	.787	10.174	1	.001			
		X003	.004	.008	.226	1	.635	1.004	.988	1.021
		G019	.005	.156	.001	1	.976	1.005	.740	1.365
		G020	.021	.181	.013	1	.910	1.021	.715	1.457
		G021	402	.220	3.333	1	.068	.669	.435	1.030
		G022Ye s	241	.179	1.807	1	.179	.786	.553	1.117
		G006	.523	.200	6.850	1	.009	1.688	1.140	2.498
Sweden (5)	Let anyone	Intercept	9.995	2.447	16.679	1	.000			
	come	X003	038	.020	3.604	1	.058	.963	.926	1.001
		G019	458	.577	.631	1	.427	.632	.204	1.959
		G020	.159	.773	.042	1	.837	1.172	.258	5.330
		G021	-1.755	.864	4.128	1	.042	.173	.032	.940
		G022Ye s	730	.469	2.420	1	.120	.482	.192	1.209
		G006	015	.419	.001	1	.971	.985	.433	2.239
	As long as jobs	Intercept	10.16 3	2.417	17.679	1	.000			
	available	X003	013	.019	.437	1	.508	.987	.950	1.026
		G019	137	.564	.059	1	.808	.872	.289	2.633
		G020	.398	.760	.274	1	.601	1.488	.336	6.597
		G021	-2.230	.852	6.842	1	.009	.108	.020	.572
		G022Ye s	747	.458	2.654	1	.103	.474	.193	1.164
		G006	272	.410	.439	1	.508	.762	.341	1.702
	Strict limits	Intercept	8.418	2.435	11.946	1	.001			
		X003	.005	.020	.069	1	.792	1.005	.967	1.045
							~~~	0.00		0.005
		G019	074	.569	.017	1	.897	.929	.304	2.835
		G019 G020	074 .617	.569 .768	.017 .645	1 1	.897 .422	.929 1.853	.304 .411	2.835 8.350

		G022Ye s	511	.463	1.218	1	.270	.600	.242	1.486
		G006	534	.418	1.638	1	.201	.586	.258	1.329
United	Let anyone	Intercept	.621	.885	.492	1	.483			
States (5)	come	X003	005	.010	.267	1	.606	.995	.975	1.015
		G019	339	.219	2.390	1	.122	.713	.464	1.095
		G020	031	.289	.011	1	.916	.970	.550	1.710
		G021	.083	.317	.068	1	.794	1.086	.584	2.022
		G022Ye s	367	.213	2.969	1	.085	.693	.456	1.052
		G006	.647	.259	6.262	1	.012	1.911	1.151	3.172
	As long as	Intercept	2.086	.686	9.254	1	.002			
	jobs	X003	.000.	.008	.003	1	.954	1.000	.985	1.015
	avallable	G019	.108	.162	.447	1	.504	1.114	.811	1.531
		G020	051	.221	.053	1	.818	.950	.616	1.466
		G021	143	.237	.364	1	.547	.867	.545	1.379
		G022Ye s	438	.153	8.194	1	.004	.645	.478	.871
		G006	.402	.216	3.452	1	.063	1.495	.978	2.285
	Strict limits	Intercept	2.046	.675	9.180	1	.002			
		X003	.007	.008	.915	1	.339	1.007	.992	1.022
		G019	.316	.159	3.978	1	.046	1.372	1.006	1.872
		G020	.042	.216	.037	1	.847	1.043	.683	1.592
		G021	284	.231	1.508	1	.219	.753	.478	1.185
		G022Ye s	475	.149	10.150	1	.001	.622	.464	.833
		G006	.149	.216	.479	1	.489	1.161	.760	1.773

a. The reference category is: Prohibit people from coming for split file Country - wave = Canada (5).

b. The reference category is: Prohibit people from coming for split file Country - wave = Germany (5).

d. The reference category is: Prohibit people from coming for split file Country - wave = Sweden (5).

e. The reference category is: Prohibit people from coming for split file Country - wave = United States (5).

#### Classification

		Predicted				
Country - wave	Observed	Let anyone come	As long as jobs available	Strict limits	Prohibit people from coming	Percent Correct
Canada (5)	Let anyone come	0	134.469724	11.734682	0	.0%
	As long as jobs available	0	795.279111	149.926270	0	84.1%
	Strict limits	0	626.734544	165.711675	0	20.9%
	Prohibit people from coming	0	28.134373	12.254993	2.320379	5.4%
	Overall Percentage	.0%	82.3%	17.6%	.1%	50.0%
Germany (5)	Let anyone come	6.148149	84.761319	12.890200	0	5.9%
	As long as jobs available	4.440896	494.332636	220.147772	0	68.8%
	Strict limits	.871670	322.041867	319.885083	0	49.8%
	Prohibit people from coming	0	28.074037	32.941440	0	.0%
	Overall Percentage	.8%	60.9%	38.4%	.0%	53.7%
Sweden (5)	Let anyone come	4.421809	155.197353	3.364267	0	2.7%
	As long as jobs available	3.396620	458.574428	21.411833	0	94.9%
	Strict limits	0	221.134971	25.493792	0	10.3%
	Prohibit people from coming	0	9.199793	1.977857	0	.0%
	Overall Percentage	.9%	93.4%	5.8%	.0%	54.0%
United States (5)	Let anyone come	1.020082	24.961999	53.954320	0	1.3%

As long as jobs available	0	87.236985	328.866330	0	21.0%
Strict limits	0	69.195540	498.789935	0	87.8%
Prohibit people from coming	0	10.480839	70.225623	0	.0%
Overall Percentage	.1%	16.8%	83.1%	.0%	51.3%

#### **ENDNOTES**

¹ Margaret Canovan, *Nationalism and Political Theory* (Cheltenham: Edward Elgar, 1996), p. 128.

² Anthony Birch, *Nationalism and National Integration* (London: Unwin Hynam, 1989), pp. 230-31.

³ John Higham, *Strangers in the Land* (New Brunswick, NJ: Rutgers University Press, 1955); Rogers Smith, *Civic Ideals* (New Haven, CT: Yale University Press, 1997).

⁴ In the American context, see, Kenneth Karst, *Belonging to America* (New Haven, CT: Yale University Press, 1989); Lawrence Fuchs, *The American Kaliedoscope* (Hanover, NH: Wesleyan University Press, 1990).

⁵ See Riva Kastoryano, *Negotiating Identities* (Princeton, NJ: Princeton University Press, 2002).

⁶ John L. Sullivan, James Piereson, and George E. Marcus, *Political Tolerance and American Democracy* (Chicago: University of Chicago Press, 1982), p. 260
 ⁷ Ibid., p. 52

⁸ Cf. Craig L. Carr, *The Liberal Polity* (Houndsmills: Palgrave/MacMillan, 2006), pp. 56-58.

⁹ Cf. Smith, pp. 470-72.

¹⁰ In multinomial logistic analysis, where the dependent may have more than the usual 0or-1 values, the comparison is always with the last value rather than with the value of 1. The parameter estimates table for multinomial logistic regression will contain factor or covariate parameters for each category of the categorical dependent variable except the last category (by default - however SPSS multinomial lets the researcher set the reference category as the first or other custom category). If a parameter estimate (b coefficient) is significant and negative, than that parameter decreases the likelihood of that response (category) of the dependent (response) variable with respect to the reference category response. If the coefficient is positive and significant, that parameter increases the likelihood of the given response (category) of the dependent (response) variable compared to the reference category response.