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Spatial analysis of landscape characteristics, anthropogenic factors,
and seasonality effects on water quality in Portland, Oregon
Katherine Gelsey, Daniel Ramirez, Heejun Chang
Portland State University
August 20, 2021

Abstract
Urban areas often struggle with deteriorated water quality as a result of complex
interactions between landscape factors such as land cover, use, and management as well as
climatic variables such as weather, precipitation, and atmospheric conditions. Green
stormwater infrastructure (GSI) has been introduced as a strategy to reintroduce
pre-development hydrological conditions in cities, but questions remain as to how GSI
interacts with other landscape factors to affect water quality. We conducted a statistical
analysis of six relevant water quality indicators in 131 water quality stations in four
watersheds around Portland, Oregon using data from 2015 to 2021. Indiscriminate of
station location, water quality is slightly negatively correlated with distance to nearest GSI.
Spatial lag and spatial error models best explain variations in water quality using a distance
band weights matrix;  when accounting for spatial autocorrelation, up to 43% of variation
in water quality can be explained by selected landscape and anthropogenic variables.
Spatial dependence is present especially for zinc and orthophosphate, indicating a need for
spatial filtering approaches. Future studies should include multi-level analysis at the census
block group scale to include sociodemographic variables that demonstrate whether
benefits from GSI are equally distributed. Our findings provide valuable insights to city
planners and researchers seeking to improve water quality in metropolitan areas by
implementing GSI.

1. Introduction
Increasing urbanization in metropolitan areas poses a threat to water quality by increasing
impervious land cover and rerouting water flow to traditional pipe systems (“gray”
infrastructure), which results in increased risk for flooding, sewer overflow, and heightened
pollutant transport (Baker et al., 2019; Liu et al., 2015; O’Donnell et al., 2020). Furthermore,
the resulting land use changes associated with urbanization interact with pre-existing
landscape and seasonal factors such as land cover, geomorphology, and weather to produce
secondary effects on water quality, many of which are poorly understood (Guo et al., 2019;
Lintern et al., 2018).

Green stormwater infrastructure (GSI; used interchangeably with green infrastructure (GI)
in this paper) such as green roofs, permeable pavement, bioswales, rainwater cisterns, and
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detention ponds have been introduced as a strategy to reinstate pre-development
hydrological conditions in cities (Chini et al., 2017; McPhillips & Matsler, 2018). While GSI
was first introduced primarily as a stormwater overflow mitigation strategy, numerous
studies have also demonstrated GSI can decrease pollutant loads through bioretention or
other measures and improve water quality (Liu et al., 2016, 2017; Reisinger et al., 2019).
However, because of the multivariate spatiotemporal interactions between GSI types,
location, age, and the surrounding environment, questions remain as to how GSI affects
water quality. Cities in the United States have increasingly introduced GSI in recent years,
but benefits have not been as large or quick to manifest as once thought (Liu et al., 2017),
requiring better understandings of how GSI interact with the landscape. Furthermore, in
the United States, white and wealthy residents have historically benefited
disproportionately from green infrastructure installations, inciting recent research and
planning initiatives to prioritize equitable distribution of GSI and other green infrastructure
practices (Garcia-Cuerva et al., 2018; Wolch et al., 2014).

This study examines relationships between water quality, anthropogenic and landscape
factors, and seasonality in Portland, Oregon, a city with abundant GSI installations and
robust research surrounding GSI innovation, efficacy, and barriers to implementation (eg.
Baker et al., 2019; Chan & Hopkins, 2017; Everett et al., 2018; McPhillips & Matsler, 2018;
O’Donnell et al., 2020). We conducted a statistical analysis of six relevant water quality
indicators in 131 water quality stations in four watersheds around the city of Portland,
Oregon from 2015 to 2021. Using linear correlation, exploratory regression, and spatial
regression analysis, we addressed the following research questions:

1) How do selected water quality parameter concentrations vary between the wet and
dry seasons?

2) Which landscape variables explain variations in water quality between the wet and
dry season?

3) How does the presence and proximity of GSI affect variations in water quality across
stations?

1.2 Literature Review
Many studies have examined spatial relationships of water quality patterns and landscape
or anthropogenic factors, and concluded that the ability of land use metrics to explain
water quality depended largely on which spatial scale was used. Mainali & Chang 2018
found that a 100-meter scale and one-kilometer upstream scale best explained variation in
water quality, while Shi et al. 2017 found varying abilities of catchment, riparian, and reach
scales to explain degraded water quality (Mainali & Chang, 2018; Shi et al., 2017). However,
few studies examined relationships between water quality and landscape variables at a
microscale within an urbanized region.
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Water quality as a whole is dependent on many parameters, including the presence of
pollutants, both aqueous and particulate (Lintern et al., 2018). Lead and zinc are pollutants
of concern especially in metropolitan areas, where the degradation of car tires, brake pads,
and other automotive parts results in heavy metal-rich road dust entering urban streams
via stormwater runoff (Huber et al., 2016; Hwang et al., 2016). Previous literature has
observed strong seasonal differences in traffic-related heavy metal runoff, with road icing
practices highly influencing runoff concentrations in the winter (Hilliges et al., 2016). In
contrast, Hallberg et al.’s 2007 study of a major urban highway found no significant
seasonal differences in lead or zinc runoff (Hallberg et al., 2007).

Escherichia coli, a fecal coliform that inhabits the intestinal tract of animals and humans,
commonly contaminates water sources in areas of high population density, thus posing
public health risks for urbanized areas (Jang et al., 2017). A 2018 evaluation by the City of
Portland Bureau of Environmental Services concluded that E. coli is the main pollutant that
exceeds water quality standards in Portland streams and rivers, with the highest recorded
E. coli concentrations occurring in the summer and during storms. This is in contrast to
McKee et al. 2020, whose study of recreational areas and the surrounding watershed in
Atlanta, Georgia found that E. coli concentrations were highest during the winter (McKee et
al., 2020). Spatial differences were also observed in Portland watershed E. coli as well; E.
coli levels were found to be “significantly lower in the Willamette Streams and Columbia
Slough than in most of the other watersheds” (Fish & Jordan, 2018). In a similar vein, Vitro
et al. 2017 examined how “land use and stormwater management policies” affect fecal
coliform levels at a multi-watershed scale (Vitro et al., 2017).

Phosphorus and nitrogen are organic nutrients that occur naturally in vegetation and soil,
but excess amounts in water bodies can lead to eutrophication and subsequent water body
impairment, among other ecosystem problems (Smith et al., 1999). Although phosphorus
and nitrogen excesses are popularly known as resulting from agricultural runoff,  they are
also important pollutants in urbanized watersheds as well (G & J, 1997; Withers et al.,
2014; Yu et al., 2012). Hobbie et al. 2017 found that urbanized watersheds of St. Paul,
Minnesota experienced major pollution from household nitrogen and phosphorus runoff
(Hobbie et al., 2017).

“Green infrastructure” (GI) is an umbrella term for best management practices (BMPs) and
low impact development (LID) strategies. GI seeks to mitigate the harmful effects of or in
some cases, replace entirely, gray infrastructure (Liu et al., 2015; O’Donnell et al., 2020).
Institutional support for green infrastructure may hinge on stormwater runoff control,
ignoring potential multi-benefits such as improvements in water quality and urban climate
resilience (Kabisch et al., 2016; O’Donnell et al., 2020). Portland, Oregon is considered a
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leader in green infrastructure, having begun its first GSI installation efforts in the 1990s
(O’Donnell et al., 2020). Baker et al. 2019 and Chan & Hopkins 2017 found that in Portland,
GSI appears to be equitably distributed in terms of median income, racial minority group,
and education level (Baker et al., 2019; Chan & Hopkins, 2017). A rich body of literature
exists on the implementation and evolution of GSI in Portland, allowing for more rigorous
review of water quality problems in the context of green infrastructure in Portland.
However, our literature review returned few studies centering Portland that examined
water quality at the multi-watershed scale while considering GSI as an explanatory
variable.

2. Materials and methods
2.1 Study area
This study was conducted in the metropolitan area of Portland, Oregon, a large city that has
recently undergone accelerated population growth and urbanization. The city uses a
partially combined sewer system, but since the 1990s has made consistent efforts to
introduce green stormwater infrastructure to prevent overflow events, and now boasts one
of the largest collections of GSI installations in the world (Baker et al., 2019; O’Donnell et
al., 2020). The region’s climate consists of relatively dry and warm summers and wet, cool
winters. Average annual precipitation is approximately 1400 mm (Velpuri & Senay, 2013).
Soil types vary between clay, silt, silt/loam, and gravel, impacting “infiltration rate of flow”
(Baker et al., 2019). Most of the city is in low-lying foothills, situated between the Columbia
and Willamette Rivers (O’Donnell et al., 2020). Forest Park,  a largely undeveloped, slightly
higher elevation conservation area popular with hikers and bicyclists, comprises much of
the western side of the study area. The Columbia Slough, a flat, low-elevation, slow-moving
water body, comprises the northern side of the study area (Fig. 1). The City of Portland, in
partnership with private organizations, has undertaken hundreds of rivershed restoration
projects since 1990 (O’Donnell et al., 2020).

2.2 Data origin
Water quality data was obtained from the City of Portland Bureau of Environmental
Services’ Portland Area Watershed Monitoring and Assessment Program (PAWMAP)
(Portland Area Watershed Monitoring and Assessment Program (PAWMAP) | Environmental
Monitoring | The City of Portland, Oregon, n.d.). The data originated from 131 water quality
monitoring stations located on the outskirts of the Portland metropolitan area (Fig. 1),
situated within the Willamette River, Columbia Slough, Johnson Creek, and Balch Creek
watersheds.

Generally, water quality measurements were taken for at least one monitoring station at
least once a month by the City of Portland from July 2015 through May 2021. The PAWMAP
program routinely rotates stations; as such, the completeness of data varied, with some
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station records containing data for multiple years, and others for less than one year.
Furthermore, no station data was documented from March through most of May of 2020,
most likely due to the onset of the COVID-19 pandemic in the United States in March 2020
which temporarily prevented field work (Impacts of Covid-19 on Traffic, Portland Region |
Oregon State Library, n.d.).

Six water quality parameters of physical, chemical, and biological importance were selected
for this study: E. coli (MPN/100 mL), lead (ug/L), nitrate (mg/L), orthophosphate (mg/L),
total suspended solids (mg/L) and zinc (ug/L). Nitrate and orthophosphate were chosen
because they were measured more frequently compared to other forms of nitrate and
phosphorus. The data available to us measured E. coli directly as opposed to fecal coliform
levels as a proxy, providing an uncommon opportunity to measure a water quality
parameter of direct relevance to human health (Vitro et al., 2017).

Fig. 1. Distribution of 131 PAWMAP water quality station locations around the Portland metro area

2.3 Explanatory spatial variables
Explanatory spatial variables were chosen by weighing the current literature with
considerations of the data that were available to us (Table 1).
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Table 1. Landscape characteristics selected as potential explanatory variables and summarized
literature review of variable relationships with water quality

Variable
Relationship with
water quality Supporting literature Data source

Land cover

imperviousness (%) (+) (Brabec et al., 2002;
Salerno et al., 2018)

NLCD (2019)

Developed (%) (+) (Brabec et al., 2002) NLCD (2019)

Forested (%) (-) (Shi et al., 2017) NLCD (2019)

Infrastructure

Distance to nearest
GI (meters)*

(+) (McPhillips & Matsler,
2018)

City of Portland (2015)

Pipe length
(meters)✝

Significant (Meierdiercks et al., 2017) Oregon Metro
rlisdiscovery.oregonmetro.gov/

Road length
(meters)

(+) (Hallberg et al., 2007;
Huber et al., 2016)

Oregon Metro
rlisdiscovery.oregonmetro.gov/

Soil and
geomorphology

Hydrologic soil
group C (sandy clay

loam) (%)

(-) (Phillips et al., 2019;
Wilson et al., 2015)

USDA NRCS gSSURGO Database
(2019)

Mean slope
(meters)

(+) (undeveloped)
(-) (developed)

(Lintern et al., 2018) City of Portland (2007)

Standard deviation
in slope (meters)

See above (Lintern et al., 2018) City of Portland (2007)

Mean elevation
(meters)

(+) (undeveloped)
(-) (developed)

(Kim et al., 2015; Lintern
et al., 2018)

City of Portland (2007)

Standard deviation
in elevation

See above (Lintern et al., 2018) City of Portland (2007)

Stream order* (+) (Lintern et al., 2018) Derived from 3-foot DEM from
the City of Portland (2007)

*Evaluated from station XY coordinates without consideration of buffer area
✝Evaluated only at the 250-meter scale due to data resolution
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We initially defined a circular buffer area of 100 meters in diameter around each water
quality station to spatially relate selected water quality parameters to selected explanatory
variables (Table 1) derived at the 100-meter scale. The 100-meter distance was chosen to
avoid spatial overlap in buffer area between stations that are in close proximity to one
another, and the circular buffer area was chosen because of the relatively flat, urban land
cover of the areas surrounding the water quality stations. However, some explanatory
variables, road length and pipe length, became irrelevant at the 100-meter scale. Therefore,
a 250-meter diameter circular buffer scale was introduced, with the added benefit of
allowing for a multiscalar analysis at the microscale by comparing the 100-meter scale to
the 250-meter scale.

Fig. 2 Microscale delineation at the 100-meter and 250-meter scale around each water quality station
through which explanatory variable metrics were calculated.

We defined wet season measurements as any data recorded in October through April, and
dry season measurements as any data recorded in May through September.



2.4 Statistical analysis
Using R version 4.1 in RStudio 1.17, we employed correlation tests using a 95% confidence
interval to test for significance between explanatory and dependent variables. All
correlation tests used the Spearman method as a non-parametric test to account for
possible non-linear trends in water quality measurements (Shrestha & Kazama, 2007).
Heatmaps were then generated for each season at the 100-meter and 250-meter scales for
visual comparison.

We introduced multiple linear regression to evaluate the influence of multiple landscape
factors on To rule out auto-correlated explanatory variables when determining the model
that best explains variations in water quality parameter concentrations, we employed the
Exploratory Regression Tool in ArcGIS Desktop 10.7.1, which takes a shapefile input and
applies the Global Moran’s 1 spatial autocorrelation test to models that fit certain criteria
such as minimum R2 value and minimum Jarque-Bera p-value. When conducting
exploratory regression for the dry season water quality measurements, we excluded
stations that did not have any measurements taken in the dry season, even though they did
have wet season measurements. We recorded the best model for each pollutant in both the
wet and dry seasons based on highest R2, lowest Akaike Information Criteria, and IF value
less than 10.

We created two weights matrices, one using stations with non-NA wet season
measurements (n= 131), and the other using stations with non-NA dry season
measurements (n= 89) for the water quality stations in GeoDa with the distance band
method, using the software’s default bandwidth value. Using the best model detected by
exploratory regression in ArcMap, we input that model into GeoDa 1.18.10’s Regression
tool, running the tool twice more to incorporate the weights matrix for the spatial lag and
spatial error models (Matthews, 2006). From the results output, we formatted the variable
coefficients into multiple linear regression equations (Table 3).

3. Results
3.1 Seasonal variation
Examining all samples without considering particular sampling stations, there were clear
seasonal differences in average (median and mean) and maximum water quality parameter
concentrations. For lead, nitrate, total suspended solids, and zinc, average wet season
concentrations exceeded dry season concentrations, a trend that was also reflected in
maximum concentrations across seasons. For E. coli and orthophosphate, average dry
season concentrations exceeded wet season concentrations, also reflected in maximum
concentrations across seasons.
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Table 2. Statistics summary for all water quality stations between the wet and dry seasons

pollutant max min median mean standard deviation

E. coli - wet (MPN/100 mL) 6100 10 41 204.64 510.19

E. coli - dry (MPN/100 mL) 10000 10 130 287.67 791.73

lead - wet (ug/L) 30.2 0.08 0.34 0.90 2.20

lead - dry (ug/L) 17.7 0.1 0.24 0.47 1.31

nitrate - wet (mg/L) 14 0.1 1.4 1.67 1.32

nitrate - dry (mg/L) 4 0.1 0.68 1.00 0.83

orthophosphate - wet (mg/L) 0.22 0.02 0.04 0.04 0.02

orthophosphate - dry (mg/L) 0.36 0.02 0.06 0.06 0.03

total suspended solids - wet
(mg/L)

1420 2 6 25.15 85.62

total suspended solids - dry
(mg/L)

80 2 4 9.15 12.46

zinc - wet (ug/L) 321 0.5 5.02 12.99 24.24

zinc - dry (ug/L) 66.5 0.5 3.67 6.01 8.32

Wet season: n = 3916; dry season: n = 1341

Across all years and stations, mean water quality measurements tended to surpass median
measurements, evidently due to large outliers that skewed the mean upwards. Most
measurements were concentrated in the lower ranges of each water quality parameter
(Table 2, Fig. 3).





Fig. 3. Box and whisker plots for each water quality parameter in each season. Plots with two y-axis
extents are adjusted to a smaller scale for ease of viewing all quartiles.

3.2 Correlation analysis
In the wet season at both scales, E. coli, followed by zinc, was associated with the highest
number of explanatory variables at the 0.05 significance level (Figs. 2a and 2c). The
strongest correlation coefficient in the wet season occurred between E. coli and percent
developed (+), followed by  percent imperviousness (+) and percent forested (-) at both
scales. Zinc was correlated with percent developed (+), road length (+), and pipe length (+),
but only at the 250-meter scale. Orthophosphate was most strongly correlated with pipe
length (+), followed by mean elevation at both scales. Interestingly, E. coli, orthophosphate,
and zinc were all negatively correlated with distance to nearest GI, and pipe length was
positively associated with all dependent variables except nitrate, which showed positive
correlation. Lead was only significantly correlated with road length and pipe length in the
wet season, the latter only at the 250-meter scale. Only weak correlations occurred for
nitrate and total suspended solids in the wet season.



Figs. 2a-d Correlation coefficient heatmaps for the 100-meter and 250-meter scales in the wet and dry
seasons. Only values of statistical significance (p<0.05) are shown. OP = orthophosphate; TSS = total
suspended solids. Nitrate is omitted from a) and total suspended solids is omitted from c), because no
significant correlations were found with any of the spatial variables. Standard deviation of slope (std
slope) is omitted from b) because no significant correlations were found with any of the water quality
parameters.

Somewhat different explanatory variables were correlated with water quality parameters
in the dry season than in the wet season, though the correlation coefficients were in general
weaker than in the wet season. None of the associations between variables changed in
direction between the wet and dry season. While E. coli continued to demonstrate the
highest number of significant associations with explanatory variables, lead demonstrated
far more significant associations compared to the wet season (Figs. 2b and 2d). Distance to
nearest GI, pipe length, and road length were less significant overall in the dry season than



in the wet season, while imperviousness, percent developed, and most slope and elevation
variables were more significant in the dry season than in the wet season.

More explanatory variables, especially road length, were significantly correlated at the
250-meter scale than at the 100-meter scale. Slope and elevation measures became more
significant at the 250-meter scale, especially in the dry season. In the dry season, nitrate
and total suspended solids were significantly correlated with more variables at the
250-meter scale than at the 100-meter scale. In the wet season, orthophosphate was
significantly correlated with more variables at the 250-meter scale than at the 100-meter
scale.

3.3 Exploratory regression analysis
The exploratory regression tool returned a wide range in the number of models between
seasons. For all pollutants, more models were available in the wet season than in the dry
season (Table 2), most likely owing to lower sample sizes in the dry season. Neither E. coli
or lead were found to have any suitable models in the dry season, despite E. coli having
nearly 200 possible models for the wet season. E. coli, followed by zinc, had the highest R2

value overall.

Table 2. Summary of the number of multiple ordinary least squares regression models found for each
water quality parameter in each season using the Exploratory Regression tool

E. coli Lead Nitrate Orthophosphate Total suspended solids Zinc

Wet season

# of  models 198 13 16 128 9 102

highest R2 0.38 0.10 0.13 0.14 0.04 0.22

Dry season

# of  models 0 0 12 30 1 3

highest R2 na na 0.14 0.13 0.06 0.05

“na” for E. coli and lead in the dry seasons indicates that the exploratory regression tool did not find any
suitable models for those parameters.

3.3 Spatial regression
Even though there were fewer models detected by the exploratory regression tool for the
dry season than the wet season, for nitrate and total suspended solids,  the most reliable
dry season models had higher R2 values than the wet season values (Table 3).



The models for E. coli had the highest R2 values out of all pollutants, with a maximum R2 =
0.43 for both the SL and SE models (Table 3). Relatively low spatial dependence was
observed, with an R2 improvement of 13% from the OLS model.

Lead was primarily explained by road length; however, R2 values for all models are
relatively low and there were no models found for the dry season. Distance to nearest GI
was slightly negatively associated with lead, reflecting similar results from our correlation
analysis that showed negative correlation between distance to nearest GI and E. coli,
orthophosphate, and zinc.

Nitrate demonstrated relatively low spatial dependence and had similar, relatively low
explanatory power for all models in both seasons, but different explanatory variables took
precedence between seasons. In the wet season, percent forested dominated, while in the
dry season, percent impervious surface at the 100 meter scale dominated.

The R2 values for orthophosphate in both the wet and dry models more than doubled after
incorporating the weights matrix, demonstrating strong spatial dependence. For both wet
and dry OLS models, percent hydrologic soil group C was the most significant explanatory
variable, but for spatial regression, topographic variables became most significant (for the
wet season, the most significant explanatory variable was mean elevation; for the dry
season, it was mean slope, both at the 250-meter scale).

Models for TSS had low R2 values and relatively high AIC values, with a maximum R2 = 0.10
in the dry season and maximum R2 = 0.06 in the wet season. The most significant
explanatory variable in the wet season was percent imperviousness at the 250-meter scale
across all models. In the dry season, standard elevation at the 100-meter scale and mean
slope at the 250-meter scale were most significant.

Six explanatory variables best explained variations in zinc in the wet season: percent
developed, percent imperviousness, percent hydrologic soil group C, standard deviation in
elevation, standard deviation in slope, and road length, all at the 250-meter scale (except
for percent imperviousness). These variables alone explained 22% of the variance in zinc
concentrations in the wet season; when the spatial weights matrix was incorporated, 34%
of the variance was explained. In the dry season, percent developed and percent
impervious at the 100-meter scale alone explained 5% of variance; when the spatial
weights matrix was added, 17% of variance was explained.



Table 3. Ordinary least squares and spatial regression results for each parameter in each season
E. coli Model R2 AIC Equation

wet season OLS 0.38 1537.74 32.9632*std_slope_250m - 12.3561*m_slope_100m + 1.04931*dev_250m -
0.614266*soil_100m + 0.069723*near_GI + 34.1373

SL 0.43 1535.38 32.4904*std_slope_250m - 11.7446*m_slope_100m + 0.898652*dev_250m -
0.501536*soil_100m + 0.294953*W_ecoli_wet + 0.0585237*near_GI +
9.7942

SE 0.43 1534.64 31.6529*std_slope_250m - 11.3928*m_slope_100m + 1.03914*dev_250m -
0.6086*soil_100m + 0.301888*LAMBDA_ecoli_wet + 0.0679093*near_GI +
33.9033

Lead Model R2 AIC Equation

wet season OLS 0.10 227.25 0.583142 + 0.00111162*road_100m - 0.00614092*imperv_100m -
0.000312861*near_GI

SL 0.16 225.28 0.00105028*road_100m + 0.38686 + 0.310186*W_lead_wet -
0.00513985*imperv_100m - 0.000273207 *near_GI

SE 0.16 223.01 0.594271 + 0.00109736*road_100m + 0.337799*LAMBDA_lead_wet -
0.00631127*imperv_100m - 0.000295845*near_GI

Nitrate Model R2 AIC Equation

wet season OLS 0.13 388.48 0.015898*forest_250m + 0.0166524*imperv_100m + 0.609113
SL 0.17 387.38 0.014305*forest_250m + 0.0157788*imperv_100m +

0.25038*W_nitrate_wet + 0.28997
SE 0.17 385.79 0.0152091*forest_250m + 0.0156673*imperv_100m+ 0.642436 +

0.26443*LAMBDA_nitrate_wet
dry season OLS 0.14 223.94 1.54345 + 0.0239495*imperv_100m - 0.0142028*dev_100m -

0.111942*std_slope_100m
SL 0.21 222.82 1.29953 + 0.0208239*imperv_100m - 0.0132173*dev_100m -

0.114364*std_slope_100m + 0.268292*W_nitrate_dry
SE 0.20 221.39 1.61844 - 0.0136931*dev_100m + 0.0209373*imperv_100m -

0.126265*std_slope_100m + 0.278636*LAMBDA_nitrate_dry
Orthophosphate Model R2 AIC Equation

wet season OLS 0.14 -670.93 0.0305144 + 0.00014007*soil_250m - 0.000201478*m_elev_250m+
0.00393391*std_slope_100m + 0.000106377*dev_250m -
0.00122012*m_slope_250m

SL 0.32 -689.17 0.529979*W_ortho_wet + 0.016131 - 0.000150447*m_elev_250m +
0.00315226*std_slope_100m - 0.00104903*m_slope_250m+
5.95354e-005*dev_250m + 5.94702e-005*soil_250m

SE 0.33 -690.60 0.627171*LAMBDA_ortho_wet + 0.0462815 - 0.000148635*m_elev_250m +
0.00234779*std_slope_100m +-0.00100489*m_slope_250m +
6.12477e-005*dev_250m - 1.7542e-005*soil_250m

dry season OLS 0.13 -400.07 0.0439167 + 0.000210837*soil_250m - 0.00274148*m_slope_250m -
0.000401247*imperv_250m + 0.000257691*dev_100m +
0.00548286*std_slope_100m

SL 0.28 -407.22 0.401282*W_ortho_dry + 0.0258279 - 0.00221973*m_slope_250m +
0.000135132*soil_250m - 0.000320797*imperv_250m +
0.000207573*dev_100m + 0.00438827*std_slope_100m

SE 0.25 -405.98 0.0506066 + 0.392953*LAMBDA_ortho_dry - 0.00184514m_slope_250m -
0.000327478*imperv_250m + 0.000201342*dev_100m +



0.000127233*soil_250m + 0.00363597*std_slope_100m
TSS Model R2 AIC Equation

wet season OLS 0.04 964.34 12.1846 - 0.105128*imperv_250m + 0.00854033*pipe_250m
SL 0.06 966.34 12.1259 - 0.104867*imperv_250m + 0.00852938*pipe_250m +

0.00486111*W_tss_wet
SE 0.06 964.34 12.1934 - 0.10531*imperv_250m + 0.00853639*pipe_250m +

0.0178566*LAMBDA_tss_wet
dry season OLS 0.06 640.77 11.7025 - 0.957524*m_slope_250m + 3.51414*std_elev_100m -

0.0805961*imperv_250m
SL 0.10 642.57 12.4448 + 3.45958*std_elev_100m - 0.931406*m_slope_250m -

0.0840512*imperv_250m - 0.0871126*W_tss_dry
SE 0.09 640.73 11.6007 + 3.43977*std_elev_100m - 0.923449*m_slope_250m -

0.0810322*imperv_250m - 0.0415502*LAMBDA_tss_dry
Zinc Model R2 AIC Equation

wet season OLS 0.22 986.81 0.162909*dev_250m - 0.214092*imperv_100m + 0.0848211*soil_250m -
1.5984*std_elev_250m + 2.07607*std_slope_250m +
0.00244958*road_250m - 6.62428

SL 0.34 976.79 0.435474*W_zinc_wet + 0.132214*dev_250m - 0.162396*imperv_100m +
0.0663968*soil_250m - 1.40205*std_elev_250m + 2.02224*std_slope_250m
- 8.73609 + 0.00204144*road_250m

SE 0.34 976.48 0.492464*LAMBDA_zinc_wet + 0.149472*dev_250m +
1.97116*std_slope_250m - 0.154133*imperv_100m +
0.0747333*soil_250m - 1.24135*std_elev_250m - 6.60824 +
0.00185552*road_250m

dry season OLS 0.05 567.29 3.9502 + 0.0688963*dev_100m - 0.103906*imperv_100m
SL 0.17 561.94 0.382471*W_zinc_dry + 0.0584738*dev_100m - 0.0813602*imperv_100m +

1.85672
SE 0.17 559.71 0.402597*LAMBDA_zinc_dry + 3.59011 +0.06496*dev_100m -

0.083674*imperv_100m

No dry season models are reported for E. coli or lead because none were found in the exploratory regression
analyses for those parameters (see Section 3.2). TSS = total suspended solids; AIC = Akaike Information
Criteria, OLS = Ordinary least squares, SL = Spatial lag, SE = spatial error; W_parameter_ season= spatial lag
coefficient; LAMBDA_parameter_season = spatial error coefficient. Table adapted from Mainali & Chang, 2018
(Mainali & Chang, 2018). Wet season: n = 131; dry season: n = 89

4. Discussion
4.1 Seasonal variations in water quality
Wet season increases in lead, zinc, and total suspended solid concentrations are likely due
in part to the first flush effects of heavy metal runoff from roads during storm events in the
wet season (Li et al., 2012). For total suspended solids, erosion and increased sediment
transport is more likely to occur during larger precipitation events that are more common
in the wet season. Nitrate and orthophosphate concentrations are associated both with
total suspended solids concentration and vegetation growth cycles (Högberg et al., 2017;
Satchithanantham et al., 2019), but have different uptake and deposition mechanisms,
which may explain their opposite seasonal trends. Qualitatively, pollution levels especially
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for E. coli and zinc tended to worsen in the southwestern portion of the study area, which
may be due to downstream accumulation effects, but possibly also the overlap of natural
areas popular for hiking (E. coli) and the proximity of the Interstate-5 highway, a major
trucking route (zinc) (Figs. 3a and 3b).

Fig. 3a. Relative proportions of mean E. coli, lead, and nitrate concentrations for each water quality
station with background NLCD land cover classification (National Land Cover Database 2019 (NLCD2019)
Legend, n.d.). Larger circles correspond to higher mean concentrations.
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Fig. 3b. Relative proportions of mean orthophosphate, total suspended solids, and zinc concentrations
for each water quality station with background NLCD land cover classification (National Land Cover
Database 2019 (NLCD2019) Legend, n.d.). Larger circles correspond to higher mean concentrations.

4.2 Correlation analysis
The 250-meter scale produced a higher number of significant correlations and higher
correlation coefficients between water quality parameters and explanatory variables in
both seasons, suggesting that a larger microscale is more indicative of water quality than a
more immediate microcale, at least using a circular buffer.
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E. coli and zinc were significantly correlated with a high number of explanatory variables in
both seasons, which may be due to secondary effects of the interactions between
explanatory variables, or possibly the nature of the Spearman correlation method, which
provides value rankings instead of ranking the values directly. Percent developed, percent
imperviousness, and percent forested had the highest correlation coefficients,
demonstrating the importance of land cover on water quality variability.

Negative correlations between the distance to nearest GI and water quality parameters was
likely due in part to multicollinearity between distance to nearest GI and impervious or
developed land cover in a highly urbanized area. In other words, water quality was
somewhat lower when green infrastructure was present because green infrastructure tends
to be situated in urbanized environments with mostly impervious surfaces. Pipe length and
road length became less correlated with water quality in the dry season, which aligns with
seasonal differences in pollutant averages and the role of storm runoff in affecting water
quality in the wet season (Table 2).

4.3 Spatial regression analysis
For all pollutants, the spatial lag and spatial error models offered higher explanatory power
than the ordinary least squares model, suggesting that there is spatial autocorrelation
present in the data. However, the amount of increase in explanatory power varied between
pollutants, with orthophosphate and zinc displaying the highest increases in R2 value and
thus the highest spatial dependence. Other water quality parameters such as E. coli, lead,
and nitrate exhibited much less spatial dependence in terms of R2 values, although E. coli
had relatively higher AIC values for all models. No regression models were found for the dry
season for E. coli or lead, implying that there may not have been enough variability in dry
season measurements for those particular variables.

Unexpectedly, distance to nearest GI is slightly negatively associated with lead, although it is
positively associated with E. coli. This may be due to spatial autocorrelation between GI
installments and imperviousness that interacts with spatial dependence between water
quality monitoring stations for lead and E. coli to produce opposite associations.
Nevertheless, this finding warrants further investigation.

Regression models for E. coli were the most powerful, which implies that our selected
explanatory variables do better at explaining variations in E. coli concentrations than any
other selected water quality parameter. Slope variables are the most significant and
positively associated with E. coli, which may align with documented trends in associations
between slope and total suspended solids, nitrate, and phosphorus in developed areas (see
Table 1). This relationship may also have to do with the steeper topography within western
Portland’s Forest Park area, which saw relatively high concentrations of E. coli compared to



more low-lying areas. Possible spatial autocorrelation with high foot traffic in the area may
also be present. There were no dry season models found for E. coli, implying that there may
be very different driving factors of E. coli variability in the dry season compared to the wet
season that our model was unable to detect.

Road length primarily explains lead variations. However, R2 values are relatively low and
there were no models found for the dry season, implying that there are hidden variables
that are key to explaining lead variation in both seasons. Negative associations of lead with
distance to nearest GI may be due to the relative placement of GI near roads or in highly
urbanized areas  with high amounts of impervious surface.

Although nitrate and orthophosphate displayed roughly the same R2 values for the OLS
model, improvements in R2 from SL and SE model implementations were not as great for
nitrate as they were for orthophosphate, indicating less spatial dependence for nitrate, but
less ability to explain nitrate variations with spatial autocorrelation. Land cover variables
percent forested and percent imperviousness best explained nitrate in the wet season, but
were both positively associated with nitrate. While water quality as a whole may tend to be
higher in forested areas, negative associations of percent forested with nitrate may be
explained by the role of vegetation in nitrogen deposition, particularly in the fall and winter
when decaying plants release nitrogen into the surrounding soil and waters (Högberg et al.,
2017; Melillo et al., 1984).

For orthophosphate, the explanatory power of both wet and dry season ordinary least
squares models were comparable, and not much seasonal difference in explanatory
variables was observed. This is somewhat surprising . However, the explanatory power of
both models more than doubled when adapted to the spatial lag and spatial error models,
indicating that there is strong spatial dependence among neighboring water quality
stations for orthophosphate in particular (Mainali et al., 2019). Percent soil group C was the
most significant explanatory variable, reflecting the importance of geochemical processes
on phosphorus uptake and deposition, but this variable became less important when
spatial dependence was considered (Satchithanantham et al., 2019).

Variation in total suspended solids remained largely unexplained, with poor R2 values
suggesting that there are significant hidden variables that explain the majority of the
pollutant’s variation. When considering the higher explanatory power of selected
explanatory variables for orthophosphate, the results for total suspended solids are
somewhat expected, models for orthophosphate is somewhat unexpected, as
orthophosphate molecules are often attached to suspended solids when transported in
water bodies (L.-H. Kim et al., 2003; Lintern et al., 2018).
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Zinc was positively associated with percent developed, but negatively associated with
percent imperviousness with similar levels of significance for both seasons. The reasons for
this unexpected relationship with percent imperviousness are unclear, but could have to do
with a hidden variable that is strongly correlated with impervious land cover and less
correlated with developed land cover, or vice versa.

Relatively low R2 values for all pollutants in the dry season could be due to lower sample
size and thus data availability, with only 89 water quality monitoring stations out of a total
of 131 having measurements taken in the dry season.

5. Conclusion
Correlation and regression analyses were conducted for samples of six pollutants
originating from 131 water quality stations around the Portland, Oregon metropolitan area
from 2015 to 2021. We examined the ability of various land cover, infrastructure, and soil
and geomorphological factors to act as explanatory variables at the microscale across the
wet and dry seasons. We found that there were clear seasonal differences in water quality
parameters that reflected established relationships found in the literature. Correlation
results demonstrated high potential for associations between explanatory variables and E.
coli and zinc in both seasons, especially for explanatory variables derived at the 250-meter
scale. Spatial regression analysis determined that up to 43% of variation in water quality
parameters can be explained by selected explanatory variables, with varying levels of
spatial autocorrelation present. Using a distance band weights matrix, spatial lag and
spatial error models best explain variations in water quality, indicating that spatial
dependence is present especially for zinc and orthophosphate. In addition to land cover
variables, topographic variables such as elevation and slope held surprising explanatory
power for certain pollutants (orthophosphate and zinc) even in the dry season, highlighting
the need to incorporate filtering approaches that remove spatial autocorrelation in future
analyses (Mainali et al., 2019). Unexpected negative correlations were found between
distance to nearest GI and E. coli, orthophosphate, and zinc, but for spatial regression
analysis, this unexpected negative relationship between GI distance and water quality
shifted to lead, warranting further investigation into the ability of GSI to reduce the
transport of lead and other heavy metals into surrounding water bodies (Liu et al., 2017).

The next phase of this study will be to transform the water quality parameters, firstly
attempting a log transformation, to attempt to make the data more normally distributed.
This will allow us to better justify using linear correlation and regression tests. The spatial
error and spatial lag models should also be tested for significance to determine which
model is more reliable for our data. Much fewer measurements were taken in the dry
season than in the wet season, resulting in fewer available regression models for all
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pollutants; for E. coli and zinc, no suitable dry season models were found. In future
analyses, we may consider separating seasons further into summer/fall/winter/spring
categories to be able to produce better models that explain water quality variability across
seasons (Mainali & Chang, 2018).

Because we conducted analysis at the microscale, we were unable to incorporate
sociodemographic factors as explanatory variables in our analysis of water quality. Another
important next step of this research is to perform a multi-level analysis at the census block
group scale and evaluate how income, race, education, and other socioeconomic variables
are associated with water quality parameters (Baker et al., 2019; Chan & Hopkins, 2017;
Garcia-Cuerva et al., 2018). Another study (Ramirez 2021) using the same dataset and
incorporating local precipitation data ran concurrently with this research examined
temporal changes in water quality in terms of antecedent precipitation. Ideally, our study’s
spatial findings will be combined with the temporal analyses of the other study to examine
broader spatiotemporal water quality trends.

This research adds to the rich body of knowledge surrounding local hydrology, green
infrastructure, and ecosystem services in Portland, Oregon (eg. Baker et al., 2019;
McPhillips & Matsler, 2018; O’Donnell et al., 2020). Facing unprecedented environmental
and social changes from climate change, city planners hoping to improve water quality in
metropolitan areas by implementing GSI can utilize this study to better understand how
pollutant concentrations vary in a large city with a robust GSI network. Researchers in the
field can use findings from this study as a stepping stone in the large task of understanding
how anthropogenic and natural variables interact to affect water quality across space and
time.
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