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ABSTRACT 
 
Modified Reconstructability Analysis (MRA) 
can be realized reversibly by utilizing Boolean 
reversible (3,3) logic gates that are universal in 
two arguments. The quantum computation of the 
reversible MRA circuits is also introduced. The 
reversible MRA transformations are given a 
quantum form by using the normal matrix 
representation of such gates. The MRA-based 
quantum decomposition may play an important 
role in the synthesis of logic structures using 
future technologies that consume less power and 
occupy less space. 
 
1 INTRODUCTION 
 
    Decomposition is one methodology to analyze 
data and identify “hidden”  relationships between 
variables. One major decomposition technique 
for discrete static or dynamic systems is 
Reconstructability Analysis (RA), which is 
developed in the systems community to analyze 
qualitative data. (Klir 1985, Krippendorff 1986). 
A recent short review of RA is given in (Zwick 
2001). Logic circuits that realize RA have been 
also shown (Zwick 1995). This paper develops a 
methodology for reversible and quantum 
implementation of RA. Due to the anticipated 
failure of Moore’s law around the year 2020, 
quantum computing may play an important role 
in building more compact and less power 
consuming computers (Nielsen and Chuang 
2000). Because all quantum computer gates must 
be reversible (Bennett 1973, Fredkin 1982, 
Landauer 1961, Nielsen and Chuang 2000), 
reversible computing will also be increasingly 
important in the future design of regular, 
minimal-size, and universal systems.  
    The remainder of this paper is organized as 
follows: A review of our new approach to RA 
decomposition of logic functions is presented in 
section 2. Background on reversible logic and 
the reversible realization of RA-based Boolean 

circuits is presented in section 3. The 
implementation of reversible Boolean RA-based 
circuits using quantum logic is introduced in 
section 4. A more expanded complete discussion 
of quantum computing is given is section 5. 
Conclusions and future work are included in 
section 6. 
 

2 RECONSTRUCTABILITY ANALYSIS: 
CONVENTIONAL (CRA) VERSUS 
MODIFIED (MRA) 
 
    We are concerned here with “set-theoretic”  
RA, i.e. the analysis of crisp possibilistic systems 
(Klir and Wierman 1998). Enhancement of 
lossless set-theoretic conventional RA (CRA) 
has been presented in (Al-Rabadi 2001, Al-
Rabadi et al 2002). This new enhanced RA is 
called “Modified Reconstructability Analysis”  
(MRA). The procedure for the lossless MRA 
decomposition is as follows: For every structure 
in the lattice of structures, decompose the 
Boolean function for one function value only 
(e.g., for value of “1” ) into the simplest error-
free decomposed structure. One thus obtains the 
1-MRA decomposition. This model consists of a 
set of projections which when intersected yield 
the original Boolean function. 
    It has been shown in (Al-Rabadi et al 2002) 
that lossless MRA yields much simpler logic 
circuits than the corresponding lossless 
conventional RA (CRA), while retaining all 
information about the decomposed logic 
function. Figure 1 from (Al-Rabadi et al 2002) 
ilustrates the decomposition of all non-
degenerate NPN-classes (Hurst 1978) of 3-
variable Boolean functions. 
 

3 REVERSIBLE MRA 
 
    A (k,k) reversible circuit is a circuit that has 
the same number of inputs (k) and outputs (k), 
and is a one-to-one mapping between a vector of 
inputs and a vector of outputs. Thus, the vector 
of input states can always be uniquely 
reconstructed from the vector of output states 
(Bennett 1973, Fredkin 1982, Kerntopf 2000, 
Landauer 1961). As it was proven  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Landauer 1961) it is a necessary but not 
sufficient condition for not dissipating power in 
a physical circuit that all sub-circuits must be 
built using reversible logical components. Many 
reversible gates have been proposed as building 
blocks for reversible computing (Kerntopf 2000, 
Nielsen and Chuang 2000). Figure 2 shows some 
of the gates that are commonly used in the 
synthesis of reversible Boolean logic circuits. It 

has been shown in (Fredkin 1982) that for a (k,k) 
reversible gate to be universal the gate should 
have at least three inputs (i.e., (3,3) gate). (A 
gate is universal if it can implement all functions 
for a given number of arguments.) One should 
note that not all (3,3) reversible gates are 
universal, but each universal reversible gate has 
at least to be a (3,3) gate. Boolean reversible 

NPN-Representative                  Simplest CRA model                    Simplest 1-MRA model               1-MRA  

Function                                                                                                                                                    Circuit 
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Figure 1. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of all  non-degenerate 
NPN-classes of 3-variable Boolean Functions. 



 

(3,3) gates which are universal in two arguments 
have been shown in (Kerntopf 2000). 
 
 
 
 
 
 
 
                        (a)                       (b) 
 
 
 
                                      (c) 
Figure 2. Binary reversible gates: (a) (2,2) 
Feynman gate which uses XOR, (b) (3,3) Toffoli 
gate which uses AND and XOR, and (c) (2,2) 
swap gate which is two permuted wires. 
 
    Reversible (3,3) gates, that are universal in 
two arguments, can be used for the construction 
of reversible MRA circuits. Figure 3 illustrates 
one example of a binary (3,3) reversible gate 
which is universal in two arguments. 
 
 
 
 
 
 
 
 
 
                       (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. (a) Diagram of the reversible (3,3) 
Boolean logic circuit, (b) truth table of this gate, 
and (c) proof of universality of the gate in two 
arguments. 
 
    The following example illustrates the use of 
the reversible gate in Figure 3 for the synthesis 
of 1-MRA circuit for class 5 from Figure 1. The 

1-MRA decomposed Boolean circuit of class 5 
in Figure 1 can be realized using the binary (3,3) 
reversible circuit in Figure 3b. This is done with 
the reversible circuit in Figure 4, where blocks 
B1 and B2 are the reversible (3,3) gate from 
Figure 3b, and block B3 is the reversible (3,3) 
gate from Figure 2b. For B3, c = 0 and thus B3 is 
a reversible logic AND gate. 
 
 
 
 
 
 
 
 
 
 
Figure 4. Reversible (7,7) Boolean circuit that 
implements the 1-MRA circuit from class 5 in 
Figure 1. Input { a}  in B1 and B2 and the set of 
outputs { R1, P1, R2, P2, G1, G2}  are needed for 
reversibility. Input { a}  also selects the 
appropriate function value of which the universal 
B gate (Figure 3b) is to implement. 
 
Utilizing Figure 3c, the Boolean reversible 
circuit in Figure 4 implements the 1-MRA circuit 
of class 5 (in Figure 1) using the following input 
settings: 
a = 0 � Q1 = f1 = (x1⊕x2)’  
a = 0 � Q2 = f2 = (x1⊕x3)’  
F = Q1∧Q2 = f1∧f2 = (x1⊕x2)’∧(x1⊕x3)’  
                                 = x1x2x3+x1’x2’x3’  
For block B3, in Figure 4, one could 
alternatively use the gate described in Figure 3b: 
for c = 0 output R is the logical AND; in this 
case the reversible circuit is fully regular (i.e., 
made up of only one kind of gate). However, 
using the Toffoli gate (Figure 2b) for B3 is less 
complex; in this case the circuit is semi-regular 
(i.e., all the gates in the first level are the same, 
but the AND of the second level is done by a 
different gate).  
    Using similar substitutions with appropriate 
input values according to Figure 3b, the 
reversible circuit in Figure 4 can realize all 1-
MRA circuits from classes 8 and 10 in Figure 1, 
respectively. The remaining classes from Figure 
1 can be realized using analogous techniques, by 
adding one more block from Figure 3b to the 
first level of Figure 4 in the case of class 1, and 
removing one block from the first level of Figure 
4 in the case of classes 4 and 7, respectively. 
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4 QUANTUM MRA 
 
    Quantum computing is a recent trend in logic 
computation that utilizes the atomic structures to 
perform the logic computation processes 
(Nielsen and Chuang 2000). Although the 
underlying principles for quantum computing are 
the theorems and principles of quantum 
mechanics (Dirac 1930), it has been shown 
(Nielsen and Chuang 2000) that the physical 
quantum evolution processes can be reduced to 
algebraic matrix equations. Such matrix 
representation is a pure mathematical 
representation that can be realized physically 
using the corresponding quantum devices.  
    Figure 5 illustrates this matrix formalism, 
where each evolution matrix is unitary (Nielsen 
and Chuang 2000). Each matrix representation in 
Figure 5 is obtained through the solution of a set 
of linearly independent equations that correspond 
to the mapping of input vector to an output 
vector.  
 
Input | Output mapping                   Matrix 
 

                                                       
�
�
�
�
�

�

�

�
�
�
�
�

�

�

0100

1000

0010

0001

  

 
(a) 

                                                       
�
�
�
�
�

�

�

�
�
�
�
�

�

�

1000

0010

0100

0001

   

(b) 

                                                 

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

 

 
 

(c) 
Figure 5. Input-Output (I/O) mapping and 
matrix representations of quantum gates: (a) 
(2,2) Feynman gate, (b) (2,2) Swap gate, and (c) 
(3,3) Toffoli gate.  
 
    In Figure 5, the matrix representation is 
equivalent to the input-output (I/O) mapping 
representation of quantum gates, as follows. If 
one considers each row in the input side of the 
I/O map in Figure 5 as an input vector 
represented by the natural binary code of 2index 
with row index starting from 0, and similarly for 
the output row of the I/O map, then the matrix 
transforms the input vector to the corresponding 

output vector by transforming the code for the 
input to the code for the output. For example, the 
following matrix equation is the I/O mapping 
using the Feynman matrix from Figure 5a:  
[Feynman matrix][input code] = [output code] 
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One notes from this example, that the Feynman 
gate, and similarly all quantum gates in Figure 5, 
are merely permuters, i.e. they produce output 
vectors which are permutations of the input 
vectors.  
    Figure 6 shows the quantum evolution 
matrices for blocks B1 (also B2) and B3 in 
Figure 4, respectively.  
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                  (a)                                 (b) 
Figure 6. Quantum transformations for the 
reversible (7,7) circuit in Figure 4: (a) Input 
mapping block B1 (also B2), and (b) output 
mapping block B3. 
 

5 QUANTUM COMPUTING 
 
    Although the gates in Figure 5 are merely 
permuters, not all quantum gates do simple 
permutations (Nielsen and Chuang 2000). The 
mapping of a set of inputs into any set of outputs 
in Figure 4 can be obtained in general using 
quantum computing. The following discussion 
explains the general principles of quantum 
computing, and we follow the standard notation 
that is used in quantum mechanics from (Dirac 
1930). 
 
Definition 1. A binary quantum bit, or qubit, is a 
binary quantum system, defined over the Hilbert 
space 2H  with a fixed basis { }1,0 . 

Definition 2. In binary quantum logic system, 
qubit-0 and qubit-1 are defined as follows: 
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    Figure 7 illustrates the process of evolving the 
input binary qubits using the corresponding 
quantum circuits. Let us evolve the input binary 
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          Figure 7. Quantum logic circuits. 
 

product ⊗ gives the corresponding binary natural 
code, using the serially interconnected quantum 
circuit in Figure 7a, which is composed of a 
serial interconnection of two Feynman gates 
(Figure 2a) connected by a swap gate (Figure 
2c). The evolution of the input qubit can be 
viewed in two equivalent perspectives. One 
perspective is to evolve the input qubit step by 
step using the serially interconnected gates. The 
second perspective, is to evolve the input qubit 
using the total quantum circuit at once, since the 
total evolution transformation [ ]netM  is equal to 

the multiplication of the individual evolution 
matrices [ ]qM  that correspond to the individual 

quantum primitives: ∴ [ ] [ ]∏=
q

qserialnet MM . 
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Thus, the quantum circuit shown in Figure 7a 
evolves the qubit 11  into the qubit 01 .  

  The quantum circuit in Figure 7b is composed 
of a serial interconnect of two parallel circuits as 
follows: dashed boxes ((1),(2)) and ((3),(4)) are 
parallel interconnected, and dotted boxes (5) and 
(6) are serially interconnected. The total 
evolution transformation[ ]netM  of the total 

parallel-interconnected quantum circuit is equal 
to the tensor (Kronecker) product of the 
individual evolution matrices [ ]qM  that 
correspond to the individual quantum primitives: 
∴ [ ] [ ]qparallelnet MM ⊗= . Thus, analogously to 

the operations of the circuit in Figure 7a, the 
evolution of the input qubit, in Figure 7b, can be 
viewed in two equivalent perspectives, 
respectively. One perspective is to evolve the 
input qubit stage by stage. The second 
perspective is to evolve the input qubit using the 
total quantum circuit at once. Let us evolve the 
input binary qubit 111  using the quantum 

circuit in Figure 7b. The evolution matrices of 
the parallel-interconnected dashed boxes in (5) 
and (6), are as follows (where the symbol || 
means parallel connection): 
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The evolution matrix for (5) = (1) || (2) is: 

Feynman⊗Wire= �
�
�

�

�
�
�

�
⊗

�
�
�
�
�

�

�

�
�
�
�
�

�

�

10

01

0100

1000

0010

0001

=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

10

01

10

01

10

01

10

01

 

The evolution matrix for (6) = (3) || (4) is:       
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Perspective #1: input� (5) � output1, input2 ( = 
output1) � (6) � output2 
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Perspective #2:  input� ((6)(5)) � output2 
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Thus, the quantum circuit shown in Figure 7b 
evolves the qubit 111  into the qubit 110 . 

    By applying this formalism to the quantum 
matrices from Figure 6, the reversible MRA 
circuit of Figure 4 is represented compactly by 
the following transformations: 
 

b

(1)

(2)

(3)

(4)

(5) (6)

(a) 

  (b) 
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c

x
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z
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111121][ fPRxaxB =                                     (1) 

222312 ][ RPfaxxB =                                   (2) 

[ ] 21213 0 FGGffB =                                   (3) 
 

where, in equation (3), the qubit 0  is used to 

generate the AND operation in block B3 (Toffoli 
gate from Figure 2b) in Figure 4, and 

γβααβγ ⊗⊗= , where α, β, and γ are 

single binary qubits. 
 

6 CONCLUSIONS AND FUTURE WORK 
 
    Reversible realization of Modified 
Reconstructability Analysis (MRA) 
decomposition and its quantum computation are 
presented. A comprehensive treatment of 
reversible MRA and its quantum computing with 
supplementary materials is provided in (Al-
Rabadi 2002). 
    Future work will involve the investigation of 
other possible reversible realizations of binary 
and multiple-valued MRA decompositions of 
logic circuits and their corresponding quantum 
computations. The use of the natural parallelism 
of quantum entanglement for the realization of 
MRA-based circuits will also be investigated. 
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