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HIGH LATITUDE COASTAL SETTLEMENT PATTERNS: CAPE KRUSENSTERN, ALASKA 

Shelby L. Anderson, Portland State University 

Adam K. Freeburg, University of Washington, National Park Service 

Abstract: 

Why, when, and how people developed highly specialized marine economies remains the focus 

of considerable anthropological research. Study of maritime adaptations at high latitudes has potential 

to contribute to this debate because low biodiversity and increased resource seasonality at high 

latitudes made reliance on marine resources particularly risky. New research at the Cape Krusenstern 

site complex, located in northwest Alaska, offers a rare opportunity to study the evolution of maritime 

adaptations across the environmentally dynamic mid-to-late Holocene Arctic. Large-scale and systematic 

survey of this important site complex was undertaken to address questions about the timing and 

character of early Arctic coastal lifeways. Our research yielded direct dates of 4200 years ago for the 

oldest occupation of the site complex and identified several new sites dating to between 4200 and 2000 

years ago. Results support the existing settlement model, pointing to increased sedentism and local 

population only after 2000 years ago. New data, however, indicate local population was much higher 

than previously established and that coastal occupation was sustained over long periods of time despite 

considerable mid-to-late Holocene paleoenvironmental variability. Together, these findings raise new 

questions about the evolution of maritime adaptations at high latitudes.  
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Introduction 

Archaeologists have long been interested in why, how, and when foraging peoples turn to 

marine resources as their primary mode of subsistence.  Until recently this was widely considered a 

relatively late development on a worldwide level but the evidence for early marine and aquatic 

subsistence is growing(see discussion in Erlandson 2001; Erlandson and Rick 2010) . Marine resource use 

is linked in many cases to the development of larger populations, increased sedentism, increased 

technological complexity, and in some cases, the emergence of social complexity (e.g. Ames 1994; 

Erlandson 2001; Fitzhugh 2003; Yesner 1998).  Maritime routes navigable only by people already 

adapted to a marine focused lifeway may have been key for populating North and South America 

(Erlandson and Braje 2011; Erlandson, et al. 2007; Erlandson, et al. 2008; Erlandson, et al. 2011). Many 

questions remain about why, in some cases, people chose to invest in specialized marine technologies 

and engage in high risk/high reward marine hunting. Study of maritime adaptations at high latitudes is 

particularly informative because of low biodiversity and increased seasonality in resource availability in 

these environments (Rowley-Conwy 1999) that would have made subsistence focus on relatively few 

species, in this case marine-based, especially challenging. Environmental change or increased 

environmental variability may have further increased this already high risk of marine resource use. New 

research at the Cape Krusenstern site complex, located in northwest Alaska (Figure 1), offers a rare 

opportunity to study the development of maritime adaptations across the environmentally dynamic 

mid-to-late Holocene Arctic.   

The Cape Krusenstern site complex is one of the most well-known coastal archaeological sites in 

northern North America. As part of the greater Bering Strait region, the archaeology of the Cape 

Krusenstern site complex is representative of the complex history of movement and interaction across 

the Strait over many millennia. Over the last 4000-4500 years, coastal forager populations occupied the 

approximately 3000 hectare site complex. All of the major archaeological cultures identified in the 
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western Arctic are known at Cape Krusenstern including Denbigh (or Arctic Small Tool Tradition), Choris, 

Norton-Near Ipiutak, Ipiutak, Birnirk, Thule, Kotzebue, and Historic Iñupiat.  The Denbigh (4500-2750 

B.P.)sites at Cape Krusenstern are among the earliest preserved evidence of coastal foraging in northern 

Alaska; any older coastal sites are now underwater as a result of early Holocene sea level rise 

(Erlandson, et al. 2007; Jordan and Mason 1999; Mason and Jordan 1993, 2002; Mason, et al. 1995). 

Subsequent occupations at the site complex represent the development of a highly specialized maritime 

lifeway during the late Holocene, which may have enabled the migration and sustained colonization of 

people eastward across the North American Arctic and High Arctic. Uncertainty remains about the 

timing and character of the development of maritime adaptations in the Western Arctic and Subarctic. 

In northwest Alaska, the earliest evidence of increasing marine resource focus dates to about 2500 – 

3100 years ago. Evidence includes increased coastal sedentism, faunal data, and tool technologies 

(Giddings and Anderson 1986). Prior to this, seasonal use of coastal resources is primarily indicated 

during the Denbigh period by the presence of short term occupations on the coast and marine hunting 

or fishing tools at some of these sites (Ackerman 1998; Anderson 1984). The evidence for maritime 

adaptations is much earlier in southern Alaska, dated to about 9000 years ago in the Aleutians (Aigner 

1976; Laughlin and Aigner 1966) and 7500 to 7000 years ago on the Kodiak Archipelago (Fitzhugh 2003). 

Current explanations for this pattern include differences in marine ecology north and south of the 

Bering Strait (Anderson 1984), taphonomic effects of sea level rise and other coastal processes 

(Erlandson and Braje 2011), and regional differences in marine productivity linked to paleoclimatic 

change (Fitzhugh in review). This paper focuses on the timing, character, and evolution of coastal 

occupation at high latitudes through a study of changing settlement patterns at Cape Krusenstern. The 

results of this work offer new insights into the evolution of a settled or committed maritime lifeway, 

which have implications for current research on maritime adaptations. 

The Cape Krusenstern Site Complex 
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The Cape Krusenstern site complex is one of several beach ridge systems that ring the Chukchi 

Sea. Around the region, beach ridge systems began forming soon after regional sea level stabilized 

between 4000 and 6000 years ago (Jordan and Mason 1999; Mason and Jordan 1993, 2002). These 

ridges developed and prograded over centuries during periods of low storm frequency.  During periods 

of higher storm frequency, some beach ridges eroded or were re-worked. Over time, extensive beach 

ridge systems like Cape Krusenstern developed and now serve as a record of local and regional coastal 

environmental change. People visited the Cape Krusenstern beach ridges soon after they began to form, 

with early sites at the Cape indirectly dated by Giddings to between 4000 and 4500 years ago (Giddings 

and Anderson 1986). Over time, the beach ridges prograded and people moved the majority of their 

activities to the ridges nearest the ocean. As a result, the beach ridges form a ‘horizontal stratigraphy’ 

(Giddings 1966) that serves as a record of both past coastal environmental conditions and human 

settlement of the site complex. The oldest beach ridges and archaeological sites are located near the 

modern day lagoon, with progressively younger ridges and archaeological sites located toward the 

present day sea shore.  Prior to widespread use of radiocarbon dating in archaeology, the horizontal 

stratigraphy at Cape Krusenstern was key to the establishment of the northern Alaskan archaeological 

chronology. Giddings organized archaeological finds from Cape Krusenstern and other sites around the 

coasts and interior of Kotzebue Sound (e.g. Giddings 1938, 1940, 1941, 1942, 1948, 1951, 1952a, 1961) 

into a chronological framework by correlating the horizontal stratigraphy at Cape Krusenstern with the 

deeply stratified Onion Portage site (Anderson 1988; Giddings 1966; see Meitl 2008 for new 

dates)(Figure 1).   

Various researchers  (e.g. Giddings 1966; Giddings and Anderson 1986; Hopkins 1977; Moore 

1960, 1966) recognized the potential of Arctic beach ridge systems for studying coastal environmental 

and cultural change. Giddings grouped Cape Krusenstern beach ridges into what he called beach ridge 

“segments” based on geomorphological and archaeological evidence (Figure 2)(Table 1). The most 
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pronounced beach ridge discontinuities, created by periods of erosion, represent significant changes in 

the coastal environment that coincide with key cultural transitions (Mason and Jordan 1993). 

Subsequent researchers refined this beach segment system and linked it to other beach ridge systems 

around Kotzebue Sound to reconstruct a regional coastal storminess record (Mason and Jordan 1993; 

Mason, et al. 1995; Mason and Ludwig 1990). Mason and Jordan (1993) studied the morphology of the 

ridges at Cape Krusenstern and other Chukchi Sea beach ridge systems to reconstruct late Holocene 

weather patterns, changing coastal depositional regimes, and regional sea level change.  

Western Arctic Coastal Settlement Patterns 

The general model of maritime adaptations in the western Arctic was developed primarily 

through research by Giddings at Cape Krusenstern and around Kotzebue Sound (e.g. Giddings 1942, 

1948, 1951, 1952a, 1952b, 1957, 1961, 1964, 1966, 1967; Giddings and Anderson 1986). This research 

primarily used settlement pattern and technological data to demonstrate increased focus on marine 

resources over time, although some limited faunal analyses were also carried out.  Subsequent research 

in the surrounding region did not significantly revise this coastal settlement model (e.g. Anderson 1972, 

1977; Anderson and Anderson 1977; Harritt 1994; McClenahan and Gibson 1990; Schaaf 1988). Giddings 

and Anderson (1986:320) describe the earliest occupations at the site complex, dated to between 4200 

and 3600 years ago as small spring or summer seal hunting campsites left behind by highly mobile 

foragers with a generalized subsistence economy.  These Denbigh occupations do not contain any 

preserved faunal material but some tool types suggest marine hunting activities (Giddings and Anderson 

1986; see also Ackerman 1998). This pattern persisted at the Cape from 3600 to about 2000 years ago, 

although semi-permanent coastal sites from this time are known in other parts of northwest Alaska at 

coastal sites on the Choris Peninsula (Giddings 1957), on the northern Seward Peninsula coast northeast 

of Wales and at the Onion Portage (Anderson 1988:111) site (Figure 1). An exception to this settlement 

pattern is the Old Whaling site, which includes several semi-permanent house structures, both summer 
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and nearby winter occupations, that are dated to between about 3100 and 2500 years ago (Giddings 

and Anderson 1986:32; Darwent and Darwent 2005, Darwent 2006). The age, origins, and character of 

the Old Whaling site are the subject of much debate. Giddings (Giddings and Anderson 1986) initially 

interpreted the site as a unique settlement of an early whaling people based on the tool kits and whale 

bone recovered from the site. The oldest preserved faunal materials at Cape Krusenstern are from the 

Old Whaling site (Giddings and Anderson 1986).  Old Whaling has since been compared to several 

Siberian sites including the Devil’s Gorge site on Wrangel Island (Ackerman 1998) and the Un’en’en site 

on the Chukotka Peninsula coast (Pringle 2008; Witze 2008). Evidence for whaling at the site is disputed, 

with recent reanalysis of faunal materials indicating an emphasis on small seals rather than whales 

(Darwent 2006; Darwent and Darwent 2005). Large harpoon endblades recovered from the site 

(Giddings and Anderson 1986), however, suggest some hunting of walrus and large seals if not whales.  

The presence of semi-subterranean occupation features at Cape Krusenstern after 2000 years 

ago were interpreted by Giddings and Anderson as evidence of winter or cold season occupation of 

coast areas. These structures are time-consuming and costly in terms of raw materials to build. While 

people likely lived for extended periods of time on the coast before these structures were built, the 

switch to these more substantial and higher investment structures are considered a sign of an increased 

commitment to and/or reliance on marine resources and life on the coast. An increase in the number of 

features and sites during this same period indicate local population increase. Faunal data from Cape 

Krusenstern and Point Hope show that during this period people were primarily consuming marine 

resources, mainly ringed seals (Giddings and Anderson 1986; Larsen and Rainey 1948). The pattern of 

increasingly large and longer term occupation of coastal sites persists around the region and at Cape 

Krusenstern for the next 1500 years. Increased population was accompanied by various changes in 

technology and subsistence. It was during this period that there is clear evidence of whaling around the 
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Bering Strait region along with an overall increase in marine resource specialization based on both 

faunal and technological data (e.g. Mason 1998, 2009a, 2009b; Mason and Bowers 2009).  

Between about 1200 and 500 years ago, faunal data from Cape Krusenstern show a significant 

drop in marine mammal use and a corresponding rise in the importance of caribou (Giddings and 

Anderson 1986). Thule subsistence and settlement did not follow this pattern everywhere. Whaling 

continued on coastal promontories near whale migratory routes such as Barrow, Wales, and Point Hope 

and in the Bering Strait (Mason 1998). After 500 cal BP, Giddings and Anderson (1986) identified a 

decrease in the number of sites at Cape Krusenstern and other locations around northwestern Alaska. 

Drawing on evidence from around the region, Giddings and Anderson concluded that although people 

continued to live a semi-sedentary lifestyle, post-500 cal BP settlements were located in previously 

unoccupied areas of the coasts and river systems of the region and that people shifted their focus from 

marine mammals to fishing (Giddings and Anderson 1986: 33, 107).  

Legacy Data Analysis 

To address some of the issues with the existing chronology and prior work at Cape Krusenstern 

(e.g. Mason and Ludwig 1990:363-365) we relocated previously recorded sites and reanalyzed 

previously reported, or legacy, data as part of our research effort. Integrating problematic existing data 

sets into the current investigation was critical in light of the importance of prior work at the site on our 

understanding of high latitude maritime adaptations. In the early stages of this project we carried out 

archival research at the National Park Service (NPS) curation facility in Anchorage and at Brown 

University’s Haffenreffer Museum, a repository for many of Giddings’ collections, with the purpose of 

collecting unpublished data on prior Cape Krusenstern research. Sources of legacy data included 

published data (Giddings 1966, 1967; Giddings and Anderson 1986), two USGS airphoto mosaics 

annotated in ink by Giddings (Douglas D. Anderson, personal communication 2008), a feature catalog at 
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the Haffenreffer and data from the NPS. During a visit to the Haffenreffer Museum in February 2008, 

two original annotated photomosaics were located; one with beach ridge numbers and one with 

numbered feature locations. Digital photos were taken of overlapping portions of the original 

photomosaics. These images were imported into GIS software where they were rubbersheeted and 

georeferenced (Conolly and Lake 2006). This involved the use of stable lagoon and lakeshore features 

within the beach ridge complex as reference points to match the 1950s airphoto data to recent 

orthographic imagery (Manley et al. 2007). The airphotos were then stretched to a known projection 

and connected to geographic locations in GIS. The handwritten annotations were then digitized as 

points in the GIS. The spatial placement of each annotated point was checked against ground features 

visible on the recent orthoimagery.  

In some locations it was possible to confirm legacy site locations in GIS using published maps 

and new orthographic imagery. This was most successful in the case of large, previously excavated 

features such as houses that were never backfilled and thus are fairly obvious in orthographic imagery. 

In these cases, legacy data points were moved from their original locations as marked on Giddings’ air 

photos to their actual location in geographic space. The result of this work was a spatially referenced 

database of previously recorded sites and features that we could use to make survey design decisions 

and to relocate key settlements during fieldwork. We added tabulated feature data from Giddings and 

Anderson (1986), the NPS archives, and Giddings’ feature card catalog to the legacy database. Feature 

types were coded based on written descriptions for analysis. We also digitized Giddings’ beach ridge 

segments from published maps (Giddings and Anderson 1986) and used these as analytical units (see 

Figure 2). Our use of the annotated airphoto and orthoimagery is similar in some ways to Zimmerman’s 

(1981) effort to predict site locations at Cape Krusenstern.  Problems encountered in the process of 

creating the legacy database include issues with missing and duplicate feature numbers, unfamiliarity 

with the original numbering system, and numerous features noted in the publication or unpublished 
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documentation that are not marked on the original air photo.  Many of these issues were resolved 

through cross-checking feature information across the sources of legacy data available to us and 

through field relocation of legacy sites. 

The legacy feature database is comprised of 639 legacy features (Table 2). We were able to link 

599 of these features to a beach segment, with geographic coordinates available for the 480 features 

that were annotated on Giddings’ aerial photograph.  361 of these features were located within the 

current survey areas (Table 3).  639 legacy features should be considered a conservative estimate of 

what prior researchers identified at the site complex. It is highly probable that prior researchers 

identified more sites than this estimate reflects but did not note them on the aerial photographs or in 

any field documentation. An additional 14 features mentioned in various published and unpublished 

sources did not have unique numerical designations and were therefore not included in subsequent 

analysis.  

Survey and Radiocarbon Dating Methods 

Field methods included survey and sample collection as well as precise mapping of 

archaeological and environmental features across the beach ridges. Although a 100% survey of the site 

complex was desirable from both a research and a resource management perspective, the size of the 

beach ridge complex necessitated sampling. Several priorities and sources of information were used to 

select survey areas within the beach ridge complex. These included: 1) sampling across both time and 

space were needed to address project objectives; 2) relocating and testing previously identified sites; 3) 

sampling across major disconformities identified by prior research; 4) avoidance of low-lying areas 

visible on orthoimagery that were likely to have a high water table that would make sub-surface testing 

difficult. Within survey areas, survey transects were conducted on beach ridges and not the low-lying 

swales between them for the same reason.  
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Survey of each beach ridge from swale to swale involved a team of archaeologists surveying 

with 10 m transect spacing and excavating 30 cm diameter shovel tests every 40 meters. Coring or 

auguring was not an option because of the unconsolidated pebble size substrate of the majority of the 

beach ridge complex. Subsurface tests were also conducted in and/or around suspected cultural 

features as identified by surface expressions of vegetation, local topography, or other indications. 

Samples for radiocarbon dating and other analyses were collected from shovel tests. In areas of the 

beach ridge complex where surface visibility was better than 80%, subsurface testing was not 

conducted. Some areas were surveyed non-systematically for various reasons, including time 

constraints, landowner permission, and low archaeological probability. Non-systematic methods 

included surface-only survey at 10 meter transect intervals as well as limited subsurface testing focused 

on potential cultural features. All archaeological features and artifacts were recorded with mapping-

grade GPS, as were areas of anomalous vegetation. Use of high accuracy GPS units with post-processing 

capability to collect spatial data was central to gathering the quality of data needed to address research 

questions. GPS technology allowed rapid recording of feature size, shape, and condition information as 

field crews surveyed the beach ridge complex. Trimble GeoXH and ProXH units with Zephyr antennas 

used to collect data can be accurate to within 20 cm after post-processing.  

Samples for radiocarbon dating were collected from shovel tests and from larger square test 

units, usually 1 by 1 meter in size. Material from test units was screened using ¼” and 1/8” screen, while 

material from shovel tests was troweled through but not screened.  A total of 57 test units were 

excavated. The majority of these were in surface evident features that were not clearly occupation 

structures. These test units were judgmentally placed based on the results of shovel testing. In selecting 

samples to date, we focused on sampling across the beach ridge complex and from locations near 

previously identified disconformities in the beach ridge landscape. In addition, our goal was to sample a 

diversity of feature types in order to better understand changing settlement patterns over time. We 
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obtained multiple samples from apparent settlements, or clusters of archaeological features, to learn 

more about the contemporaneity of features in these sites. Although the ideal would have been to date 

terrestrial mammal bone, we recovered very few terrestrial mammal specimens. Instead, we dated 

shorter-lived species (e.g. willow or birch) where possible to address the problem of old wood in this 

setting.  

We obtained 151 new dates (see Anderson and Freeburg in press). Two dates obtained on 

marine mammal bone, three anomalously old dates, and a date that yielded a modern age were 

excluded from this analysis. In addition, 10 dates from uncertain feature types or contexts were 

excluded from this analysis (See Anderson and Freeburg in press for dates). Lastly, in a few cases where 

multiple dates were obtained from the same feature, only the date from the deepest context was 

included in this analysis to avoid inflating local population estimates based on radiocarbon dates. The 

remaining 125 conventional radiocarbon dates were calibrated and plotted using Oxcal version 4.1 

(Bronk Ramsey 2009) and Intcal 09 (Reimer, et al. 2009)(Table 4). Use of radiocarbon dates as a proxy 

for population is problematic (Ames 2000; Erlandson and Moss 1999; Louderback, et al. 2011; Surovell 

and Brantingham 2007; Surovell, et al. 2009; Williams 2012) and best used in combination with other 

population estimate methods, such as number of sites (e.g. Fitzhugh 2003). Here we consider summed 

plots of dated features as a very rough proxy for local population in combination with feature counts. 

Features are used instead of sites as a second proxy for local population because of density of 

archaeological occupations at the site complex makes site boundary delineation difficult. Furthermore, 

dated feature information is comparable to prior regional efforts to estimate population change (e.g. 

Mason 1998).  

Results and Discussion 

Approximately 1205 hectares of the 3300 hectare beach ridge complex, about 36% of the site 

complex, were surveyed in four seasons of fieldwork conducted between 2006 and 2010 (Figure 
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3)(Table 5). An additional 340 hectares were either surveyed systematically but with limited subsurface 

testing or surveyed non-systematically. A total of 1377 archaeological features (e.g., houses, campsites, 

surface scatters, etc.) were identified and mapped (Table 6).  

The horizontal stratigraphy at the site complex has long been considered a rough but reliable 

chronological framework for the western Arctic. New radiocarbon dates obtained as part of this project, 

however, indicate that occupation of beach segments was overlapping rather than sequential. This 

overlap is significant in some cases. For example, occupation of beach segments I and II overlap for 

nearly 1000 years. In other words, new dates show that the horizontal stratigraphy is mixed. These 

findings led us to revise the upper limiting ages for the beach segments (Table 1) and to interpret 

feature frequency data with some caution. The significance of these chronological issues are explored in 

more depth elsewhere (Anderson and Freeburg in press; Freeburg and Anderson 2012). We focus here 

on the results of dating in relationship to settlement pattern interpretation. We use Giddings’ beach 

ridge segment delineations to evaluate the efficacy of our survey and to facilitate comparisons between 

our data and prior research before turning to the results of radiocarbon dating to further interpret these 

data.  

Because of differences in survey coverage within each beach segment, results are quantified 

with respect to the relative area surveyed within each beach segment (Figure 4). Specifically, the 

number of features identified by the current project and by prior research were divided by the number 

of square km surveyed by the current project. Comparison of newly collected data to legacy data (Figure 

4) indicates that the most recent survey identified more features than previously documented. This is 

due in part to the issues with tallying legacy features noted above and also the increased survey 

intensity of the current project. In particular, our survey identified many more features in segment III 

and IV in the central areas of the beach ridge complex than were identified by prior work. As expected 

with a larger and more systematic sample size, the current survey identified more “rare” feature types 
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such as burials, surface scatters, and hearths. This was particularly the case in the older areas of the 

beach ridge complex (i.e. segments VI, V, and IV). The relative abundance, however, of each type of 

feature identified by the current project is about the same at any given time period in the past as 

established by Giddings and Anderson (1986)(Figures 5 and 6). Despite methodological differences, our 

results indicate that data collected through prior work were a representative sample of the sites and 

features at the site complex. An exception to this is the identification of many more indeterminate 

features by the current project. Indeterminate features are isolated surface depressions, typically 

greater than 4 square meters in size, which do not have surface visible tunnels or multiple rooms that 

would clearly indicate that they are occupation structures. Indeterminate features contained artifacts 

and/or other cultural material and were clearly cultural in origin, which distinguishes these features 

from vegetation anomalies. Increased identification of indeterminate features by the current project is 

most likely due to differences in how feature types were defined and attributed, as well as a reduced 

emphasis on sub-surface testing by the current project. 

The frequency of legacy features in the oldest beach segment, VI, is low and is even lower in 

beach segment V (Figure 4). Legacy feature frequency increases in segment IV, decreases in segment III, 

and then increases during occupation of beach segments II and I. In contrast, new data indicate an 

increase in feature frequency during occupation of segment V, a decrease during occupation of segment 

IV, and an increase in feature frequency during occupation of segments III through I (Figure 4). The 

results of radiocarbon dating corroborate these general trends over time in feature frequency and 

provide some additional detail (Figure 7).  Occupation frequency is low between 4200 and 2800 years 

ago. Occupation frequency increases somewhat between 2800 and 2000 years ago, and then increases 

significantly beginning around 2000 years until 1300 years ago. A decrease in occupation between about 

1300 and about 1000 cal BP is apparent, followed by a sharp increase between about 1000 and 900 

years ago. Another decrease in dated sites is apparent between 900 and 800 years ago, with a 
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subsequent increase in occupation between about 800 and 500 cal BP. The number of dated features 

decreases rapidly after 500 years ago. The oldest feature types at the site complex are hearths, activity 

areas, and surface scatters (Figure 8) as identified by Giddings and Anderson (1986). With the exception 

of the older dates obtained on the Old Whaling houses, semi-permanent house structures are not 

present until about 2800 years ago and increase in abundance only after 2000 years ago. Indeterminate 

features also increase in abundance after 2000 years ago. Cache pits are not present until about 1000 

years ago and are relatively abundant until about 500 years ago (Figure 8).  

Local environmental conditions, past landscape evolution, and survey bias could play a role in 

shaping the patterns observed in these survey data. Surface vegetation, local ridge topography, depth of 

burial, and depositional context all factor into the potential for archaeological feature identification and 

reliability of data based only on surface survey measurements. In general, there is less vegetation and 

better surface visibility on the older beach ridges (Beach Segments VI). The central part of the site 

complex (Beach Segment IV and V), is difficult to access and survey because of the wet conditions. Large 

areas of standing water have to be traversed to reach a few higher and drier beach ridges. While sites 

could be located in areas of standing water, they are difficult to identify. Lastly, variability in local 

topography and coastal depositional processes following abandonment of archaeological features mean 

that some features are likely more deeply buried than others and therefore harder to identify through 

surface survey and limited sub-surface testing. There is currently no way to account for these potential 

effects on survey results. 

Landscape evolution at the beach ridge complex is also a likely mitigating factor in the number 

and type of sites identified during particular time periods. Drawing on dates from archaeological sites, 

prior research established that significant periods of erosion occurred at Cape Krusenstern around 3000 

14C yr BP and again at about 1200-1000 14C yr BP (900-1000 cal AD/1050-950 cal BP)(Mason and Jordan 

1993:63). The later erosion episode could explain the drop in site density between 1300 and about 1000 
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cal BP to some extent; the absence of sites dating to this period may actually provide a broader range 

for the latest episode of sustained erosion at Cape Krusenstern. Furthermore, a significant gap in the 

dated features between 3600 and 3400 years ago may indicate either a previously unidentified period of 

coastal erosion or an episode of decreased use of this coastal area. The continuing presence of a few 

houses, cache pits, and indeterminate features dated to this period (Figure 8), however, indicates that 

the decrease in site density is not due to taphonomic effects alone. Forthcoming paleoenvironmental 

and landscape reconstruction data (James Jordan, personal communication 2013) will facilitate further 

consideration of the impact of past landscape evolution on archaeological site preservation. These data 

may also lead to a more nuanced understanding of why people chose to camp or live in particular areas 

of the beach ridge complex with respect to local environment and resource distribution. While our 

survey was systematic it was not random. Preference was given to areas deemed higher potential for 

past occupation and also for site visibility. This may have biased our results away from features such as 

activity areas or deeply buried sites in the swales between beach ridges. While acknowledging these 

possible confounding or mitigating factors, the systematic approach to survey and data collection allows 

us to both understand potential limitations or biases and also gives strength to our interpretation.  

With the exception of the Old Whaling site, no evidence of longer term occupation, e.g. tent 

frame floor areas, were identified by prior researchers at the site complex before 2000 BP. Based on the 

identification of several earlier occupation structures that includes semi-subterranean houses on the 

Choris Peninsula (Giddings 1957; Giddings and Anderson 1986), several pre-2000 BP house structures at 

Onion Portage (Anderson 1988), and a structure at the Hicks site in the Brooks Range (Odess 2003), we 

thought it possible for our more intensive and systematic survey to identify additional early longer term 

occupations at the site complex, perhaps contemporaneous with the Old Whaling site.  While we did not 

identify any clear semi-subterranean structures or structures similar to those at the Hicks site, several 

activity areas (OS-81610,81749, 81621, 81682, and 81685), and a probable house feature (OS-81753) 
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were dated to before 2000 cal BP.  With the exception of one activity area (OS-81685), all of the activity 

areas with older dates are located in segment IV. Sample OS-81685 was obtained from an activity area in 

beach segment V. The probable house was located in beach segment III. These features merit additional 

investigation as they could be the remains of seasonal camps or more substantial structures from early 

sustained occupation of the coast. Several hearth and surface scatters dated to between 3215 and 4238 

cal BP support prior investigators’ indirect dating of the earliest occupations at the site to around 4200 

years ago.  

With the exceptions noted above, our findings give additional support to Giddings and 

Anderson’s (1986) interpretation of seasonal use of the site complex prior to 2000 years ago. They also 

show that local population was much higher throughout the last 4200 years than previously established. 

After about 2000 years ago, there are significantly more sites and more semi-permanent settlements at 

Cape Krusenstern with increased sedentism indicated by the presence of semi-subterranean houses and 

associated storage features (i.e. cache pits). The increase in storage features associated with post-2000 

BP house structures further suggests an expanding population and a change in subsistence and 

settlement organization, with an increased focus on food storage as residential mobility decreased. 

There is also an increase over time in indeterminate features and vegetation anomalies during this same 

time period.  

 Higher occupation density identified by current project, particularly during the Thule period 

from about 1200 to 500 years ago, suggests that the settlements at Cape Krusenstern may be more 

comparable in size and density to those at other large coastal settlements in the Bering Strait region 

(e.g. Cape Espenberg, Wales, and Point Hope) than previously thought. Prior researchers (Giddings and 

Anderson 1986; Mason 1998:278) identified the occupation between about 1850 and 1300 years ago, 

associated with Ipiutak culture, as the densest occupation at Krusenstern, although Giddings and 

Anderson provide somewhat unclear interpretations of population data during the Ipiutak and later 



Anderson and Freeburg  

Page 17 of 40 
 

Thule period (e.g. Giddings and Anderson 1986: 107 versus 149). Hypotheses about regional socio-

economic interactions over the last 2000 years (Mason 1998; Sheehan 1985, 1995, 1997) should be 

reevaluated in light of these new data. Of particular interest is how patterns of mobility and related 

spheres of economic and political interaction may have changed as people lived for much longer periods 

of time on the coast. As people became more sedentary did their interaction spheres contract? New 

data from Cape Krusenstern also lends support to the idea that high population density and competition 

for resources among coastal settlements situated in resource-rich locations may have driven a 

movement of people into the interior of northwest Alaska beginning around 800 cal BP (Mason and 

Barber 2003). While it is clear from the current study that local population declined, more data on 

regional population levels are needed to further evaluate this hypothesis. This coincides with the timing 

of a Neoeskimo migration wave into the Eastern Arctic that may have been motivated by population 

pressure in the western Arctic (Friesen and Arnold 2008; McGhee 2000, 2009; Morrison 2009). 

New data show that occupation of the site complex over the last 2000 years was nearly 

continuous. Although occupation density has shifted over time, people persisted in their use of this 

coastal landscape for thousands of years. This is despite significant periods of late Holocene 

environmental variability (e.g. Bigelow and Powers 2001; Bird, et al. 2009; D'Arrigo, et al. 2005; Jordan 

2009:19; Mason and Barber 2003:84). A period of Neoglacial cooling is indicated by various regional 

paleoenvironmental proxies between about 4000 and 1000 cal BP, followed by warming, perhaps 

related to the broader Medieval Climatic Optimum, between about 1000 and 300 cal BP (Bird, et al. 

2009; Calkin, et al. 1998; D'Arrigo, et al. 2005; Ellis and Calkin 1984; Ellis, et al. 1981; Graumlich and King 

1997; Mann, et al. 2002; Mason and Jordan 1993). Between about 300 cal BP and the mid-1800s, Little 

Ice Age - cooling prevailed. Proxies across the Arctic indicate warming after the mid-1800s (Overpeck, et 

al. 1997). Minimally, persistent occupation of this coastal landscape suggests long-term cultural 

resilience in a changing environment. While technology and subsistence activities change significantly 
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over the last 4200 years, once people began to live on the coast in permanent or semi-permanent 

settlements they persisted in doing so despite significant environmental changes. Alternatively, it is 

possible that impacts of late Holocene environmental change on people may have been of a lesser 

magnitude than previously thought. On-going research directed at refining the paleoenvironmental 

reconstruction for Cape Krusenstern will be important in further exploring these issues.  

Conclusions  

While survey results indicate much higher local population than was identified by prior work, 

our results overall further support the patterns established by Giddings and Anderson of more 

permanent or sedentary coastal occupation beginning about 2800 years ago and increasingly 

significantly after 2000 years ago. Sites dated to before 2000 years ago merit additional investigation. 

Direct dates obtained for the earliest occupations at the site complex are an important addition to a 

handful of reliable radiocarbon dates for coastal occupation before 3000 years ago. These dates suggest 

that people occupied coastal land forms like Cape Krusenstern soon after they developed. While rising 

sea-level may have obscured older sites it is also possible that shoreline progradation after 5000 years 

ago was a key factor in creating more favorable coastal habitats that led to increased marine resource 

use.  

This work contributes new dates and data to the debate over the timing and character of 

maritime adaptations north of the Bering Strait and identifies several areas for additional research. 

Sustained occupation of the coast through several periods of increased environmental variability point 

to the resilience of coastal foragers with a committed maritime economy, even in challenging high 

latitude environments. New paleoenvironmental data and additional archaeological research are 

needed to further explore the coastal settlement patterns identified here, but this work provides a 

strong framework for future study of coastal adaptations and human-environment interactions. 
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Figure 1. Location of Cape Krusenstern archaeological site complex in northwest Alaska.   
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Figure 2. Beach ridge sequence at Cape Krusenstern. 
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Figure 3. Areas surveyed by project. 
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Figure 4. Comparison of features per square km identified by the current project and by prior investigations in the current project survey area. 

  

0

50

100

150

200

250

300

350

IIIIIIIVVVI

Fe
at

ur
es

/s
q 

km
 su

rv
ey

ed
  

Beach Segment 

Current Project

Legacy Data



Anderson and Freeburg  

Page 30 of 40 
 

 

Figure 5. Legacy features reported in the current project area.  
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Figure 6. Features identified by current project. 
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Figure 7. Summed probability plot of all new dates.
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Figure 8. Summer probability plots for new dates sorted by feature.
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Table 1. Legacy and new beach segment age ranges. 

Beach 
segment 

Pre-Project Approximate 
Age Ranges 

New Upper Limiting Date Archaeological Culture 
Attributions1 Conventional 

Radiocarbon Age 
Two Sigma Calibrated 

Age Range (BP) 4 

VI 4200 – 3600 BP1 3760 ± 35 4238 - 3990 Classic Denbigh 

V 3600 - 3100 BP1 3620 ± 30 4068 - 3842 Classic - Late Denbigh, Early 
Choris 

IV 3100 – 2500 BP1,2 2930 ± 40 3215 - 2958 Old Whaling, Choris  
III 2500 - 2000 BP1 2630 ± 25 2780 - 2735 Norton-Near Ipiutak 
II 1900 (17503) - 1000 BP 1980 ± 25 1990 - 1880 Ipiutak, Birnirk, Thule 

I 1000 - present1 1030 ± 25 1045 - 918 Thule, Kotzebue, Historic 
Inupiat 

1 Giddings and Anderson 1986 
   2 Darwent and Darwent (2005) report two sigma age ranges between 3138 and 2742, but interpret the site 

occupation to have been between ca. 2900 and 2700 BP. 
3 Mason 2009 

   4 Calibrated with OxCal 4.1 (Bronk Ramsey 2009a) IntCal09 (Reimer et al. 2009). 
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Table 2. Legacy feature counts for entire beach ridge complex 

 Beach Segment 
 Feature Type I II III IV V VI Unknown Total 

Hearth 0 2 4 35 70 10 12 133 
Cache Pit 79 106 3 3 0 0 2 193 
House 25 57 1 11 0 0 7 101 
Surface Scatter 0 2 15 34 59 0 2 112 
Burial 4 15 1 1 0 0 1 22 
Indeterminate 
Type 2 18 2 0 0 0 11 33 
Campsite 3 2 1 1 0 0 0 7 
Midden* 0 11 0 4 0 0 0 15 
Unknown Type 1 2 0 5 6 4 5 23 
Total 114 215 27 94 135 14 40 639 

 

Table 3. Legacy feature counts for within the current project survey area 

 Beach Segment 
 Feature Type I II III IV V VI Unknown Total 

Hearth 0 2 2 25 44 3 0 76 
Cache Pit 23 71 1 2 0 0 0 97 
House 10 48 1 11 0 0 0 70 
Surface Scatter 0 2 10 24 29 0 1 66 
Burial 2 13 0 1 0 0 1 17 
Indeterminate 
Type 0 15 0 0 0 0 0 15 
Campsite 0 1 1 1 0 0 0 3 
Midden* 0 6 0 2 0 0 1 9 
Unknown Type 1 1 0 3 0 2 1 8 
Total 36 159 15 69 73 5 4 361 
*includes one feature we designated an activity area 
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Table 4. Radiocarbon dates  

Accession# Description  δ13C (‰) 
Conventional 

RC Age  Age Error  
2 σ calibrated 
age range (BP) Feature Type 

OS-81431 Picea -24.45 540 30 634-513 Activity Area 
OS-81435 Picea -26.14 615 25 655-550 Activity Area 
OS-81442 Salicaceae - twig  -27.26 625 25 660-552 Activity Area 
OS-81677 Picea -24.00 1030 25 1045-918 Activity Area 
OS-81642 Picea  -25.11 1180 35 1228-982 Activity Area 
OS-81432 Picea -24.54 1310 25 1293-1179 Activity Area 
OS-81427 Picea -25.05 1390 30 1349-1276 Activity Area 
OS-81611 Picea  -24.25 1460 25 1390-1304 Activity Area 
OS-81283 Picea -25.48 1470 25 1398-1308 Activity Area 
OS-81640 Picea  -23.95 1570 35 1535-1385 Activity Area 
Beta-223220 Salix sp. -26.4 1590 40 1558-1388 Activity Area 
OS-81612 Picea  -25.45 1750 25 1719-1569 Activity Area 
OS-81639 Picea -23.85 1880 35 1891-1721 Activity Area 
OS-81635 Picea -25.34 1960 40 1992-1825 Activity Area 
OS-81610 Picea -23.85 2480 25 2717-2368 Activity Area 
OS-81682 Salicaceae,cf.Salix -25.36 2510 45 2745-2367 Activity Area 
OS-81621 Betula -25.98 2520 25 2739-2492 Activity Area 
OS-81685 Salicaceae, cf. Salix  -26.56 3620 30 4068-3842 Activity Area 
OS-81438 Bark -24.13 130 25 273-10 Cache Pit 
OS-81647 Picea -24.43 490 35 622-496 Cache Pit 
OS-81575 R. tarandus, mid long bone  -18.59 830 30 791-686 Cache Pit 
OS-81578 R. tarandus, L tibia, mid  -19.52 840 25 790-692 Cache Pit 
OS-81576 R. tarandus, distal radius.  -19.18 875 25 905-728 Cache Pit 
OS-81656 Picea  -24.59 890 35 911-733 Cache Pit 
OS-81581 Picea  -24.86 1010 25 970-802 Cache Pit 
Beta-226688 Picea sp./Larix sp.  -24.8 1030 40 1055-800 Cache Pit 
OS-81653 Picea -25.72 340 35 484-309 Hearth 
OS-81281 Picea -24.85 430 25 525-342 Hearth 
OS-81279 Picea -23.54 1350 25 1310-1185 Hearth 
Beta-226689 Picea sp./Larix sp.  -24.2 1440 40 1399-1291 Hearth 
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OS-78546 Picea -25.14 1760 25 1768-1569 Hearth 
Beta-226690 Picea sp./Larix sp.  -22.9 1800 40 1859-1611 Hearth 
OS-78454 Salicaceae -26.17 2160 30 2308-2056 Hearth 
Beta-226694 Populus sp./Salix sp. Cf. Populus sp. -27.4 2320 40 2463-2161 Hearth 
OS-81751 Picea  -24.05 2350 25 2459-2331 Hearth 
OS-81648 Picea  -25.86 2350 35 2652-2317 Hearth 
OS-78458 Picea -25.40 2450 40 2705-2358 Hearth 
OS-78459 Picea -24.45 2630 25 2780-2735 Hearth 
Beta-226695 Populus sp./Salix sp. Cf. Populus sp. -25.5 2930 40 3215-2958 Hearth 
OS-78586 Picea -22.87 3450 30 3829-3637 Hearth 
OS-78551 Picea -24.39 3760 35 4238-3990 Hearth 
OS-78547 Salicaceae-Populus/Salix -24.67 175 25 290--4 House 
Beta-226150 Pinaceae Cf. Picea/Larix sp. -24.2 190 40 306--4 House 
OS-78545 Picea -25.27 260 30 431--3 House 
Beta-223219 Populus sp. -25.6 280 40 469--1 House 
Beta-226153 Picea sp./Larix sp.  -25.2 320 40 483-301 House 
OS-81616 Picea -25.35 355 30 498-316 House 
Beta-226148 Salix sp. -27.5 380 40 509-316 House 
Beta-226692 Populus sp./Salix sp. Cf. Populus sp. -25.6 390 40 514-316 House 
Beta-226149 Picea sp./Larix sp. Cf. Picea sp. -23.7 400 40 518-317 House 
Beta-226687 Pinaceae  -23.4 470 40 621-342 House 
Beta-226151 Picea sp./Larix sp.  -24.9 570 40 652-521 House 
OS-81582 Salicaceae - twig  -27.33 570 25 644-530 House 
OS-81678 Salicaceae, cf. Salix - twig  -26.29 650 30 670-556 House 
OS-78583 Picea -29.20 675 25 676-561 House 
OS-81743 Salicaceae, cf. Salix  -25.85 720 25 695-570 House 
Beta-226152 Picea sp./Larix sp.  -25.1 1050 40 1059-915 House 
Beta-226154 Picea sp./Larix sp.  -26.9 1200 40 1261-1004 House 
OS-81430 Picea -25.94 1230 25 1260-1070 House 
OS-78457 Picea -24.62 1300 35 1294-1174 House 
OS-81403 Unidentifiable  -24.52 1300 50 1304-1085 House 
OS-78455 Salicaceae-Salix/Populus -26.87 1410 25 1350-1289 House 
OS-81750 Picea  -23.49 1450 30 1389-1299 House 
Beta-226155 Pinaceae Cf. Picea/Larix sp. -26.5 1510 40 1518-1313 House 
OS-78460 Salicaceae -26.30 1510 30 1515-1327 House 
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OS-81756 Picea  -24.67 1590 25 1534-1411 House 
OS-81649 Picea  -23.73 1600 35 1560-1405 House 
Beta-226693 Picea sp./Larix sp.  -25.4 1780 40 1820-1572 House 
OS-81429 Salicaceae, cf. Salix  -27.08 1780 25 1814-1616 House 
OS-78461 Picea -24.64 1920 30 1948-1745 House 
OS-81753 Salicaceae  -23.04 2430 25 2696-2353 House 
OS-81746 Picea -23.94 110 30 270-12 Indeterminate 
OS-78584 Salicaceae -25.69 330 25 469-308 Indeterminate 
OS-81645 Salicaceae,cf.Populus -26.44 465 40 617-338 Indeterminate 
OS-81441 Salicaceae, cf. Salix - twig  -27.42 510 30 622-505 Indeterminate 
OS-78585 Salicaceae -26.51 590 35 654-535 Indeterminate 
OS-78548 Betula -25.64 670 25 674-561 Indeterminate 
OS-78620 Salicaceae -25.14 690 30 685-562 Indeterminate 
OS-81574 R. tarandus, meta tarsl/carp  -19.36 805 25 765-678 Indeterminate 
OS-81277 Picea -24.71 830 35 892-678 Indeterminate 
OS-81434 Picea -24.57 830 30 791-686 Indeterminate 
OS-78619 Salicaceae -24.32 835 25 788-691 Indeterminate 
OS-81744 Picea -23.72 865 25 902-699 Indeterminate 
OS-81577 R. tarandus, mandible -18.71 875 20 900-731 Indeterminate 
OS-78549 Picea -25.00 995 25 962-799 Indeterminate 
OS-81968 Picea -27.09 1210 80 1285-972 Indeterminate 
OS-81638 Picea  -25.38 1290 35 1295-1145 Indeterminate 
OS-78456 Salicaceae -25.67 1330 35 1305-1178 Indeterminate 
OS-81436 Picea -25.60 1410 30 1360-1285 Indeterminate 
OS-81650 Picea -25.48 1490 35 1509-1305 Indeterminate 
OS-78550 Salicaceae -25.17 1510 30 1515-1327 Indeterminate 
OS-81658 Salicaceae, cf. Salix - twig  -25.83 1560 45 1538-1354 Indeterminate 
OS-81439 Picea -25.09 1590 30 1540-1407 Indeterminate 
OS-81280 Picea -24.51 1600 25 1538-1414 Indeterminate 
OS-81284 Salicaceae, cf. Salix  -26.11 1600 25 1538-1414 Indeterminate 
OS-81609 Picea  -24.74 1610 30 1558-1412 Indeterminate 
OS-81425 Picea -22.65 1620 25 1561-1416 Indeterminate 
OS-81613 Picea  -23.92 1620 30 1593-1412 Indeterminate 
OS-78588 Salicaceae -26.03 1630 25 1601-1416 Indeterminate 
OS-81605 Picea  -23.85 1670 25 1689-1523 Indeterminate 
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OS-81620 Picea  -24.44 1700 25 1694-1540 Indeterminate 
OS-81684 Salicaceae, cf. Salix  -27.37 1770 25 1811-1607 Indeterminate 
OS-81433 Conifer -26.18 1780 25 1814-1616 Indeterminate 
OS-81278 Picea -25.01 1800 25 1820-1628 Indeterminate 
OS-81608 Picea  -26.66 1820 30 1860-1633 Indeterminate 
OS-81426 Picea -25.18 1870 25 1875-1729 Indeterminate 
OS-81437 Picea -25.15 1880 30 1885-1727 Indeterminate 
OS-81583 Salicaceae, cf. Populus  -26.66 2000 25 1998-1890 Indeterminate 
OS-81636 Salicaceae, cf. Salix  -24.73 2000 35 2041-1874 Indeterminate 

OS-81749 Salicaceae, cf. Populus  -25.30 2500 30 2732-2467 
Probable Activity 

Area 
OS-81652 Betula -23.94 375 40 507-316 Surface Scatter 
OS-81745 Betula -24.84 435 25 526-465 Surface Scatter 
OS-81680 Picea -23.57 495 25 543-505 Surface Scatter 
OS-81641 Salicaceae - twig, friable  -23.12 760 35 736-662 Surface Scatter 
OS-78587 Salicaceae -25.61 1590 25 1534-1411 Surface Scatter 
OS-81676 Salicaceae, cf. Salix  -27.82 1610 25 1548-1415 Surface Scatter 
OS-81754 Picea -21.77 1620 25 1561-1416 Surface Scatter 
OS-81646 Picea -24.75 1840 35 1870-1704 Surface Scatter 
OS-81755 Picea -24.15 1990 25 1993-1886 Surface Scatter 
OS-78590 Salicaceae-Salix/Populus -24.36 2100 25 2140-1999 Surface Scatter 
OS-81655 Picea -25.81 2170 35 2314-2060 Surface Scatter 
OS-81607 Picea -24.11 2210 30 2325-2149 Surface Scatter 
OS-81643 Unidentifiable -25.24 2280 35 2352-2158 Surface Scatter 
OS-78589 Salicaceae -26.46 2380 25 2485-2341 Surface Scatter 
OS-81651 Salicaceae, cf. Salix  -26.81 3090 35 3381-3218 Surface Scatter 
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Table 5. Areas of the beach ridge complex surveyed by the current project 

  Area (hectares)   

Beach 
Segment Total  Surveyed  Percent 

Coverage 

None* 498 44 9% 
I 256 91 36% 
II 581 485 83% 
III 238 154 65% 
IV 735 293 40% 
V 385 121 31% 
VI 640 351 55% 

Total* 2835 1495 53% 
* Areas not part of the beach ridge complex 
itself are not included in total 

 

Table 6. Features identified by current project 

 
Beach Segment  

Feature Type I II III IV V VI Total 
Hearth 1 15 13 33 31 8 101 
Cache Pit 95 176 7 3 1 1 283 
House 35 92 9 12 0 0 148 
Surface Scatter 12 18 19 34 15 5 103 
Burial 4 5 2 0 0 0 11 
Unspecified Surface 
Depressions 168 401 110 16 19 17 731 

Total 315 707 160 98 66 31 1377 
Vegetation Anomaly 65 156 16 2 1 0 240 
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