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Abstract 

Severe premature deterioration has been reported in a large number of reinforced 

concrete (RC) structures in corrosive environments. Many concrete structures built in the past 

few decades are already showing signs of deterioration due to the corrosion of steel 

reinforcement. This premature deterioration can diminish structural integrity and safety of the 

structure. 

There are several options available for retrofitting the structural members of existing 

reinforced concrete (RC) structures. Bonding thin steel plates is one of the common methods of 

retrofitting. Though the technique is successful in practice, the added steel plates are susceptible 

to corrosion, which leads to an increase in future maintenance costs. Therefore, attention has 

shifted to the use of carbon fiber reinforced polymer (CFRP) as alternative material. Based on 

previous studies, bonding CFRP sheets to the damaged members helps increase load carrying 

capacity, ductility, and stiffness of the damaged structure. Such a technique is an effective way to 

improve the flexural and shear performance of the RC damaged structure. In this experimental 

study, CFRP materials were used for structural strengthening. CFRP materials do not corrode 

because they are a combination of carbon fibers and an epoxy resin matrix. Moreover, they have 

very high strength and rigidity in the fiber direction. 

The project focused on retrofitting RC beams that contained corroded steel, considering 

an extreme case of corrosion. The steel in RC beams were assumed to be fully corroded, 

resulting in the most severe loss in steel cross-section and strength. Unidirectional CFRP sheets 

were used to strengthen the deteriorated RC beams. This type of retrofitting increases the load 

carrying capacity of the corrosion damaged RC beams. It also increases the flexural and fatigue 

strength of the damaged RC beam.  
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The experimental program included strengthening and testing five simply supported 

rectangular cross section RC beams. All beams had the same cross section, 4in. x 6in., and were 

6ft. long. The oiled steel rebars were safely pulled out of the formwork after the concrete had 

cured for few hours, leaving voids. This technique was used to represent the total loss in steel 

cross section in an extreme corrosive environment. 

 The first specimen was a control RC beam, which had no corrosion. It was tested to 

compare against corroded and repaired members. The second specimen was a plain concrete 

beam, and the third an un-retrofitted deteriorated beam. The two remaining deteriorated beams 

were strengthened by externally bonding one and two layers of CFRP. The CFRP sheets were 

bonded in the longitudinal as well as the vertical direction of the beams, and were tested under 

third-point loading. 

The effectiveness of the repairing technique was determined by evaluating the 

performance in terms of load carrying capacity, deflection, and ductility.  Test results revealed 

that bonding two layers of CFRP to the deteriorated RC beams increased the load capacities to 

two times the control RC beam without corrosion. The load deflection response of specimens 

showed that for the retrofitted specimens had a higher stiffness under service load conditions.  
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CHAPTER 1:   INTRODUCTION 

1.1. Overview  

Reinforced concrete (RC) is known to be the most widely used building material due to 

its extensive availability. It is used in different engineering applications worldwide such as 

buildings, bridges, dams, and newly as a foundation system for wind turbine towers.  Due to the 

wide variety of reinforced concrete uses, RC structures are subjected to a range of different 

environmental exposures including marine, industrial, nuclear, and other extreme environments. 

As a result, many RC structures experience an unacceptable loss in serviceability or safety far 

earlier than anticipated. Severe premature deterioration has been reported in a large number of 

concrete structures in corrosive environments. Many concrete structures built in the past decades 

are already showing signs of deterioration due to the corrosion of steel reinforcement. This 

premature deterioration is a problem in terms of the structural integrity and safety of the structure 

that requires remedial attention.  

The damage to RC structures resulting from the steel reinforcement corrosion is exhibited 

in the decrease of the steel cross section and the formation of rust (iron oxide) inside the 

concrete. As a result, an internal stress is induced in the concrete, which leads to the cracking and 

spalling of concrete.  Concrete cover cracking due to reinforcement corrosion is widely accepted 

as a limit-state indicator in defining the end of functional service life for existing RC structures 

undergoing corrosion.  

Different techniques have been developed and used to repair a variety of structural 

deficiencies. The conventional methods include steel jacketing of concrete columns,  external 

post-tensioning, and bonding steel plates to concrete beams. However, these conventional 

techniques are not cost effective, and some common problems such as corrosion will also be 
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present after the repair. For economic benefits, innovative repair techniques have been developed 

and tested so that durability of the concrete structure can be improved and the service life 

prolonged. The alternative is to repair damaged reinforced concrete structures with externally 

bonded carbon fiber reinforced polymer (CFRP). This advanced composite material is 

lightweight, has high strength and stiffness to weight ratio, corrosion resistance, and has high 

fatigue strength. In addition, CFRP is flexible and can be rapidly applied to flat or curved 

surfaces. Due to its advantages, it has been applied in many areas such as aerospace, defense, 

marine, equipment, and automotive sector [1]. CFRP composites have been used as structural 

materials since World War II, when they were first used in the construction of British Spitfires 

[2]. These materials have mechanical and physical properties in excess of those of steel. More 

will be presented about the CFRP characteristics in the literature review. 

1.2. Research Significance and Objective 

The primary objective of this experimental study is to investigate and gather knowledge 

on the performance of corroded reinforced concrete beams externally bonded with CFRP.  

Published research studies have provided valuable findings, particularly with regard to 

addressing the effect of CFRP on strengthening the flexural strength and stiffness of corroded 

beam. Most of the previous studies on corroded concrete beams were based on accelerating the 

corrosion in the system. The corrosion rate was varied between 5% (mild) and 20% (severe), 

which represents the fraction of loss in the cross-sectional area of the steel reinforcement. 

However, little research work has been devoted to study the feasibility of using CFRP laminates 

to improve the strength of fully corroded beams.  

In this study, an extreme case of corrosion is considered. Extreme corrosion is defined in 

this study as fully corroded or fully ineffective steel reinforcement resulting in complete loss of 
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the bond between the concrete and the steel reinforcement. Also, the worst case scenario assumes 

a complete loss in the rebar cross sectional area. In other words, steel reinforcement effect is 

considered non-active and the reinforcement is eliminated in the experiment. Hence, this study is 

going to provide an insight into the effect of bonding CFRP on the stiffness and load carrying 

capacity of fully corroded reinforced concrete members. 

The specific objectives of the project are: 

• Provide an insight into the effect of bonding CFRP on the:  

Ø Load carrying capacity of concrete members with fully corroded reinforcement (worst 

case scenario).  

Ø Stiffness and deflection at service load  

Ø Total energy absorbed  

• Compare the total flexural capacity of retrofitted beam to original beam 

• Assess the effectiveness of two layers of CFRP to enhance the capacity and stiffness of 

the corroded beams.  

• Compare ACI 440.2R design guidelines calculations to the experimental results. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Steel Corrosion in Reinforced Concrete Structures 

The purpose of this section is to review and summarize the latest knowledge on various 

aspects of corrosion of steel reinforcement, including the primary causes of corrosion and its 

effects on the RC structure. It also summarizes different methods (conventional and innovative) 

that are used to extend the service life of deteriorated structures. 

2.1.1. Overview  

Corrosion of reinforcing steel in reinforced concrete structures is generally considered as 

the most widespread mode of premature distress and deterioration of structural concrete. Because 

corrosion is progressive and the resultant damage distributed in severity, repairs are needed 

continually. If such visual indicators are not addressed, public safety is at risk.  This results in a 

clear need for both the industry and field of research to explore and study this issue.  

Throughout the years, considerable efforts have been made to understand corrosion 

mechanisms in RC structures, causes, failure modes, and possible rehabilitation methods. A lot 

of work has been done to study factors affecting the rate of steel corrosion in RC members. In 

addition to that, a number of studies have been carried out to evaluate the effect of corrosion on 

the behavior of RC structural members, as well as on the mechanical behavior of steel bars and 

the bond between steel and concrete. Generally, the knowledge developed over the past decades 

has led to improvements in the protection of reinforcement and rehabilitation of damaged 

structures. 

Concrete normally acts to provide a high degree of protection against corrosion of the 

embedded reinforcement. The concrete inherently provides a highly alkaline environment, with a 

pH level between 12.5 and 13, to the steel through the formation of a passive film of iron oxides 
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[3]. This protects the steel against corrosion. Concrete also provides a physical barrier that 

prevents the steel from coming in contact with the external environment. This prevents 

substances such as water, salt, or other damaging ions from reaching the iron atoms that make up 

the steel.  However, corrosion will still result in structures that experience poor concrete quality, 

poor design, or construction, and/or harsh environmental conditions, especially structures located 

in the coastal marine environment [4]. Figure 1 summarizes the effect of corrosion on concrete 

structures. 

 

Figure 1: Effect of corrosion on structures [28] 

 

2.1.2. Corrosion Process   

The principal cause of steel corrosion is the presence of chlorides during the preparation 

of the concrete. In several places close to shore, sea sand is used as an aggregate in the mix. 

Also, some chemical admixtures, such as accelerators, can contain a high percentage of 

chlorides. De-icing salts used during wintertime can introduce chlorides to the reinforced steel as 
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well.  According to the ACI Committee 222, steel corrosion in concrete is an electrochemical 

process where corrosion cells are generated due to differences in electrochemical potentials.  

Some areas of the steel bar become anodes, and some cathodes, as shown in Figure 2 [4]. 

 

Figure 2: Illustrates a mechanism of corrosion process in steel bar [5]. 

The anodic reaction is the oxidation process, which results in the loss of metal. The 

cathodic reaction is the reduction of dissolved oxygen creating hydroxyl ions. The released 

hydroxyl ions at the cathode travel through the electrolyte to react with the ions at the anode, 

producing rust. The common anodic and cathodic reactions of steel in concrete are iron 

dissolution (equation 1) and oxygen reduction (equation 2) reactions. 

𝐹𝑒 → 𝐹𝑒!! + 2𝑒!                                        Equation1 

2𝐻!𝑂 + 𝑂! + 4𝑒! → 4(𝑂𝐻)!                                 Equation 2 

With the anodic reaction presented in equation 1, the cross section of the steel bar is 

reduced and the rebar could eventually lose its capacity and become non-active in a member.  

 

2.1.3. Causes of Steel Corrosion   

Differences in concrete parameters and the environmental factors, which can result in 

changes of the concrete properties, would be directly and indirectly responsible for the different 
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forms of corrosion damage to the RC structures. Thus, the corrosion behavior of steel in concrete 

is a function of steel and concrete parameters of steel and concrete and the properties of their 

interactional zone. The factors affecting corrosion of steel in concrete is classified into two major 

categories: external factors and internal factors.  

2.1.3.1. External Factors (Environmental Factors)  

The problem of steel corrosion is very prominent in parking garages and highway bridges 

where snow contaminated with deicing salt is frequently splashed during the winter time. A 

research done by Al-Ibweini et al. [6] indicates that steel corrosion is also noticeable in structures 

built in coastal areas where the ocean salts, which are primarily sodium chloride and other 

compounds, accumulate on the metal surfaces and accelerate the electrochemical reactions that 

cause rusting and other forms of corrosion. Therefore, environmental conditions play a key role 

in the formation of corrosion in reinforced concrete members. Oxygen, moisture, and chlorides 

must be found at the steel level in the concrete member to initiate the corrosion process. A 

certain mixture of these elements will ensure the continuation of corrosion activity. Among all 

the environmental factors, the presences of chloride ions and the penetration of carbon dioxide 

(carbonation process) have been responsible for most corrosion of steel in reinforced concrete 

structures according to the ACI Committee 222 [4].  

Carbonation Process 

Concrete carbonation results from the chemical reaction between the hydrated cement 

components (i.e. calcium hydroxide) and atmospheric carbon dioxide. This reaction lowers the 

pH of the concrete, and therefore the passive film around the rebar will be lost, causing the 

initiation of corrosion [7]. Table 1 shows the effect of lowering the pH level in the concrete and 

the state of corrosion in the reinforcement. 
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Table 1: State of reinforcement corrosion at various pH levels [5]. 

pH. level of Concrete State of reinforcement corrosion 

Below 9.5 Initiation of steel corrosion 

At 8.0 Passive film on the steel surface disappears 

Below 7 Catastrophic corrosion occurs 

 

This carbonation concept is presented in concrete exposed to different environments such 

as bridges and structures underwater. A study by Ngala et al. finds that there is a reduction in the 

total porosity and redistribution of pore sizes as a result of carbonation [8]. This can affect the 

diffusion of chloride in concrete through changing the pore structure of concrete. In general, if 

the pH level reaches a low value, active corrosion of rebar takes place.    

Chloride Attack  

A literature search has shown that chloride-induced corrosion can have an extensively 

damaging effect on reinforced concrete structures. Chloride maybe introduced to the concrete in 

its initial mixing state based on the type of aggregate or water used in the initial composition of 

concrete. Also, admixtures that are used sometimes in concrete mixing contain a significant 

amount of chloride [4]. Additionally, chloride ions can be diffused into concrete in ways such as 

in the use of de-icing salts on many bridges in the United States during the winter. In general, the 

rate of corrosion increases with the increase of chloride content. Table 2 shows the risk of 

corrosion in both carbonated and non-carbonated concrete containing chlorides [9]. 
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Table 2: Corrosion risk due to chlorides 

Total chloride 
(wt% of cement) 

Condition of concrete adjacent to 
reinforcement 

Corrosion risk 

Less than 0.4% Carbonated High 
Un-carbonated Moderate 

0.4% - 1.0% Carbonated High 
Un-carbonated High 

More than 1.0% All cases High 

 

Other External Factors 

In addition to these factors, relative humidity and temperature play a significant role in 

the corrosion process.  A study by Hussain [10] reports that it is important to mention that the 

rate of chloride-induced corrosion and the process of carbonation are influenced by temperature 

and humidity, which may vary from one place to another.  High humidity and high temperature 

are often found in gulf marine environments, which is a very serious threat for the durability of 

reinforced concrete structures. Also, the increase in temperature leads to the increase in the rate 

of all these processes, and consequently an increase in corrosion rate.  

Additionally, in areas where there is extreme heat such as in industrial plants, the 

concrete cover may develop thermal cracks [10]. Cracked concrete structures are exposed to the 

surrounding environmental conditions, after which the process of corrosion starts. Similarly, in 

cold regions, the moisture in the pores of concrete freezes and may expand. This results in the 

development of cracks, which will lead to corrosion of reinforcement under the previously 

described conditions.  It is important to note that the corrosion of steel in concrete is not 

determined by a single factor, which makes studying the influence of these factors complicated.   
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2.1.3.2. Internal Factors (Concrete Quality Parameters) 

Concrete Properties  

Concrete properties including the composition of the concrete mix, water/cement ratio, 

type of cement used, workability, curing, and the quality control at construction site are all 

factors that affect the permeability of concrete.  Higher porosity and large pore sizes lead to 

severe corrosion damage in reinforcement. Chlorides, water, and oxygen can get inside the pores. 

Thus, permeability directly affects the rate of corrosion.  The porosity of concrete and its pore 

size distribution is dependent on the water/cement (w/c) ratio in the concrete. Low water/cement 

ratio decreases the permeability, which in turn reduces the chloride and carbonation penetration 

and oxygen diffusion in concrete.   In the same study by Kumar et al [9], it is observed that the 

permeability of hardened cement paste is increased 100 fold by increasing the w/c ratio from 

0.35 to 0.45.  

It is also reported that cement containing fly ash and silica fume has improved durability 

in the marine environment [9]. The incorporation of silica fume in concrete mix reduces water 

absorption and permeability. Thus, the chloride diffusion and water penetration become more 

difficult. In addition, many studies reported other factors that cause serious corrosion problems 

such as admixture and impurities in aggregates. If these factors could be well controlled, the 

corrosion performance of reinforced structures would be much improved.    

 

Concrete Cover 

The thickness of the concrete cover surrounding the reinforcement has a remarkable 

effect on the rebar corrosion due to penetration of chloride or carbonation. A study by the 

National Association of Corrosion Engineers (NACE) [11] reports the risk of reinforcement 
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corrosion with low cover thickness. However, once the corrosion starts, the rate of corrosion is 

independent of the cover thickness as shown in Figure 3. The service life of reinforced concrete 

structures can be extended greatly by simply increasing the thickness of the concrete cover.  

 

Figure 3: Progress of corrosion in concrete and eventual spalling [3] 

 

2.1.4. Structural Effect and Damage Due to Corrosion 

The cost of repairing or replacing deteriorated structures due to corrosion has become a 

major obligation and liability to clients. In a study by the U.S Federal Highway Administration 

in cooperation with the National Association of Corrosion Engineers (NACE), it was estimated 

that the direct cost of corrosion is $ 276 billion dollars on an annual basis. These costs include 

the cost of corrosion- control methods, equipment, repair, etc [11].  Considerable resources have 

to be allocated to restoring and extending the service life of deteriorating RC structures. In 

addition to the monetary costs, corrosion can cause catastrophic failures of structures. Other 

costs, such as loss in serviceability, the reduction of steel cross sections, cracking, etc, are 

equally significant.  

As mentioned before, corrosion of reinforcement is the principle cause of deterioration of 

reinforced concrete members. In a structural journal by Du et al. [10], it is stated that 
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deterioration affects the stiffness and the strength of the structure, in addition to the rust stains 

and cracks that will be present on the structure. Corrosion may also affect the residual strength, 

such as when the reduction is on the concrete cross section due to corrosion induced cracking 

and spalling, loss of bond strength, and most importantly the loss of reinforcement.  

Generally, the deterioration of reinforced concrete structures can be defined as a two-

phase process: initiation and propagation.  The deterioration of reinforced concrete versus time is 

illustrated in Figure 4. 

 

Figure 4: Deterioration degree of reinforced concrete vs. time [11]. 

 

As shown in Figure 4, the initiation period represents the time required for CO2 or 

chloride ion to diffuse to the steel and activate corrosion. The propagation period represents the 

time between corrosion initiation and corrosion cracking. If the corrosion cracking can be 

delayed or prevented, structural strength is maintained for a longer period.  

According to the same study done by NACE, the most commonly observed deterioration 

failure modes are: the rupture of the bottom tensile reinforcement; concrete crushing, shear, or by 

shear combined with anchorage failure of tensile bars depending on the location and level of 
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corrosion [9]. In general, the bending moment strength was found to decrease due to (1) reduced 

area of tensile bars; (2) reduced bond strength between bars and concrete, especially after the 

formation of longitudinal cracks along the bars; (3) flexural concrete crushing caused by the 

concentrated vertical cracks.  

2.1.5. Steel Reinforcement Cross Section   

Reinforced concrete uses steel to provide the tensile properties that are needed in 

structural concrete. It prevents failure of concrete structures that are subjected to tensile and 

flexural stress due to dead and live loads, wind, snow, or traffic. However, when the 

reinforcement corrodes, the formation of rust will cause a loss in the bond between the steel and 

the concrete resulting in delamination and spalling.  Al-saidy [14] concludes in his study that as 

steel corrodes, there is a corresponding loss in cross sectional area and as a result, a reduction in 

the flexural strength capacity of concrete as shown in Figure 5.  

 

Figure 5: Corroded steel bar in comparison with noncorroded steel bar [14] 

 
Other experimental studies reported in the literature show that the rust occupies a volume 

of up to twelve times greater than the volume of the original steel rebar [15]. The formation of 
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rust will reduce the cross sectional area of steel, which will reduce the rebar flexural and shear 

strength capacity.  

2.1.6. Steel Reinforcement Tensile Properties  

The experimental study by Almusallam [3] also notes a decrease in the tensile strength of 

steel bars with an increasing degree of reinforcement corrosion utilizing the actual area of cross-

section. Table 3 summarizes the experimental tensile strength data for 6 mm (0.23 in.) diameter 

bars with varying degrees of reinforcement corrosion. The experimental results data indicated 

that the actual load carried by the bars decreased with an increasing level of reinforcement 

corrosion. 

Table 3: Tensile strength of 6mm (0.23 in.) diameter steel bars [3] 

Specimen # Corrosion (%) Average Diameter 
(mm) 

Ultimate Load 
(kN) 

C1 0 5.9 21.76 

C2 0.88 5.85 21.01 

B2 1.1 5.8 20.49 

A1 1.45 5.81 20.53 

A2 1.45 5.89 21.09 

D1 1.63 5.85 20.762 

B3 11.64 5.25 16.521 

G1 17.83 4.95 13.05 

G2 19.4 4.95 15.03 

D1 24.95 4.3 10.79 

H2 32.02 3.9 9.266 

A2 40.7 4.1 10.156 

S2 48.25 4.1 10.134 

S3 75 3 4.877 
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2.1.7. Bond Between Concrete and Steel Reinforcement 

The concrete-steel bond is responsible for the rebar anchorage in the RC member. The 

rust formed by the accumulated corrosion products on the rebar surface may reduce the friction 

component of the bond strength. According to the previous study by Sulaimani et al. [17], 

corrosion causes an initial increase in rebar to concrete bond strength due to the increased rebar 

surface roughness, but further corrosion results in a loss in bond strength. That loss is explained 

by the deterioration of the rebar ribs of the deformed rebars causing a significant reduction of the 

interlocking forces between the ribs of the rebars and the surrounding concrete.  

2.1.8. Corrosion Induced Cracks 

The accumulated corrosion products on the bar surface cause longitudinal cracking of the 

concrete cover. Loss of concrete cover implies a loss of confinement and a reduction in bond 

strength at the interfacial zone between the steel and concrete. As a result, the bond strength is 

significantly reduced and becomes negligible. A number of researchers have attempted to study 

the corrosion-induced crack width and corrosion crack patterns using accelerated corrosion 

techniques. A study by Badawi and Soudki [18], investigated different corrosion configuration in 

eight specimens at three different degrees of corrosion (5%, 10%, and 15%). One of their 

conclusions was that corrosion-induced crack width increases with time as corrosion activity 

progresses. A larger crack width is presented at a higher rate of corrosion assuming uniform 

corrosion as shown in Figure 6. 
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Figure 6: Corrosion crack width vs. time [16] 

Also, degradation of the concrete through cracking can eventually lead to the concrete 

falling away from the structure. This more extensive form of cracking is known as spalling. 

Cracking and spalling are signs of degradation that can be observed by the naked eye. These 

warning signs, however, are advanced phases of corrosion damage. Once the concrete begins to 

spall away from the structure, the structural integrity of the concrete member will be 

compromised. 

Additionally, reinforcement corrosion may have other effects on the concrete member. 

For instance, an experimental program done by Al-Saidy and Al-Jabri [19] tested rectangular 

reinforced concrete specimens after they were exposed to accelerated corrosion. The corrosion 

rate varied between 5% to 10%. The corroded beams showed lower stiffness and strength than 

non-corroded beam (control specimen).  Corrosion will cause a loss of stiffness in a concrete 

member, which will experience greater cracking. Also, as the stiffness decreases due to the 

corrosion in a concrete member, the member will exhibit higher deflection. This situation may 

lead to serviceability failure of the structure. Moreover, since corrosion happens non-uniformly, 
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the structure may become unsymmetrical after deterioration. Cross-sectional asymmetry leads to 

large eccentricity and moment on the deteriorated columns [17].  

2.1.9. Rehabilitation Techniques 

In recent years repair and retrofit of existing structures such as buildings, bridges, etc., 

have been among the most important challenges in civil engineering. The primary reason for 

strengthening structures includes upgrading structural resistance to withstand underestimated 

loads, increasing the load carrying capacity for higher permit loads, eliminating premature failure 

due to inadequate detailing, and  restoring the lost load carrying capacity due to corrosion or 

other types of degradation caused by aging, etc. 

Several rehabilitation techniques for concrete members have been identified during the 

last three decades. For instance, concrete members have been repaired by jacketing them with 

new concrete in conjunction with epoxy-bonded steel plates. However, steel plates have a 

durability problem because of their vulnerability to corrosion. This adversely affects the bond at 

the steel plate/concrete interface. Special heavy equipment is also needed to install these heavy 

plates. As a result, alternative innovative materials have been sought by structural engineers. 

During the development of advanced materials in the 1990s, the use of fiber reinforced 

polymer (FRP) sheets as material to strengthen structural members was becoming more popular 

due to the high corrosive resistance and high strength to weight ratio.  Strengthening with FRP 

has shown applicability to many kinds of structures. Currently, this method has been applied to 

strengthen such structures such as columns, beams, walls, slabs, etc. Many studies and research 

programs have been conducted to investigate this innovative method to enhance the performance 

of deteriorated RC members.  
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A laboratory study carried out by Badawi and Soudki [18], which included sixteen small-

scale reinforced concrete beams (100 x150x 1200 mm) and twenty large-scale beams (152 x254 

x 3200 mm). The specimens were exposed to different accelerated corrosion levels (5%, 10%, 

and 15%). Different CFRP strengthening schemes (directions and shapes) were used on the small 

and the large beams. The authors reported that all strengthened beams exhibited increased 

stiffness over un-strengthened specimens and a marked increase in the yield and ultimate 

strength. 

Moreover, Bonacci and Maalej [20] carried out an experimental program to provide a 

realistic assessment of the potential use of CFRP materials in the repair and strengthening of 

reinforced concrete flexural members exposed to a corrosive environment. Seven specimens (270 

x 400 x 4350 mm) were tested. Four of the seven RC beams were reinforced externally with one 

or two layers of CFRP composite, and were tested under sustained and monotonic loading.  

CFRP external reinforcement increased beam load carrying capacities by 10–35% and reduced 

deflection by 10–32% with respect to the control specimen. The results showed that the use of 

CFRP sheets for strengthening corroded reinforced concrete beams was an efficient technique 

that could maintain structural integrity and enhance the behavior of such beams. 

Additionally, the use of near surface mounted (NSM) fiber reinforced polymer (FRP) 

rods to strengthen RC beams has been recognized as a promising technology for increasing 

flexural and shears strength of deficient RC members.   A study by Nurbaiah et al. [21] reported 

that the percentage of stiffness increase was 55% to 85% for beams strengthened with NSM 

glass fiber reinforced polymer (GFRP) bars, and that they mostly failed in flexure after the 

longitudinal steel reinforcement yielded. With the limited number of studies of corroded RC 

beams strengthened with FRP, there is a need for further investigation. 
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2.2. Carbon Fiber Reinforced Polymer (CFRP) 

This section of the report is an introduction to fiber reinforced polymer (FRP) materials 

as an external reinforcement to strengthen existing structures. More specifically, the review will 

only cover one type of fibers: carbon fiber reinforced polymer (CFRP).  The use of CFRP as 

reinforcement for strengthening and repairing structural members, as well as the advantages and 

disadvantages of this technique, will be discussed briefly. 

2.2.1. Overview 

The term fiber reinforced plastic/polymer (FRP) describes a group of advanced 

composite materials composed of synthetic or organic fibers embedded in a resin. In advanced 

composite materials, the fibers are oriented at high volume fractions in the directions of 

significant stress in order to maximize the utility of the fibers. The most common FRPs consist 

of continuous fibers of glass, aramid, or carbons embedded in a polymer resin matrix such as 

polyester or epoxy and are called carbon FRP (CFRP), aramid (AFRP), and glass FRP (GFRP). 

In recent years, there has been a surge of activities in the civil engineering research 

community to test and demonstrate the viability of these new materials for the construction of 

more durable structures, and for the repair and rehabilitation of existing structures. Many 

creative applications of fiber composites have been developed by researchers around the world, 

such as reinforcing and re-stressing concrete structures, seismic retrofitting of concrete and 

unreinforced masonry structures, and strengthening of buildings, bridges, and etc. The efforts of 

these researchers have resulted in many successful demonstration projects. Therefore, the use of 

FRP for externally bonded reinforcement (EB-FRP) to rehabilitate and strengthen existing 

structures and materials of RC elements is becoming a widely accepted practice [22].  Of the 

three types of FRP, mentioned here, CFRP has the highest tensile properties. 
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Over the past few years, external strengthening using CFRP composites gained popularity 

over steel for several reasons, including material cost, lower weight, corrosion resistance, and 

ease of application (Figure7).  

 

Figure 7: Stress-strain diagrams for different unidirectional FRPs and steel [22]  

 

If the service life of a structure is shorter than anticipated, investments related to 

maintaining the structure can be justified. The maintenance can be categorized into two types, 

repair (retrofit) and strengthening (upgrading) of a certain structure [23].  Strengthening with 

CFRP sheets has shown to be a beneficial alternative to structural elements that have had a 

change in function. It has been shown from past studies that CFRP sheets can be used to enhance 

the capacity of both flexural and shear. Table 4 presents some material data for the most 

common materials.  
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Table 4: Mechanical properties of common strengthening materials [2] 

 Modulus of 
elasticity 

[GPa] 

Compressive 
strength 
[MPa] 

Tensile strength 
[MPa] 

Density 
[kg/m3] 

Concrete 20-40 5-60 1-3 2400 
Steel 200-210 240-690 240-690 7800 

Carbon fiber 200-800 NA 2500-6000 1750-1950 
 

2.2.2. Application of CFRP 

For structural applications, CFRP is mainly used in two areas. The first application is the 

use of CFRP bars instead of steel reinforcing bars or pre-stressing strands in concrete structures. 

The second, and the more common, method of strengthening deficient RC members is by 

adhesive bonding thin, prefabricated sheets or strips of composite laminates known otherwise as 

CFRP sheets/strips to the surfaces of RC beams or slabs to increase their capacity [24]. This 

method has been established around the world as an effective method applicable to many types 

of concrete structural elements. The performance of these strips depends on several variables:  

the bonding strength of the adhesives used, the state of stress at the interface of the concrete and 

the FRP strips; the failure modes of the concrete; methods of curing; and the material 

preparations needed [24]. These factors, among a host of other considerations, form the bases for 

design and safety concepts. 

2.2.3. CFRP Advantages and Disadvantages  

The advantages and disadvantages of FRP materials are summarized and listed in Tables 

5 and 6. The tables as presented are a collection of relevant points from sources [22, 31]. 
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Table 5: Advantages of CFRP 

Advantages of CFRP 

§ High ultimate strength  (2-3 times greater than steel) 

§ Lower density than steel 

§ Strength to weight ratio is higher than for steel  

§ Requires little maintenance  

§ Excellent durability  

§ Excellent corrosion resistance  

§ Good flexibility  

§ Handling and installation is significantly easier than for steel 

 

Table 6: Disadvantages of CFRP 

Disadvantages of CFRP 

§ High cost  

§ Long-term durability is not yet available 

§ The transverse strength is low 

 
 

2.2.4. Failure Modes	

Tests on reinforced concrete beams with CFRP sheets bonded to the tension face showed 

that although the CFRP reinforcement was effective in enhancing both stiffness and strength, 

catastrophic failures occurred when the beam load capacities were reached [25]. Failure of CFRP 

strengthened beams may occur by either CFRP rupture, steel yield and CFRP rupture, concrete 
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compression failure, shear failure, delamination of CFRP, or debonding of the composite 

attachment. 

The debonding of an externally bonded CFRP sheet/ strip can be predicted by 

considering the different bond failure modes, which can occur under any of the following 

occurrences: bond-critical failure modes (end debonding or intermediate crack debonding); 

cohesive and adhesive strengths of the concrete; ultimate strength for end debonding (concrete 

rip-off); ultimate strength for intermediate rip-off; and, interfacial stresses for the serviceability 

limit state [22] as shown in Figure 8. Failure in the case of RC beams may take place through 

concrete crushing before yielding of the reinforcing steel, steel yielding followed by FRP 

rapture; steel yielding followed by concrete crushing, cover delamination; and/or FRP 

debonding. 

 

Figure 8: Failure modes of FRP wrapped RC beams 
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2.2.5. Experimental Investigation   

Balamuralikrishnan et al  [26] conducted an experimental study on beams to evaluate the 

performance of RC beams bonded with single and double layer CFRP fabric at the soffit of the 

beam under static and cyclic loading.  A total of ten RC beams, all having a size of 6in. x10in. 

x125 in., were cast and tested over an effective span of 3000 mm up to failure. The beams were 

designed as under-reinforced concrete beams. The authors concluded that CFRP fabric properly 

bonded to the tension face of RC beams can enhance the flexural strength substantially. The 

strengthened beams exhibited an increase in flexural strength of 18% to 20% for a single layer 

and 40% to 45% percent for two layers, during both static and compression cyclic loading. In 

general, the strengthened beams exhibited increased flexural strength, enhanced flexural 

stiffness, and composite action until failure. 

AI-Ham et al [27] investigated the effect of a mild level of corrosion of steel reinforced 

concrete on flexural and bond fatigue strength under repeated loading. This investigation was 

carried out on thirty beams of sized at 6in. x10in. x79in. To attain the required level of corrosion 

within a reasonable time an accelerated corrosion technique was used. Results showed that a 

mild level of corrosion (5% mass loss) caused on average 10% and 20% reduction in flexural and 

bond fatigue strength, respectively. The effect of the addition of carbon fiber reinforced polymer 

(CFRP) sheets on the fatigue life of corroded RC beams was also assessed. The authors reported 

that repairing with CFRP sheets increased the fatigue capacity of the beams with corroded steel 

reinforcement beyond that of the control unrepaired beams with non-corroded steel 

reinforcement.  

EI Maaddawy et al [28] presented results of an experimental study designed to evaluate 

the performance of severely corroded reinforced concrete beams repaired with carbon fiber 
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reinforced polymer (CFRP)  sheets.  Eight RC T-beam specimens were constructed and tested to 

failure under four-point load configurations. Seven beams were pre-subjected to accelerated 

corrosion for five months that corresponded to an average tensile steel mass loss of 22%. The 

authors found that corrosion damage significantly reduced the flexural capacity and ductility of 

the unrepaired beam. Also, they concluded that the carbon fiber reinforced polymer (CFRP) 

system fully restored the capacity of the corroded beams. 

Shihy et al [29] reported that strengthening composite beams and concrete slabs 

strengthened with CFRP sheets increased the load carrying capacity of the beam by 15%. This 

increase was related to the thickness of the CFRP sheet; doubling the sheet thickness increased 

the ultimate capacity of the beams to 21%. The load carrying capacity of the strengthened beams 

with corrugated sheet predicted by the experimental data is higher than that of the control beams 

by 12%. The ductility of the strengthened beams had a range of 2.4 to 2.5, compared to 3.5 for 

the control beam. The low ductility of strengthened beam indicates that the addition of CFRP as 

reinforcement greatly reduced the deforming ability at the ultimate stage of loading.  

Obaidat et al [3] presented the results of the experimental study conducted to investigate 

the behavior of structurally damaged full-scale reinforced concrete beams retrofitted with CFRP 

laminates in shear or flexure. The main variables considered were the internal reinforcement 

ratio, position of retrofitting, and the length of CFRP. The stiffness of the CFRP-retrofitted 

beams increased compared to that of the control beams. Employing externally bonded CFRP 

plates resulted in an increase in maximum load. The increase in the maximum load of the 

retrofitted specimens reached values of about 23% for retrofitting in shear and between 7% and 

33% for retrofitting in flexure. Moreover, retrofitting shifted the mode of failure to brittle 
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behavior. The results showed that the main failure mode was plate debonding, which reduced the 

efficiency of retrofitting. 

AI-Hammoud et al [31] investigated the flexural behavior of thirty, 6in. x10in. x79in. 

corroded steel reinforcement beams repaired with CFRP sheets under repeated loading. They 

concluded that, repairing with a double flexural CFRP sheet at a high corrosion level increased 

the flexural fatigue capacity of corroded beams by 42% at 50000 cycles and 17% at 750000 

cycles compared to the corroded beams. Further, they found that there was no difference in 

strength between repairing the beams with a single layer and a double layer of CFRP sheets. 

When severely cracked beams were repaired with FRP, their life was extended by about ten 

times, suggesting that beams in service could be effectively rehabilitated using FRP. High-

modulus FRP sheets have excellent tensile and fatigue strength properties but little global 

ductility. 
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CHAPTER 3:  EXPERIMENTAL WORK 

3.1. Beam Design 

To meet the goals of this study, five one-third-scale simply supported beams specimens 

were designed and tested. The scale of the specimen was selected to accommodate the 

limitations of laboratory space, instrumentation, and access to rebars with characteristics similar 

to those for the full-scale test. The beams were designed and analyzed in compliance with the 

specifications given by the American Concrete Institute ACI 318-14 and ACI 440.2R-08. All 

five beams have the same cross section of 4 in. x 6 in and span length of 6 feet, and were tested 

under third-point loading.  

3.1.1. Description of Beam Specimens 

Beam No. Description 

Beam #1 Deteriorated 

Beam #2 Plain concrete beam  

Beam #3 Control RC beam, un-corroded 

Beam #4 Deteriorated beam + One layer of CFRP 

Beam #5 Deteriorated beam +Two layers of CFRP 

 

Beam #1 is used to represent an extremely corroded and deteriorated concrete beam. The 

deterioration was represented by pulling out the temporary reinforcement shortly after the beams 

were set to cure. The voids represent the loss in bond to the concrete and the loss in steel cross 

section.  Figure 9 shows the mold for Beam #1. 
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Figure 9: Deteriorated beam mold 

 

The purpose of Beam #2 is to compare the load carrying capacity of a plain concrete 

beam to a deteriorated concrete beam (Beam #1). Figure 10 shows the mold for Beam #1.  

 

Figure 10: Plain concrete mold 
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The mold and reinforcements of control (un-corroded) Beam #3 are shown in Figure 11. 

Beams #4 and #5 are the same as Beam #3 and are externally bonded and wrapped with one and 

two layers of CFRP sheets. 

 

 

Figure 11: Reinforced concrete beam mold 

 

3.2. Beam Construction  

3.2.1. Construction materials  

The fabrication of the beams formwork as well as mixing the concrete was done at the 

South Green House at Portland State University. The concrete was cast and cured outside the 

South Green House with the help of other undergraduate and graduate students. The flexural and 

shear reinforcement of the control beam (Beam #3) consisted of 2 - #3 longitudinal steel bars and 

#9-gauge wire stirrups. The experimental steel yield stresses (fy) were determined in a previous 

experiments done by a graduate student colleague and are shown in Table 7. 
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Table 7: Steel reinforcement  yield strength 

Steel bas size Yield strength, fy (ksi) 

#3 bars 74 

#9 gage wire stirrups 30 

 

The formwork consisted of plywood to provide good finishing of substrates. Two beams 

were cast at a time, and ten cylinders 6in. x 12in. were retained as samples for compressive 

strength testing (Figure12). The concrete was mixed using a small rotary mixer and shoveled into 

the formwork, and a steel rod was used to minimize air voids in concrete members as in Figure 

13.  

 

 

Figure 12: Concrete beams and cylinders 
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Figure 13: Mixing concrete on sit 

 

3.2.2. Concrete Properties 

In order to maintain general applicability of these results, a typical unit weight and 

concrete compressive strength of 3000 psi were used. Experimental compressive strengths were 

obtained by testing standard 6x12 inch cylinders and standard flexural tests for each concrete 

batch as presented in Table 8. The concrete compressive strengths at testing ages were slightly 

higher than the mix design target strength. The average compressive strength and modulus of 

rupture are shown in Table 9. 

Table 8: Concrete compressive strength 

Test Date Compressive strength f'c (psi) 
11-Mar 2476 
16-Mar 3042 
15-Apr 3679 
20-Apr 3136 
6-May 3767 
Average  3220 
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Table 9: Concrete properties (average values) 

Compressive strength 
f’c (psi) 

Modulus of rupture 
fr (psi) 

Modulus of elasticity 
Ec (psi) 

3220.0 429.9 3.3*106 

 

3.2.3. Casting of Beams  

A single beam was fully reinforced in shear and flexure. The steel reinforcements were 

cut on-site to the required length and assembled in the cage ready for concrete casting. Plastic 

spacers were used in formwork as well as corner chamfers to provide beam specimens typical of 

those used in construction.  For the deteriorated beams (Beams #2, #4, and #5), small sizes of 

reinforcements were cut and inserted after they were greased in the formwork as shown in 

Figure14. All five beams were cast and cured under similar conditions. After six hours of 

concrete curing, reinforcements were safely pulled out of three beams (#2, #4, and #5) leaving 

voids. The voids represent the area of the steel reinforcement after it has been completely 

corroded (Figure 15, 16 & 17). 
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Figure 14: Temporary reinforcement in deteriorated Beam #4 &5 

 

Figure 15: Shear voids in the deteriorated beam 
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Figure 16: Voids representing deteriorated flexural reinforcement 

  

 

Figure 17: Voids representing deteriorated shear reinforcement 
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3.2.4. Composite Material  

The type of composite material used in this project is a unidirectional carbon fiber 

reinforced fabric. It is composed of a dense network of high strength carbon fibers held in a 

unidirectional alignment with a light thermoplastic glass fiber cross weave yarn. The properties 

of the used CFRP material are shown in Table 10. The bonding agent used was MasterBrace 

SAT 4500. After the beams were wrapped, they were cured for a minimum of one week prior to 

testing. 

Table 10: CFRP tensile and physical properties 

Property Requirement 

Ultimate Tensile Strength, f*fu 550 ksi  [3800 MPa] 

Tensile Modulus, Ef 33000 ksi [227 GPa] 

Ultimate Rupture Strain, ε*fu 1.67% 

Nominal Thickness, tf 0.0065 in/ply[0.165 mm/ply] 

Fiber Tensile Strength 720 ksi (4950 MPa) 

 

3.2.5. Application of Carbon Fiber Reinforced Polymer 

Special consideration was given to surface preparation before bonding the CFRP sheets 

to the concrete surface. Sandblasting was employed to remove the weak layer from the surface of 

the beam, and then the surface was cleaned with a high-pressure air jet. The beam corners were 

grinded and smoothed per ACI 440.2R-08 as in Figure18. 
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Figure 18: Beam surface and corner preparation 

 

Strips of carbon fiber reinforced polymer sheets (CFRP) were cut to the proper dimension 

and bonded to the tension side (longitudinally) over the length of Beam # 4 and Beam #5. The 

strips were extended few inches at both ends as well as along the sides of the beams to reduce the 

risk of de-bonding failure. Also, a continuous sheet of CFRP was wrapped around the entire 

cross section of the beams.  The deteriorated beams (Beam #4 &5) were wrapped with CFRP 

around the circumferential of the beams first, and then were strengthened in tension. The layout 

of CFRP strips and CFRP wrap will typically be as indicated in the application procedure. Figure 

19 presents a better view for the actual application. 
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Figure 19: CFRP wrapped Beam #5 

 

3.3. Test Setup and Data Collection   

 
All beams were tested to failure under two-point loading as shown in Figure 20. Prior to 

testing, beams were checked dimensionally, and a detailed visual inspection made with all 

information carefully recorded. The load was applied to the concrete beams though a steel plate 

and half rollers with a flat side. The rollers consisted of 1 in. radius steel rods on a flat steel plat 

that extended across the entire width of the beams. All load points in contact with concrete 

surfaces were distributed with steel plates to avoid stress concentration problems. Since the non-

reinforced beams have a low tensile strength, the load was manually applied at a constant rate. A 

strengthened modulus beam in the testing machine is presented in Figure 21. Two channels of 

data were collected during the tests, the applied load and centerline displacement (measured with 

a National Instrument Data Logger), Figure 22.  
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Figure 20: Testing beams suing two-point loading 

 

Figure 21 : Retrofeted beam test setup in the Greenhouse lab. 

 



 
 

48 

 

Figure 22: Data logger 

 

Figure 23: Beam test set-up 
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Figure 24: Point load 

 

Figure 25: Testing CFRP-wrapped beam 
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CHAPTER 4:  EXPERIMENTAL RESULTS 

 
This chapter will summarize the experiment results in terms of ultimate applied load, 

maximum deflection, and failure modes for each beam. In addition to that, a comparison between 

all beam capacities and contribution of carbon fiber reinforced polymer sheets will be presented 

in this section. 

4.1. Summary of Results  

4.1.1. Beam #1 (Deteriorated Concrete Beam)  

The deteriorated concrete beam experienced a classic brittle failure of concrete loaded in 

bending.  The cracks observed on the concrete specimen had a high speed of propagation, then a 

sudden rupture of the specimen. This brittle failure is due to the fragility of concrete and the low 

tensile strength developed in the tension zone of the element. Figure 26 shows the specimen after 

failure. From the collected data, the maximum load capacity of the beam is 0.27 kips. The 

deflection corresponding to this load was 0.0071 in. 

4.1.2. Beam #2 (Plain Concrete Beam) 

This beam experienced a very similar brittle failure mode as beam #1 as shown in Figure 

28. The load capacity was slightly higher than that of Beam #1 due to the full concrete cross 

section without voids. Beam #2 failed at a higher load of 0.54 kips and it had a slightly lager 

deflection value of 0.015 in.  
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Figure 26: Failure mode of beam #1 

 
Figure 27: Beam #1 brittle failure 

 
Figure 28: Beam #2 brittle failure 
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4.1.3. Beam #3 (RC Beam) 

Beam #3 was the control beam with un-corroded reinforcement. This beam was used as a 

reference for the members strengthened with CFRP materials. The maximum load capacity of the 

beam was 6.8 kips. The deflection corresponding to this load was 1.55 in. This beam experienced 

a typical ductile failure mode of reinforced concrete beams. Central cracks propagated starting a 

load of 3kips and continued until a major failure in the shear zone occurred as expected. Yielding 

of steel was at a second stage until total crushing took place as shown in Figure 29, 30 & 31. 

 

Figure 29: Concrete crushing in the compression zone 
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Figure 30: Crushing concrete cover 

 

 

Figure 31: Yield of steel reinforcement in beam #3 
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4.1.4. Beam #4 (One Layer of CFRP) 

This beam is similar to Beam #1 but with one layer of CFRP applied to the bottom of the 

beam for flexure, and around the circumference for shear.  The maximum load was measured as 

7.89 kip, with a maximum deflection of 1.78 in. at failure. The failure mode was a combination 

of rupture of the carbon fabric in shear and tension sides, and sudden brittle failure due to the 

lack of steel reinforcement as shown in Figure 32 & 33.  

 

Figure 32: Beam #4 failure mode 

 

Figure 33: Combined rupture and brittle failure 
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4.1.5. Beam #5 (Two Layers of CFRP) 

This beam was the same as Beam #4, however; two layers of CFRP were externally 

bonded in flexure and shear. Due to the increase of number of layers and CFRP thickness, one 

can expect the beam capacity to increase at least twice that of Beam #4. Beam failure occurred at 

a maximum load of 14.58 kip. The measured deflection at failure was also higher at 3.05 in., 

Figure 34. 

 

Figure 34: Beam #5 deflection capacity 
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Figure 35: Beam #5 shear failure  

 

 

Figure 36: Beam failed half span distance 

 

 

 

 

 



 
 

57 

CHAPTER 5:  DISCUSSION OF RESULTS 

5.1. Failure Load 

Table 11 summarizes the maximum loads carried by the tested beams. Beam #5 

exhibited the greatest load carrying capacity, which was about 2 times that of the control 

beam. Comparing the results of Beams #4 and #5 shows that the load-carrying capacity is 

doubled when a beam is strengthened with two layers of CFRP, both circumferentially and 

longitudinally covering the entire span. This was expected due to the higher strength and 

modulus of elasticity of the CFRP sheets used in Beam #4 and #5.  Graphical representations of 

the beams behavior are shown in Figures 37, 38 & 39.  

Table 11: Experimental max failure load 

Beam No. Beam Experimental 
Failure Load (kip) 

Ratio 
Pexp. / PRC 

1 Deteriorated 0.274 0.040 
2 Plain 0.538 0.078 
3 RC (Control) 6.89 1.00 
4 CFRP (One layer) 7.89 1.15 
5 CFRP (Two layers) 14.58 2.12 

 

Furthermore, comparing results of Beams #3 and #4 indicates that both beams 

experienced similar load carrying capacity, suggesting that using one layer of CFRP sheets or     

2 - #3 steel rebars (fy = 60 ksi) as a strengthening systems leads to the roughly the same load 

carrying capacity. CFRP helped the deteriorated beam restore its load carrying capacity. 
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Figure 37: Load-Deflection relationship for un-reinforced beams 

 

Figure 38: Load-deflection relationship for reinforced and retrofitted beam 
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Figure 39: Load-deflection relationship for all beams 
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beams’ load-carrying capacity.  Better view of the comparison between all beams is shown in 

Figure 40. Note that Beam #1 and #2 are shown on a secondary axis. 

 

Figure 40: Load-deflection relation for all five beams on separate axis 
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mid-span deflections of all the beams at their failure loads. The largest deflection was 

experienced by Beam #5. This beam had a maximum deflection of 3.05 inches, twice that of the 

control beam. Conversely, Beams #1 and #2 experienced the lowest deflections at failure load, 

respectively. All the strengthened beams experienced deflections larger than those of the control 

beam at their failure loads, which proves that using CFRP increased the load carrying capacity 

and ductility of the deteriorated beams. 

Table 12: Experimental max deflection 

Beam No. Beam Experimental Max. 
Deflection (in.) 

1 Deteriorated 0.0071 

2 Plain 0.0153 

3 RC (Control) 1.55 

4 CFRP (One layer) 1.78 

5 CFRP (Two layers) 3.05 

 

The beam deflections were also compared at the 4.85 kips service load of the control 

beam (Table 13); CFRP reinforced beams experienced significantly larger deflections. The 

service load was calculated based on the ultimate load applied on the control beam (Beam #3). 

This was expected since the presence of the CFRP sheets increases the strength of the 

deteriorated beams allowing the beams to deflect more. The stiffness of the strengthened beams 

was higher than that of the control beams. Increasing the numbers of CFRP layers generally 

reduced the mid span deflection at service load and increased the beam stiffness for the same 

value of applied load. The CFRP prevents the distribution of cracks, it can keep the original 

shape of beam and increase the deformability of the concrete and thus, the behavior becomes 

ductile instead of being fragile. 
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Table 13: Beam deflection at service load 

 
Deflection 

(in) Beam 1 Beam 2 Beam 3 Beam 4 Beam 5 

 0.27 0.0071 0.0068 0.0366 0.0021 0.0036 

 0.54  0.0153 0.053 0.0021 0.0146 
Service 

load 4.85   0.355 0.926 0.576 

 6.8   1.55 1.5 0.86 

 7.89    1.78 1.07 

 14.58     3.05 

 
Failure load 

(kip) 0.27 0.54 6.8 7.89 14.58 

 

5.3. Absorbed Energy  

In calculating the energy absorption of the tested beams, load-displacement curves are 

used. The area under the curve yields the energy stored in each beam before it fails. Energy 

absorption rates of all beams were calculated using the computer software Mathcad. The amount 

of convertible energy is directly proportional with the length of the plastic region. As energy is 

the ability to do work, the amount of energy consumed has importance. In the load-displacement 

curve, energy consumption was found at the point where the maximum loading occurred and are 

shown in Table14. 

Table 14: Beam absorbed energy at max load 

Beam No. Beam Absorbed Energy @ 
max load 

1 Deteriorated 0.000877 
2 Plain 0.0043 
3 RC (Control) 8.53 
4 CFRP (One layer) 8.126 
5 CFRP (Two layers) 28.08 
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The area under the load-deflection curve is used to estimate the energy-absorbing 

capacity or toughness of the material, Figure 41. Increase of the toughness also means improved 

performance under loading.  From Figure 42, the energy absorption is larger for fiber-reinforced 

specimens than that for plain concrete specimens. This implies that the fiber-reinforced 

specimens require more energy to fracture than the plain concrete. 

 

Figure 41: Energy absorption for beam #1 & #2 
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Figure 42: Energy absorption for beams #3, #4 &#5 

 

5.4. Theoretical correlation  

5.4.1. American Concrete Institute 

The guidelines suggested by ACI Committee 440.2R on calculations for shear 

strengthening effect using FRP to a reinforced concrete beam were used to predict the 

contribution of CFRP. The guidelines also present guidance on calculations on flexural 
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strengthening effect of adding longitudinal FRP reinforcement to the tension face of a reinforced 

concrete member [32]. 

  

Figure 43 :Internal stress-strain relationship for tensile RC [32] 

 
 

The beam theoretical load capacity, Pn, was obtained from Eq. 3 
 

𝑃𝑛 = !" ×!
!

                                               Equation 3 
  
where Mn = theoretical moment capacity, and L = span length of the beam specimen. 

 
 
 

The nominal flexural strength of a section with CFRP external reinforcement is computed from 
Eq.4 

 
𝑀! = 𝐴!𝑓! 𝑑 !!!

!
+ 𝜓!𝐴!𝑓!"(ℎ

!!!
!
)                             Equation 4 

The nominal shear strength of a CFRP-strengthened concrete beam can be determined by adding 

the shear resistance contribution of the FRP (Vf) to the steel stirrups contribution (Vs) and 

concrete shear resistance (Vc) according to Eq.5 
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𝑉 = 𝑉! + 𝑉! + 𝑉!                                               Equation 5 

Where Vc and Vs can be determined from design standard, such as ACI 318-08. The shear 

contribution of the FRP shear reinforcement can be determined by calculating the force resulting 

from the tensile stress in the FRP across the assumed crack. Therefore, FRP contribution to shear 

strength is based on the fiber orientation and the assumed crack pattern. The shear contribution 

of the FRP shear reinforcement can be determined by: 

𝑉! =
!!"!!" !"#!!!"#! !!"

!!
                                        Equation 6 

where the α is the inclination angle of the CFRP, sf is the width of the CFRP and , Af is the total 

FRP area. 

The deflection at the mid-span of all beam were calculated using the maximum deflection 

equation  

∆= ( !"
!"!"

)× 3𝐿! − 4𝑎!                                            Equation 7 

5.4.2. Comparison of Analytical Calculations with Experimental Results 

Results from the experimental and analytical study are shown in Table 15. The maximum 

loads of all of the beams are calculated using the analytical procedure presented in the previous 

section and are compared with the experimental results. Compared to the experimental values for 

all systems, the design method provides reasonable accuracy. The ratio of Pexp / Ptheo. 

(Experimental study / Analytical study) are about 1.00 for all beams. Also, Figure 44 compared 

theoretical and experimental max load capacity for all beams. It is clear that the calculated values 

are very close to the experimental results.  
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Table 15: Theoretical max load 

Beam Beam No. Experimental 
max load (kip) 
 

Theoretical 
max load (kip) 
 

Ratio 
Pexp/Ptheo 
 

Deteriorated 1 0.274 0.266 1.03 
Plain 2 0.538 0.531 1.01 
RC 3 6.89 6.64 1.04 

CFRP (One layer) 4 7.89 7.60 1.04 
CFRP (Two layers) 5 14.58 14.40 1.01 

 

 

Figure 44: Theoretical vs. experimental load values  
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Also, Table16 presents the comparison between the experimental and theoretical 

deflection. The ratio between the experimental and theoretical values varies from 0.5 to 1.6.  

Table 16: Beam experimental and calculated deflection values 

Beam Beam 
No. 

Experimental 
Max Deflection 

(in.) 

Theoretical 
Max deflection 

(in.) 

Ratio 
Δexp/ Δtheo 

Deteriorated B1 0.0071 0.0152 0.5 
Plain B2 0.0153 0.0304 0.5 

RC (Control) B3 1.55 0.975 1.6 
CFRP (One layer) B4 1.78 1.11 1.6 

CFRP (Two layers) B5 3.05 2.11 1.4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

69 

CHAPTER 6:  Conclusions 

From the experimental and analytical study conducted in this research project, on beams 

strengthened in shear and flexure with externally bonded CFRP reinforcement the following can 

concluded:  

• Carbon fiber reinforced polymer significantly improved the behavior of fully corroded 

reinforced concrete beams. 

• The results show that CFRP laminates provides additional load carrying capacity. 

• The capacity of the deteriorated beam with one layer was restored compared to the 

original beam.   

• Using a proper combination of circumferentially and longitudinal fibers coupled with the 

proper epoxy can double the ultimate load carrying capacity of “original” beams without 

corroded steel. 

• All the CFRP strengthened beams exhibited brittle behavior requiring a higher factor of 

safety in design. 

• The number of the fiber layers was found to have an important effect, especially where 

two layers were applied. There was a greater strengthening effect and better control of the 

shear crack propagations.  

• There was a consistency for the strengthened beams in failure mechanism, in terms of 

concrete crushing and fiber ruptures in the tension face of the beams. 

• The energy absorption increased after bonding CFRP, which means that the beams have 

become stiffer and a big load is required to break the beams. 

• The proposed ACI 440.2R design guidelines to estimate the flexural and shear capacity 

for beams strengthened gave promising results.  
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• These results also indicate that the application of CFRP laminates whenever needed, 

taking into consideration anchoring, rigidity, and stiffness, does actually results in an 

increase of strength of beams and provides additional load carrying capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

71 

CHAPTER 7:  Limitation and Future Work  

This research is limited to investigate the application of CFRP material as external 

reinforcement. Based on the experimental results, the following recommendation are made 

• There are some limitations in the corrosion consideration in the experiment. Future work 

may include investigating accelerated steel corrosion while increasing the corrosion rate 

to denote an extreme case of corrosion. 

• Only load and deflection were collected and examined. Future work may investigate the 

stress and strain distribution in the strengthen beams. 

• A finite element model may also be used to predict and verify the experimental results of 

beams retrofitted with CFRP.  

• Only simply supported reinforced concrete beams strengthened with unidirectional was 

studied. Continues beams may be investigated.  

• Most of the current experimental available work is for the case of CFRP wrapped entirely 

around the beam. Experimental studies are needed for case of the more practical U- 

jacket configuration. 

• Investigate using high strength concrete and CFRP. 

• Investigate using different orientation of CFRP sheets. 
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CHAPTER 9: Appendix A 

Beam Notation Size Unit 
Width bw 4 in 
Height h 6 in 
Length L 72 in 
Loaded length L 68 in 
Concrete cover c 0.5 in 
Effective depth d 5.75 in 
Area of concrete Ag 24 in^2 
Concrete    
Compressive strength f'c 3220 psi 
Modulus of elasticity Ec 3456 ksi 
Steel reinforcement    
Steel compressive bars diameter φ#9 0.147  
Area of compressive reinforcement A#9 0.0172 in^2 
Yield strength in shear reinforcement  fys 30000 psi 
Steel tensile bars φ#3 0.375 in 
Number of tensile bars  2  
Steel tensile reinforcement ratio ρ 0.01 1% 
Area of tensile reinforcement A#3 0.11 in^2 
Yield strength fy 72 ksi 
Modulus of elasticity Es 29000 ksi 
BFRP external reinforcement    
Thickness tf 0.0065 in 
Width df 20 in 
Fiber alignment α 0  
Modulus of elasticity Ef 33000 ksi 
Ultimate tensile strength ffu 522.5 ksi 
Ultimate tensile strain εfu 0.0159 in/in 
Flexure strengthening calculations    
Flexure load capacity Mn 79.6 kip-in 
Shear strengthening calculations    
Effective length of FRP Le 2.02 in 
Modification factor k1 0.87  
Modification factor (U-wrapped) k2 0.65  
Shear contribution of FRP Vf 9.98 kip 
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