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Influence of illumination on dark current
in charge-coupled device imagers

Ralf Widenhorn
Ines Hartwig
Justin C. Dunlap
Erik Bodegom
Portland State University
Department of Physics
Portland, Oregon 97207-0751
E-mail: jdunlap@pdx.edu

Abstract. Thermal excitation of electrons is a major source of noise
in charge-coupled-device (CCD) imagers. Those electrons are gen-
erated even in the absence of light, hence, the name dark current.
Dark current is particularly important for long exposure times and
elevated temperatures. The standard procedure to correct for dark
current is to take several pictures under the same condition as the
real image, except with the shutter closed. The resulting dark frame
is later subtracted from the exposed image. We address the ques-
tion of whether the dark current produced in an image taken with a
closed shutter is identical to the dark current produced in an expo-
sure in the presence of light. In our investigation, we illuminated two
different CCD chips with different intensities of light and measured
the dark current generation. A surprising result of this study is that
some pixels produce a different amount of dark current under illumi-
nation. Finally, we discuss the implication of this finding for dark
frame image correction. © 2009 SPIE and IS&T.

[DOI: 10.1117/1.3222943]

1 Introduction

A major source of noise in charge-coupled-device (CCD)
imagers is the generation of dark current. Even without the
presence of light one finds that an image is not all black.
White dots appear in the image and represent pixels with a
high signal caused by impurities located in the silicon wa-
fer. The dark signal for all pixels is caused by thermal ex-
citation of electrons from the valence into the conduction
band of silicon. A basic understanding of dark current in a
CCD can be gained by analyzing the dark current generated
in the p-n junction of a diode.'™ It has been shown that the
nonuniformity in the dark count is caused by deep-level
impurities, such as Ag, Fe, or Ni.®'° The fixed pattern of
the dark count can be corrected by subtracting a so-called
dark frame. A dark frame is generated by taking an image
under the same condition as the light exposure (equal ex-
posure time and temperature), with the difference that the
shutter remains closed. To decrease the effects of dark cur-
rent shot noise, often multiple dark frames are taken and
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averaged to generate a so-called master frame. If one does
not have the time to obtain a master dark frame for each
imaging session, then one can also calibrate the dark cur-
rent of a CCD chip. After the imager is calibrated for a
certain temperature and exposure time range, one can com-
pute a dark frame almost instantly.”

Every dark current subtraction assumes that the thermal
generation of electrons is identical under illuminated and
nonilluminated conditions. Hence, one assumes that the
dark current generation is not affected by the presence of
light or by the electrons that have already been optically
excited and collected in the well.

In this study, we illuminated different CCDs with light
to partially fill the well with electrons. We then compared
the dark frame generated under the preilluminated condi-
tion to a conventional dark frame.

2 Experimental Setup

For our study, we used two different cameras: in the SBIG
ST-8XE with a KAF-1602E CCD sensor and the Meade
Pictor 416XT with a KAF-0400 CCD sensor. Both CCD
chips are buried-channel frontside-illuminated CCDs. The
KAF-1602E is a 1530 X 1020 pixel array with an individual
pixel size of 9 X9 um. The KAF-0400 has the same indi-
vidual pixel size, but only 768 X 512 pixels. Both cameras
are frequently used by astronomers. We placed a light-
emitting diode (LED) operated with a constant current sup-
ply at a distance of about 10—-20 cm from the camera so
that the whole chip was illuminated approximately uni-
formly.

In order to control the influx of light during an exposure
an external shutter was mounted in front of the camera. The
internal camera shutter was opened during all exposures.
The external shutter was opened for 100—800 ms, at the
beginning of the exposure. Only for the short time that the
external shutter is opened did light reach the CCD. After
the external shutter was closed, the remaining exposure was
done in the “dark.” The light level was controlled by vary-
ing the opening time of the external shutter, the current
through the LED, and the distance between camera and
light source. Immediately following each light exposure, a
regular dark frame with the same exposure time was taken,
again with the internal shutter open and the light on; but
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Fig. 1 Graphical representation for the process of comparing dark
current in frames with and without light exposures.

this time the external shutter remained closed throughout
the whole exposure. Figure 1 illustrates the process and the
images taken for obtaining the change in dark count be-
tween frames with and without light exposure.

To measure the dark current over an integration time of
600 s with and without light, we took the following images:

1. DLgys: Frame with the presence of light, 605 s expo-
sure time, external shutter opened at the beginning of
the exposure for 100—800 ms

2. DLs: Frame with the presence of light, 5 s exposure
time, external shutter opened at the beginning of the
exposure for 100—800 ms

3. Dgps: Dark frame, 605 s, closed external shutter

4. Ds: Dark frame, 5 s, closed external shutter

The light exposure at the beginning is the same for the
DL¢ys and the DLs frames and is subtracted out by taking
the difference of the two exposures. Therefore, the dark
current, DLg,,, accumulated during 600 s after the image
was initially exposed to light is given as

DL600 = DL6()5 - DL5 .

The dark current, Dy, accumulated during 600 s while the
camera was not exposed to light, is given as

D¢y = Degos — Ds.

We will refer to this parameter as the normal dark count,
because this is the count obtained in a regular dark frame.

To compare the dark count accumulated in 600 s, one
subtracts the dark count with light from the dark count
without light:

AD = Dy — DL

For each exposure type and time, 20 and 25 images were
taken for the Pictor 416XT and ST-8XE, respectively. The
data presented here are the average values of those images.
All data are expressed in counts, the number of electrons
for each count can be obtained from the gain of each cam-
era. For the SBIG ST-8XE, the gain is 2.3 counts/e”, for
the Meade Pictor 416XT the gain is 1.2 counts/e”. The full
well levels of the ST-8XE and the 416XT were 43,500 and
85,000 counts, respectively. All data presented here are be-
low the saturation level of the chip.
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Fig. 2 Loss in dark count versus light level for six pixels for the
ST-8XE. The dark count in the light exposures decreases with in-
creasing light level. The numbers in the brackets are the x and y
coordinates of the pixel.

3 Results
3.1 SBIG ST-8XE

One generally assumes that the dark current is independent
of the light intensity. Under this assumption, the dark cur-
rent for the DLg, and the Dy, frames should be the same
and AD approximately zero. However, this is not true for
all pixels and light intensities. Figure 2 shows the change in
the dark count, AD, as a function of the average count of
the initial 5-s of light exposure for six pixels. Indepen-
dently of the initial illumination, pixels 4 and 5 do not show
a significant change in the dark count. For pixels 2, 3a, and
3b, the dark count decreases with an increasing level of
illumination.

The decrease in dark current slowly levels off for higher
illumination levels. Pixel 1 also shows a decrease in dark
count. Its decrease in dark count is roughly constant for
initial light levels of 8000 counts or more.

The normal dark count for the pixels in Fig. 2 can be
seen in Table 1. At 288 K, the average dark count across
the chip without the presence of light, Dgqy, for a 600-s
exposure is 397 counts. Except for pixel 4, all pixels in Fig.
2 are hot pixels; that is the dark count is much larger than
the average dark count of the image. As shown later, each
pixel represents a group of pixels with a distinct behavior
under illumination.

A two-dimensional distribution of the loss in dark count,
AD, versus the dark-count level, Dy, was created. The AD
versus Dggy plane was divided into intervals of size
50X 50 counts and then, for each pixel according to its
dark-count values, the frequency for the corresponding in-
terval is counted up by one. Figure 3 shows the resulting
distributions for five different illumination levels. The
shades of gray show how many pixels were in a specific
interval. Because of the wide range of frequencies, the gray
scale is represented as the logarithm of the frequency.

All five panels in Fig. 3 show a characteristic form that
gets more defined with the increase of the initial illumina-
tion level. For a specific dark-count level, only very spe-
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Table 1 Normal dark count and change in dark count under illumination at the indicated counts.

AD/ Deggp
at DLs=2,000 at DLs=8,500 at DLs=16,000 at DLs=26,000

AD/ Dy AD/ Do AD/ Dy

Pixel Group Dgop in counts  counts (%) counts (%) counts (%) counts (%)
1 1 1,139 60.4 83.8 82.1 85.6
2 2 5,956 0.8 5.2 11.9 22.2
3a 3a 2,716 7.5 24.0 39.0 51.7
3b 3b 2,846 3.2 12.4 23.9 371
4 Major peak 184 -4 -5 10 -5
5 Minor peak 6,136 -0.6 -0.5 -0.8 0.0

cific ranges of values for the change in dark count were
observed. On the basis of the decrease in dark count, we
separated those pixels into different groups.

A large number of pixels have a small amount of dark
current, and the light exposure does not change this behav-
ior. These pixels are seen in Fig. 3 with close to zero dark
current and small or no change in the dark current (main
peak). Approximately 1.5 million or 97% of all pixels be-
have this way (see also Table 2). Pixel 4 in Fig. 2 is one
example of a pixel located in the main peak. Its normal
dark count is about 184 counts, and the change for all illu-
mination levels is <20 counts. Pixel 5 in Fig. 2 is a pixel
that is located in a second smaller peak of the distribution
in Fig. 3. The ~16,600 pixels in this group have a large
dark count, Dy, of about 6000 counts and show no change
under illumination.

The greatest change in dark counts is exhibited by the
pixels in group 1. The change in dark count for those pixels
is almost as high as their initial dark count. Hence, these
pixels almost stopped generating dark current after being
illuminated. One such pixel is pixel 1 in Fig. 2. Under
“normal” conditions, without the presence of light, its dark

count at 288 K and 600-s exposure time is 1139 counts.
From Fig. 2, one observes that for an initial illumination
level of roughly 8000 counts or more, the decrease is al-
most 1000 counts. This corresponds to only ~14% of the
dark count without the presence of light (see Table 1).

In Fig. 3, a straight line can be drawn to fit all the pixels
in group 1. The slope of the straight-line fit is >0.9 for all
five illumination levels depicted. As a result, pixels in
group | have a decrease in dark count of ~90% (e.g.,
85.6% for pixel 1 in Fig. 2) of the dark count. Hence, those
pixels show almost no dark count when flashed with an
initial illumination level of 8000 counts or more (see
Table 2).

Both groups 3a and 3b show a decrease in dark level
under illumination. Pixels 3a and 3b are representative of
these groups. From Fig. 2, one can see that the dark level
decreases with increasing illumination over the whole
range of illumination levels. The percentage decrease of the
dark count is smaller than for group 1. The decrease of the
dark level for those pixels for the different illumination
levels can again be found from the slope of a linear fit
through the pixels of these groups. Pixels in group 3a have

Table 2 Change in dark count for the different groups under different illumination levels. The number
of pixels in each group was calculated using the constraints shown in Fig. 3 at 26,000 counts.

AD at AD at AD at

DL5=8,500 DL5;=16,000 DL5=26,000
Group Name No. of Pixels Dgqo in counts counts counts counts
Major peak 1,519,003 50-1,100 -250-200 -250-200 -250-200
Minor peak 16,628 5800-6200 -250-200 -250-200 -250-200
Group 1 3638 1000-6000 90% of Dggo 90% of Dggo 90% of Dggo
Group 2 757 5500-6600 250-3250 250-3250 250-3250
Group 3a 1347 1750-5450 25% of Dgqo 40% of Dggo 60% of Dggo
Group 3b 1669 2350-5400 15% of Dgyp 25% of Dggg 50% of Dggo
Other 17,558 XXX XXX XXX XXX
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Fig. 3 Distribution of the change in dark count, AD, at 288 K due to illumination for the SBIG ST-8XE

for five different light levels. The average initial counts due to the light exposure were approximately:
(a) 2,500, (b) 8,500, (c) 16,000, (d) 37,000, and (e) 26,000 counts.
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a decrease of ~25% at 8600 counts illumination [Fig. 3(b)]
40% at 16,000 counts illumination [Fig. 3(c)], and 60% at
26,000 counts illumination [Fig. 3(e)]. Hence, the dark cur-
rent level is from 75% of the normal level at 8600 count
illumination to 40% of the normal level at 26,000 count
illumination.

Group 3b has the same characteristics as group 3a, with
the percentage decrease being slightly smaller. At 8600
counts illumination, the dark count is decreased by 15%; at
16,000 counts illumination, it is decreased by 25%; and at
26,000 counts illumination, it is decreased by 50%.

Finally, group 2 is formed by pixels that have the same
normal dark count as the pixels grouped in the minor peak.
However, under illumination their dark current decreases.
As with groups 3a and 3b, the dark count decreases with
increasing illumination. Pixel 2 in Fig. 2 belongs to this
group. The percentage change in dark count for all pixels in
Fig. 2 can be seen in Table 1.

A summary of the number of pixels in the individual
groups and their change in dark count under different illu-
mination levels can be seen in Table 2. Of the pixels out-
side these groups, 3467 pixels have no change in dark
count under illumination. Furthermore, there are a small
number of pixels that have a dark count larger than in the
minor peak and a slight decrease with illumination. We
found that there is a significantly larger number of those
pixels in the KAF-0400 chip and will look at them in more
detail in Sec. 3.2. There are also some pixels that show the
opposite effect and have an increase in dark current with
illumination. Most of these lie below the main peak, and we
found that these pixels have a very hot neighboring pixel.
After the hot pixel reaches saturation, electrons can spill
over giving those pixels an increasing amount of dark cur-
rent with an increase in illumination.

3.2 Meade Pictor 416XT

The second CCD investigated in this study was the Kodak
KAF-0400 housed in the Meade Pictor 416XT. For the Pic-
tor 416XT camera, data at 278 K were taken. The experi-
mental setup and analysis were done in the same way as for
the SBIG camera.

Figure 4 shows the distribution for the change in dark
count for three different illumination levels. The images
were flashed with light that caused an average count of
approximately 12,500 [Fig. 4(a)], 25,500 [Fig. 4(b)], and
42,100 counts [Fig. 4(c)].

One finds many similarities and some differences in the
characteristic for the two chips. For the Meade, instead of
the two peaks, one finds another minor peak. The majority
of pixels are regular pixels with very little dark current
located in the major peak. Their average dark count at
278 K and 600 s exposure time is ~500 counts. There are
two groups of pixels with a dark count of ~5700 counts
(minor peak 1) and 10,900 counts (minor peak 2), respec-
tively. It is interesting to note that pixels in all three peaks
have a dark count of ~250 counts more when illuminated
to light. The normal dark count of the pixels in minor peak
2 is about twice the dark count of the minor peak 1 pixels,
making it likely that the same impurity occurs twice within
that group.

Group 1a for the 416XT is analogous to group 1 for the
ST-8XE. A straight line drawn through the pixels of group
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la has a slope of ~1. Hence, pixels in this group generate
almost no dark count when illuminated. Of course, to this
one needs to add the global positive offset of about 250
counts. One can also see a number of pixels with a similar
slope in the Dgy, versus AD graph emerge from the first
minor peak. Because of this similarity, we will call those
pixels group 1b. There are 1376 pixels, <10% of group la,
in group 1b (see Table 3). This is still a sizeable number,
and one generally notes that there is a much larger number
of pixels outside the major and minor peak groups for the
Meade. Only ~80% of the pixels are in the major peak for
the Meade camera, for the SBIG camera ~97% are in the
major peak. One can explain pixels in group 1b by assum-
ing the presence of a minor peak 1 plus a group la-type
impurity in the same pixel.

Using the same reasoning for group 2, one can conclude
that group 2b pixels contain a minor peak 1 plus a group
2a-type impurity. Again, the number of pixels in groups 2a
and 2b is much larger than the number of pixels in Group 2
of the SBIG camera. Only 0.05% of all pixels on the chip
are in group 2, while the percentage is much larger for the
corresponding groups 2a and 2b with 1.8 and 0.3%, respec-
tively (see Tables 2 and 3). Groups 3a and 3b for the SBIG
camera do not a have an equivalent in the Meade camera.
Instead, there is a larger number of pixels (group 3 with
1751 pixels) with a normal dark count larger than the first
minor peak and a significant loss in dark count. The slope
of a linear fit through group 3 pixels in Fig. 4 at 42,100
counts is given by ~0.3. It appears likely that those pixels
are the result of a minor peak 1 plus another secondary
impurity. One can further note from Fig. 3 that the SBIG
camera seems to contain a similar type of pixel as well.
However, as with the rest of the chip, the number of pixels
with impurities was smaller and we did not assign them in
a separate group. Groups 2b and 3 overlap. We counted
427 pixels twice as being both in groups 2b and 3 also
9931 pixels are not in any of the groups, with 5045 of those
at the baseline with an increase in the dark count of ~250
counts.

As can be seen from Fig. 5, the pixels on the KAF-0400
imager respond to increasing illumination in a similar man-
ner as do the corresponding groups on the KAF-1602E sen-
sor shown in Fig. 2. The pixels lying in the peaks, in this
case pixel 4 lies in the main peak, pixel 5 lies in minor peak
1, and pixel 6 lies in minor peak 2, do not show a signifi-
cant change with changing illumination level. Pixels la, 1b,
2a, 2b, and 3 all show a decreasing amount of dark count
with increasing levels of illumination, and all lie within
their correspondingly named region in Fig. 4(c). For pixels
la and 1b, the amount of dark current levels off for higher
illumination levels. The decrease in dark count is roughly
constant for pixel 1b after ~20,000 counts and is roughly
constant for pixel la after 35,000 counts.

4 Discussion

We found that results are independent of the wavelength, A,
of the illuminating light and therefore independent of the
location where photoelectrons are generated. The data for a
red LED with A=650 nm and a penetration depth in silicon
of 3 um yielded the same characteristics as a blue LED
with A=430 nm and a penetration depth of only 300 nm.
The distributions for the same light level at different

Jul-Sep 2009/Vol. 18(3)
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Fig. 4 Distribution of the change in dark count at 278 K due to illumination for the Pictor 416XT for
three different light levels. The average initial counts due to the light exposure were approximately: (a)

12,500, (b) 25,500, and (c) 42,100 counts.

temperatures were measured, and the same characteristics
were found at those temperatures as well. It was further
noted that the pixels of all groups were found to be uni-
formly distributed over the whole area of the chip.

Most pixels for the SBIG camera fall in the two peaks
and do not show a significant change in dark current. On
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the other hand, for larger intensities a majority of pixels for
the Meade camera show an actual increase in dark count.
Hence, a regular dark frame would predict a dark count that
is too small. Our data indicate that this is a global phenom-
enon across the whole chip, resulting in a constant offset.
What makes an accurate dark-count correction more prob-
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Table 3 Change in dark count for the different groups under different illumination levels. The param-
eter, Off=250 counts, represents the dark count increase of a regular pixel under illumination. The
dark count of a pixel in the first minor peak is given approximately as Dyp=5700 counts: The number
of pixels in each group was calculated using the constraints shown in Fig. 4 at 42,100 counts.

AD at AD at
Group Name No. of Pixels  Dggg in counts DL5=25,500 counts DL5=42,100 counts
Major peak 322,051 50-1600 -700-100 —-700-100
Minor peak 1 30,818  5000-6600 -600-100 -600-100
Minor peak 2 1550 10,100-11,800 -450-100 —-450-100
Group 1a 16,332 400-7400 1 X Dgo—Off 1 X Dgoo—Off
Group 1b 1376  6200-11,700 1 X (Dgog—Dyp1)—Off 1 X (Dgog—Dyp1)—Off
Group 2a 6962  5000-6200 100-3050 100-3050
Group 2b 1250 10,100-11,500 100-3300 100-3300
Group 3 1751 7600-16,300 0.2 X (Dgoo—Dyp1)—Off 0.3 X (Dgog—Dpp1)—Off
Group 2b and 3 427 XXX XXX XXX
Other 9931 XXX XXX XXX

lematic is the fact that some pixels will show a decrease in
dark count. Under large-enough illumination, pixels in
group | almost stop generating dark electrons. Of course, in
an actual exposure the photoexcitation of electrons due to
the incoming light does not happen all at the beginning of
the exposure. Assuming a constant intensity of light, pixels
in group 1 might generate dark current at a normal rate at
the beginning of the exposure and then transforms to a
non-dark-count—generating state toward the end of the ex-
posure. Our analysis can help to predict how much dark
count is generated during different stages of the exposure.
This, however, assumes that the light intensity is constant
and does not vary with time. If one does not have enough
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Fig. 5 Loss in dark count versus light level for eight pixels for the
Pictor 416XT. The numbers in the brackets are the x and y coordi-
nates of the pixel.
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knowledge of possible changes in the light intensity during
the exposure, then an accurate prediction of the dark count
of pixels in group 1 is virtually impossible.

The difficulties in correcting dark current accurately for
pixels in groups 2 and 3 are similar to those for pixels in
group 1. There are roughly 21,000 pixels, or 1.4% of the
total pixels, for the SBIG camera (T=288 K, 600-s expo-
sure time), where the dark current differs by >200 counts
for an exposure with an initial illumination level of 26,000
counts. The same pixels would show a different dark count
to a varying degree under all illumination conditions. Ig-
noring the global increase of dark current under illumina-
tion, there are roughly 28,000 pixels, or 7.1% of the total
pixels, in groups 1-3 that have a dark count that is strongly
illumination level dependent for the Meade camera.

Finally, because dark current is strongly linked to impu-
rities in the CCD, our results can lead to a new understand-
ing of the nature of those impurities. Impurities are gener-
ally characterized by the dark current they produce at a
particular exposure time and temperature. By varying the
temperature, one can also find the activation energy of a
particular impurity. For example, the activation energy can
be used to distinguish between diffusion current generated
in the field-free region or depletion current from within the
potential well.® But the nature of impurities also differs by
their behavior under illumination. A pixel in the minor peak
and a group 2 pixel show the same normal dark count.
They would be characterized as being hot and containing
one particular impurity. However, our data clearly show
that, while they may have the same impurity, the nature of
the defect in these pixels differs. Possible explanations are
that the location of the impurity within the pixel could be
the cause of the various dark current responses to illumina-
tion, or that traps, for example, located at the surface, could
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be filling with photogenerated electrons. Further work in
the study of the time-dependence of dark current in these
pixels could yield additional information on the nature of
impurities in a sensor.

Conclusion

Dark current is generally assumed to be independent of the
light level of the exposure. Differences between the actual
number of dark electrons in the real exposure and a dark
frame are generally assumed to be due to statistical noise.
However, our study shows clearly that certain pixels show
a systematic difference in their dark count under illumina-
tion.

The change in dark count AD in 600 s cannot assume
any value for a given level of light exposure—we found
that only specific areas in the AD versus Dy, plane were
observed. We were able to group the behavior of pixels
according to this discrete change. Pixels in each group may
contain one or more specific types of impurities.

We hope this study will help contribute to a better un-
derstanding of the nature of dark current and an even fur-
ther improvement of CCD image quality. More immedi-
ately, the results help to accurately correct for dark current
and in the computation of dark frames.
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