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Abstract

We present a multi-class suspended particulate matter (SPM) calibration for use with in

situ water sample SPM concentration data and backscatter (or transmission) from one or

more acoustic and optical sensors. The output of this calibration is high-resolution SPM

concentration data in several discrete settling velocity (Ws) classes. Separately for each

sensor, the calibration involves three steps: (1) a calibration of backscatter to total SPM

concentration; (2) a decomposition of resulting concentration data into several Ws-

classes, utilizing a dynamical vertical SPM profile model; and (3) a sensor bias

calibration where water sample concentration data are used to correct for the sediment

size-dependence of sensor response. Multiple sensors can be incorporated to improve the

results, as step 3 can objectively choose the best sensor for monitoring each Ws-class.

The calibration is generally applicable in wave-current boundary layers, though this paper

is focused on currents only. We demonstrate the method using data from greater-ebb

SPM export events in the Fraser River estuary, when salt has washed out beyond the river

entrance, surface currents are strong (3+ m s-1) and turbulent mixing is intense. The

resulting concentration estimates show good agreement with in situ particle-size

observations near the bed, but discrepancies increasing with height above the bed, likely

due to violation of model assumptions in the outer part of the water column. An

uncertainty analysis indicates that the standard deviation in concentration estimates is 32-

48%, primarily due to poor near-bed acoustic data coverage and uncertainty in water

sample concentration data. We conclude by discussing planned improvements for

strongly advective and aggregate-dominated systems.
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1. Introduction

Suspended particulate matter (SPM) transport and deposition in aquatic systems is

strongly constrained by the settling velocity (Ws) of the sediments of interest (Dyer,

1986; Kineke and Sternberg, 1989). Observations show that SPM is typically

heterogeneous, with a broad and highly variable spectrum of Ws values, and

correspondingly diverse transport patterns. Different classes of SPM also have specific

geological, chemical, and ecological influences during and after transport (Dyer, 1986;

Sherwood et al., 2002). In workshops focused on the development and evaluation of a

community coastal SPM transport model, researchers have stressed the need for

observations of SPM concentration (C) across a wide range of sediment classes

(Sherwood et al., 2002).

Unfortunately, observational techniques are often insufficient for model verification or

monitoring needs. It is possible to directly measure in situ C and Ws, yet these

measurements do not have the spatial and temporal resolution necessary for most

applications. The most common high-resolution techniques rely on “bulk” sediment

calibrations, where total C is monitored, ignoring Ws (Thevenot and Krauss, 1993; Bunt

et al., 1999). A drawback of bulk SPM concentration calibrations is that the response of
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an acoustic or optical SPM sensor is a strong function not only of C, but also particle

characteristics (diameter, shape and density). Most sensors respond strongly only to a

narrow range of SPM sizes, and a bulk calibration often incurs biases if particle

characteristics are variable (Bunt et al., 1999; Thorne and Hanes, 2002).

We have developed a model-dependent multi-class SPM calibration to avoid these

limitations. The calibration provides high-resolution C data in several discrete “Ws-

classes”. Not only can the approach be applied in future SPM transport studies, but also

to extensive archives of data from prior studies; it only requires in situ water sample C

data and backscatter (or transmission) profiles from one or more acoustic or optical

sensors. The calibration corrects for the dependence of sensor response on particle

diameter. Data from multiple sensors can be incorporated to widen the detected particle

size range and improve the accuracy of the resulting C estimates. Simulations suggest

that the method can resolve eight or more Ws-classes if backscatter data have high

vertical resolution and low noise levels. Near-synoptic spatial coverage is possible, but

noise levels are typically higher for mobile sampling strategies, reducing the number of

Ws-classes that can be resolved.

In this paper, we: (a) describe the calibration methodology; (b) apply the method to study

Fraser River sediment export; (c) quantify uncertainty and determine where calibration

assumptions are violated; and (d) discuss optimization, benefits and drawbacks for this

new calibration approach. We also explain that our calibrated observations are

interchangeable with direct measurements of Ws and C, and can help provide high-
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resolution, spatially distributed multi-class SPM data useful for evaluating three-

dimensional models.

2. Background

Several approaches have been developed for in situ monitoring of multi-class SPM.

There are four main approaches for partitioning observed C data into different sediment

classes (Dyer et al., 1996; Agrawal and Pottsmith, 2000; Thorne and Hanes, 2002): (a)

settling chambers, (b) underwater video, (c) multi-frequency backscatter techniques, and

(d) laser-diffraction methods. While these approaches have improved our ability to

monitor sediment transport, all have important limitations. Settling chambers and

underwater video are difficult to deploy in environments with high levels of shear or

turbulence, have extremely limited spatial and temporal resolution, and give

concentration-dependent results. These systems also alter the hydrodynamic environment

of trapped particles, changing settling rates of aggregated fine sediments (Milligan,

1995). Different settling tube techniques commonly give Ws estimates that vary by an

order of magnitude (Dyer et al., 1996). Video techniques are unable to distinguish finer

particles, and thus estimation of C data in slow-settling Ws-classes is difficult (Fennessy

and Dyer, 1996). At the very least, it would be useful to verify the many published

settling tube and video 'observations' of aggregate Ws with data from a non-intrusive

method such as the one presented in this paper.

Laser-diffraction and multi-frequency acoustic methods are useful because they can

provide in situ high frequency, relatively non-intrusive measurements of C in several
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size-classes. However, these approaches do not provide a complete solution for

suspensions that include aggregates, because they rely on inversion algorithms that

incorporate shape and/or density assumptions. The particle size range of these methods is

often limited, and multi-modal size distributions are usually problematic. Furthermore,

these methods provide size-class partitioned C data; direct measurements of Ws-class

partitioned C are only available with use of a paired settling chamber (Agrawal and

Pottsmith, 2000; Thorne and Hanes, 2002). Finally, for dynamical studies it is better to

avoid using particle diameter (D) as an intermediary for Ws; uncertainty in particle size is

amplified in the conversion to Ws because Ws ∝ D2 for fine sands and finer sediments

(Gibbs et al., 1971).

3. Calibration Methodology

Our multi-class SPM calibration, summarized in Figure 1, involves three steps: (1) a

total SPM calibration that provides a reasonable initial estimate of C; (2) a model-

dependent decomposition of these C data into several Ws-classes; and (3) a sensor bias

calibration where water sample C data are used to correct for the sediment size-

dependence of sensor response. Multiple sensors can be incorporated to improve the

results, as step (3) can objectively choose the best sensor for monitoring each Ws-class.

3.1. Step 1: Total SPM calibration

A total (bulk) SPM calibration provides reasonable initial estimates of C for our multi-

class calibration technique. A total SPM calibration is performed separately for each
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acoustic and optical sensor, through comparison with in situ water sample SPM

concentration data (Cwatersample). Common sensors include those that measure optical

backscatter (OBS) or transmission (summarized in Bunt et al., 1999), acoustic

backscatter pressure (summarized in Thorne and Hanes, 2002), or acoustic backscatter

(ABS) from Doppler current profilers (Thevenot and Krauss, 1993; Deines, 1999). As

mentioned above, this initial bulk calibration has two major drawbacks: it determines

only total C, and it can incur biases if the SPM field is heterogeneous. Steps 2 and 3 of

our multi-class SPM calibration eliminate these limitations.

3.2. Step 2: Model-dependent decomposition

In the model-dependent decomposition, a dynamical vertical SPM model is used to

partition C data from Step 1 into several Ws-classes. This model should be practical and

fast, with a computation time of no more than one day for thousands of profiles. The only

free variables must be Ws, which determines the profile slope, and a reference

concentration (Ca) that scales the profile; other unknowns must be estimated from theory

and observations. In this paper, we utilize a model for current boundary layers only (Hill

et al, 1988), but many wave-current boundary layer models also have these characteristics

(Davies et al., 2002). A set of Ws values is chosen to represent the Ws-classes that might

be in suspension, then the model is used to create a basis function (profile shape) for each

Ws-class. The scaling (Ca) for each Ws-class is set with a least-squares regression so that

their sum most closely approximates the total C from Step 1 (Figure 2).

A SPM profile model for steady or quasi-steady current boundary layers can be derived

from simplifications of the mass conservation equation for SPM in a transporting fluid.
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Neglecting horizontal turbulent mixing, the SPM conservation equation for a single Ws-

class may be written:
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This involves Cj, the mass SPM concentration for Ws-class j; time, t; horizontal

velocities, u and v, in horizontal dimensions, x and y; vertical velocity, w; height above

the bed, z; and the mass diffusivity for sediment, Ks,j; and a source-sink term Sj that

accounts for aggregation and disaggregation. If vertical diffusion and settling terms

dominate over advection, time evolution, and non-conservative behavior, and C at height

above the bed z = za is specified as a boundary condition (the reference concentration,

Ca,j), one obtains:
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This is a generalization of the Rouse equation, an analytical solution obtained through use

of a parabolic Ks,j profile. Several studies have verified the applicability of eq. (2) to a

wide range of conditions in laboratory and field conditions (summarized in Hill et al.,

1988). Inverse analysis has previously been applied to the function shown in eq. (2), as

knowledge of Cj(z), the ‘dependent’ variable, is often available when one of the

‘independent’ variables Ca,j, Wsj, or Ks,j is not (e.g. Hill et al., 1988; Orton and Kineke,

2001; Rose and Thorne, 2001).

The total C for a multi-class particle suspension is the sum of eq. (2) as applied separately

to each discrete settling velocity class, j = (1,n). Acknowledging that this is a common

inverse analysis problem (Menke, 1989), we introduce the inversion kernel, Gij the
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discretized numerical solution to the exponential term in eq. (2) for each Ws-class j, at

heights zi [i=(1,m)]:

∑∑
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Here, Ci is the concentration profile measured by a given sensor, and C'
a,j is the set of

unknown reference concentration data. A set of reasonable Wsj values and estimates of

Ks,ij are used to calculate matrix Gij, then combined with observations of Ci to solve for

C'
a,j, using a multivariate non-negative linear least-squares algorithm. Knowledge of C'

a,j

and Gij then provides the 'best-fit' concentration profiles for each Ws-class, C'
ij. Figure 2

shows decomposition results for acoustic and optical C estimates from the same water

column. This approach has been applied and verified previously with data from the

Columbia River estuary, as described in Fain et al. (2001). It is desirable to favor data

points in the near-bed region, where the assumptions used in deriving eq. (2) are most

likely to be satisfied. This can be accomplished using a weighted least-squares algorithm.

3.3. Step 3: Sensor bias calibration

Different sensors typically respond best to different particle sizes, and generally disagree

on the distribution of C over Ws-classes (C'
ij). This is because backscatter or transmission

is a function not only of C, but also the signal wavelength (or frequency) of the sensor

and the SPM particle size spectrum. This is most obvious when contrasting the response

of an optical and an acoustic sensor, because there is typically a three orders-of-

magnitude difference in signal wavelength. This is also true for optical or acoustic

sensors with differing wavelengths, though the differences may be more subtle (Hatcher

et al., 2000; Thorne and Hanes, 2002).
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Bulk SPM calibrations mask these sensor response differences, as shown by the

similarity of the optical and acoustic total concentration (COBS and CABS) profiles in

Figure 2. Nonetheless, the SPM particles that are controlling sensor response in each

case are quite different. Using scattering theory, one can estimate the response of a sensor

to a given particle size spectrum (Figure 3). Optical sensors are more sensitive to fine

sediments, while acoustic sensors are more sensitive to sands. Based on the geometric

optics theory, OBS for particles larger than ~1 µm is inversely proportional to the square

root of particle diameter, ∝D-0.5 (Lynch and Agrawal, 1991). The ABS response of a

1200 kHz acoustic sensor has two theoretical regimes; the particles under ~100 µm are in

the Rayleigh scattering regime, where the dependence upon diameter is strong, ∝D3; for

larger particles, the dependence upon D weakens, with a transition to geometric scattering

(Clay and Medwin, 1977).

Lynch and Agrawal (1991) utilize scattering theory to correct for the size-dependent

response bias of each sensor. This approach requires particle shape and density

assumptions that are uncertain for suspensions that include aggregated particles. For the

case of geometric scattering, it also requires the assumption that particles are not shading

one another, unrealistic with high SPM concentrations. In Step 3 of our calibration, we

instead use Cwatersample data to calibrate and correct for sensor bias. With OBS or ABS, it

is reasonable to assume that different SPM size fractions produce partial sensor responses

as though each fraction were the only one present (Green et al., 2000; Hatcher et al.,

2000). As a result, one can assign separate linear calibration slopes (γj) for each Ws-class,
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correcting for the size-bias of the sensor. As was the case with eq. (3), a multivariate

linear regression may be used to obtain the unknown parameters, γj:

∑
=

=
n

j
kewatersampl

1
,C γj C

’
jk (4)

Here, Cwatersample,k [k=(1,p)] represents a set of p in situ C estimates from water samples,

and C'
jk is the set of matching data points after eq. (3) has been solved for all profiles.

Much like the procedure after a bulk SPM calibration, these calibration slopes are then

applied to the entire data set:

C''
ij = γj C

'
ij (5)

Thus, one obtains the final multi-class SPM concentration data for each profile, C''
ij,

corrected for the dependence of sensor response on particle size.

3.4. Incorporating multiple sensors

Optimally, one should monitor a given type of SPM with the sensor that is best suited for

detecting it. With q sensors of differing signal frequencies, an iterative approach may be

used to choose which sensor best responds to C variations in each Ws-class. This involves

solving the first equality in eq. (4) several times with q different sensor choices, applied

in all possible combinations to the n Ws-classes. Thus, there are qn different sensor

combinations to test. The optimal set of assignments for sensor and Ws-class is the one

that minimizes rms differences between Ck and C''
jk, though additional subjective

considerations may apply (e.g. the resolution of the output data set).

4. Application to the Fraser River Estuary
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We observed SPM transport processes in the Fraser River estuary from the vessel R/V

Barnes, during the 1999 and 2000 spring freshets. Cruise dates were July 5-26, 1999, and

June 30 - July 4, 2000. Riverflow during the 1999 sampling period was well above

normal, at 9000 m3s-1, while in 2000 it was 7000 m3s-1, a typical spring freshet level

(Water Survey of Canada, unpublished data). The 1999 data are not the focus of this

paper, but included additional measurements (discussed below) that help to put our 2000

observations in context. The Fraser is a river-dominated, strongly-channelized system.

Tides are mixed semidiurnal, and the tidal range at the entrance varies from 2 to 5 m.

Median bed sediment particle size is typically 250-320 µm, and bedforms in the main

channel have heights of O(1 m) and wavelengths of O(20 m). Kostaschuk and Luternauer

(1989) and Macdonald and Geyer (2002) give a more complete description of the

geography and dynamics of the Fraser estuary.

The 2000 data set includes ~150 transects and a 24-hour anchor station in the lower 10

km of the estuary. Figure 4 shows two transects at the mouth of the Fraser that will be

discussed later in this paper. The instrumentation included (a) a broadband Acoustic

Doppler Current Profiler (RD Instruments; 1200 kHz) mounted on the side of the vessel;

(b) a winch-deployed CTD-OBS frame, carrying an Optical Backscatter Sensor (D&A

Instruments), and a Conductivity-Temperature-Depth (CTD) sensor (Ocean Sensors,

Model OS200); (c) a separate winch-deployed calibration frame with another OS200

CTD, an Optical Backscatter Sensor, a 1.5 L Niskin water sample bottle (General

Oceanics, Model 1010), and a Laser In Situ Scattering and Transmissometry (LISST)
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instrument measuring particle sizes from 5-500 µm (Sequoia Scientific, Model 100A);

(d) and an analog Echo Sounder (Ross Laboratories, Model 803, 200 kHz).

The ADCP provided continuous remote current velocity and ABS profiles with 0.25 m

vertical resolution. Due to the 20o beam-angles, data in the lower 8% of the water column

near the bed were lost due to bed-reflection effects; profiles typically begin at z ≅ 1.0 m

in a 10 m depth water column. ABS data for each of the four acoustic beams were

processed separately, according to methods described in Deines (1999). In regions with

large bedforms, ADCP data were smoothed (running average) over a distance of 90 m,

three times the median bedform wavelength. The CTD-OBS frame allowed rapid water

column profiling of temperature, salinity and OBS. Sampling strategies included

stationary water column profiling and a transect to-yo mode where the moving vessel

towed the frame while it was profiled through the water column. The calibration frame

collected water samples for calibration of the OBS and ABS sensors, as well as in situ

particle size data. It was used less frequently to collect vertical profiles of the in situ

sediment particle size spectrum (LISST-100A, 5-500 µm size range), optical

transmission, OBS, temperature, and salinity. A trigger fired upon contact with the bed,

causing a water sample to be taken at z ≅ 0.55 m. These samples, and surface samples

collected by bucket, were used to gravimetrically calibrate OBS and ABS to total SPM

concentration (Figure 5) and to constrain the sensor bias correction, as outlined in Figure

1.
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In 1999, similar measurements were made aboard the Barnes. Scientists aboard a second

vessel, the R/V Sproul, also measured total C and zooplankton counts from pumped water

samples, particle settling velocity (determined with a modified Owen settling tube; Reed

and Donovan, 1995), and disaggregated particle sizes (from a Coulter Counter). Due to

low numbers of zooplankton (C. Simenstad, unpublished data) and the low acoustic

reflectivity of estuarine species types (Stanton et al., 1998), zooplankton do not provide

comparable backscatter to suspended sediments. This condition was assumed to apply in

2000, as well.

4.1. Fraser observations

For this paper, we have applied our multi-class SPM calibration only to observations

from greater-ebb SPM export events from June 30 to July 4, 2000. During greater-ebb

spring tides, the Fraser River was a zero length estuary for about four hours, in that salt

was completely washed out of the estuary, beyond the river entrance. These are

dynamically simple periods, because salinity stratification is absent, and the near-bed

SPM distribution is predominantly determined by vertical diffusion and settling. They are

also of significant geological interest, because most sand export to the Fraser delta occurs

under these conditions (Kostaschuk and Luternauer, 1989). Thus, these greater-ebb SPM

export events are useful as a simple test for our new calibration technique. Tides during

the 2000 cruise were near spring phase, with a spring-tide on July 2; tidal ranges were 4.0

- 4.4 m. Winds were generally under 5 m s-1, and wave heights in the estuary were <0.5

m. During periods with high C, the water column was weakly stratified by high levels of

suspended sediment. Data from a representative transect (T193, Figure 4) are shown in
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Figure 6. These conditions were typical of the greater-ebb SPM export events, with

strong surface currents (3+ m s-1) and intense turbulent mixing.

LISST-100 in situ particle size distributions for four heights above the bed on the

landward end of T193 are shown in Figure 7. The LISST volume concentration output

was separated into two realms for the conversion to relative mass concentration. For

particles from 5-350 µm, a “negligible aggregation assumption” was used; particles

without aggregation should have a density near that of quartz, 2650 kg m-3. A useful

index of aggregation is the ratio of median disaggregated particle diameter to the

diameter calculated for the median Owen tube Ws (Reed and Donovan, 1995). For the

1999 freshwater SPM samples, this ratio was typically no higher than unity (D. Reed,

unpubl. data), indicating that the assumption of minimal aggregation was reasonable.

For particles observed with the LISST in the size range from 350-500 µm, a laboratory

disaggregated particle size analysis was used to determine whether these particles were

aggregates or sand particles. For periods with strong turbulence, sand particles

dominated, and the negligible aggregate assumption was used. For cases where no

primary particles from 350-500 µm were present, the particles were assumed to be

aggregates. Observations show that a reasonable effective density estimate for large

aggregates is 160 kg m-3 (Dyer and Manning, 1999), and this value was used to convert

volume to mass. At this density, and using the LISST spectra, these large aggregates were

likely to amount to no more than 5% of total mass concentration.
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4.2. Fraser parameterizations

We performed the multi-class SPM calibration for a two-sensor combination of OBS and

ABS, with three Ws-classes. To favor near-bed data, linear weighting of (h-z)/h was

applied for the regression in Step 2, as suggested in Section 3.2. Important

parameterizations for Step 2 are described below, including Ws-classes and a

representation of turbulent mixing in a sediment-stratified flow.

4.2.1. Ws-class definitions, motivation

The LISST and settling tube observations indicate that the SPM in suspension during

greater-ebb SPM export events can be characterized by three Ws-classes (Wsj = 0.01, 10,

37 mm s-1; Table 1). A nominal Ws of 0.01 mm s-1 applies to the slow-settling Ws-class

(washload). The central Ws-class corresponds to disaggregated settling for the main peak

in the LISST particle size distribution. The rapid-settling Ws-class corresponds to the

median bed-sediment particle size of 300 µm (Kostaschuk and Luternauer, 1989). Simple

simulations of the SPM decomposition with artificial data show that each Ws-class

corresponds to a range in Ws, and these ranges are shown in Table 1. Settling velocities

were calculated using Stokes Law and an intermediate diameter settling equation (Gibbs

et al., 1971), with the assumption that particles were quartz spheres. Sample C profiles

calculated from eq. (2) for these Ws-classes are shown in Figure 2.  

4.2.2. Vertical diffusion of momentum

We used a linear-exponential neutral eddy diffusivity for momentum (K0) to estimate the

sediment diffusivity (Ks,j) for the quasi-steady tidal currents experienced in the Fraser:
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K0= κU*z e-z/L (6)

Stratification effects and the conversion to mass diffusion are considered below in

Section 4.2.3. The formulation in eq. (6) has been extensively tested against data from

marine and atmospheric boundary layers (Long, 1981; Beach and Sternberg, 1989).

Parameters include the boundary layer length scale L = h/3, von Kàrmàn’s constant,

κ ≅ 0.41, and the shear velocity ρτ0U =* , a convenient proxy for the shear stress at

the bed τ0. A quadratic drag law may be used to estimate τ0, and thus U* (Sternberg,

1972):

       2
b,0 = Uc bDρτ (7)

Here, b is the drag coefficient reference level, and Ub is the mean velocity at z = b. Due

to bedforms in the Fraser, the total bedstress (τ0) differs substantially from the skin

friction bedstress. Zyserman and Fredsoe (1994) used flume data to demonstrate that

while sediment entrainment is controlled by skin friction, the C profile shape is controlled

by τ0. Total bedstress can be calculated using eq. (7), as long as the drag coefficient

reference height (b) is well above the height of the bedforms. For this reason, we applied

eq. (7) with b = 3 m.

For hydrodynamically rough flow, the effect of bedforms on the drag coefficient can be

estimated as (Dade et al., 2001):

cD,b
-0.5 = (1/κ) ln(b/z0)   where z0 ≅ kN / 30 (8)

Above, z0 is the apparent hydraulic roughness length, and the apparent Nikuradse

roughness length (kN) was modeled as form drag due to bedforms (Grant and Madsen,

1982):
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kN = 27.7 Hbf
2 / Lbf (9)

Contributions to kN from grain roughness and moveable bed roughness (suspended

sediment) are negligible for the Fraser observations, and thus are not present in eq. (9).

Our echo sounder data allowed us to directly measure the median bedform height (Hbf)

and wavelength (Lbf) during transects, and thus calculate cD,300. Bedforms were small

along T192 (Figure 4; Hbf = 0.2 m; Lbf = 5 m; cD,300 = 0.0044). T193 had an abrupt

change at x = 0.5 km (Figure 6), with smaller bedforms seaward (Hbf = 0.2 m; Lbf = 10 m;

cD,300 = 0.0036) and larger bedforms landward (Hbf = 1.1; Lbf = 30; cD,300 = 0.0083). These

drag coefficients were within the range previously observed for neutrally buoyant flows

with sandy bedforms, 0.003 - 0.010 (Sternberg, 1972; Chriss and Caldwell, 1982).

4.2.3. Diffusion of sediment in a stratified flow

Though this paper is focused on freshwater flows, the water column was mildly stratified

at times due to vertical gradients in SPM concentration. We used a simple algebraic

approach to account for turbulence damping of K0 (eq. 6) due to stratification:

Km = K0 (1 + R Ri)-s (10)

Empirical evidence suggests that constants of R = 3 and s = 3 are appropriate (Lehfeldt

and Bloss, 1989). The gradient Richardson number Ri, is a measure of vertical stability:
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Here, g is the gravitational acceleration and ρ� is the local water density. The effects of

stratification are negligible for Ri < 0.03, and mixing is strongly suppressed when Ri ≥

0.3 (Dyer, 1986). For the data used in this study, stratification was weak; Ri was typically
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below 0.03, and only above 0.10 in 2% of bins. A typical profile of the neutral eddy

diffusivity K0, as well as the stratification-modified diffusivity Km, is shown in Figure 8.

Researchers often assume that Km = Ks,j when they apply the Rouse equation. More

generally, a proportionality constant (βj) should be used, so that Ks,j = βjKm. Recent

studies suggest that βj varies with particle and flow characteristics, and a consensus

treatment is summarized by Rose and Thorne (2001):

Ks,j = βjKm (12)

βj = 3.1 exp(-0.17 U*/Wsj )     for  1<= U*/Wsj <= 9.5 (13)

The data supporting this relationship show significant scatter, with a standard deviation in

βj of roughly +/- 25%. Calibration uncertainty from this and other turbulence parameters

is analyzed in Section 5.

4.3. Fraser calibration results and SPM export

The three calibration steps each provided results and a regression coefficient of

determination (r2) as a measure of performance. The bulk calibrations (Step 1; Figure 5)

for OBS and ABS had r2 results of 0.71 and 0.54, respectively. The low ABS r2 was

likely due to the impact of particle size variations; ABS is very sensitive to particle size

(Figure 3). The low r2 values of both bulk calibrations illustrate the need to calibrate

OBS and ABS in terms of individual Ws-classes. Small perturbations and methodological

differences in the bulk calibrations were found to have little effect on the final

concentration output of the multi-class calibration (C''
j), though a large perturbation or

erroneous bulk calibration altered the C''
j results. The r2 for the model-based
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decomposition (Step 2; Figure 2) rates the quality of fit between the initial total

concentration estimates (COBS, CABS) and the model-based total concentration estimates

(ΣC''
j). These values are shown in the bottom panel of Figure 9, for all OBS and ABS

decompositions on T193.

We carried out Step 3 (eq. 4), the sensor bias calibration, using all possible combinations

of the two sensors for different Ws-classes. Only profiles with low stratification (Ri < 0.1)

and good model-data correspondence (r2 > 0.80) in Step 2 were used in Step 3, to avoid

periods when the assumptions of the decomposition model were violated. As expected

from Figure 3, ABS was not highly responsive to variations in fine sediments (Ws1). The

OBS, on the other hand, responded to variations in all Ws-classes. The optimal sensor

combination was a "joint" two-sensor calibration, using optical Step 2 results for Ws1 and

Ws2, and acoustic results for Ws3. This sensor combination for Step 3 had an r2 of 0.82

with 25 data points, and the bias calibration slopes were γ1 = [0.76, 1.17, 1.15] (Figure

10). The fact that all three slopes were ~1 (i.e. the bias corrections were small) is a

positive sign, indicating that these sensors were well-chosen for monitoring these Ws-

classes. For the OBS Ws-classes, note that γ1 < 1 and γ2 >1. This is in line with

expectations for an optical sensor, because Step 3 must correct for the preferential

detection of the smallest particles. We found a similar r2 for Step 3 using OBS for all

three Ws-classes, but chose to use acoustic results for Ws3 because of the high-resolution

of the data and the likely improved reliability when coarse material dominates.
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Applications of the resulting multi-class concentration data (C''
j) include export flux

calculations and transect analyses. Fluxes of total C'' were calculated and compared to

fluxes of COBS and CABS, for two locations at the mouth of the river (Figure 11). For these

calculations, velocity was extrapolated logarithmically toward the bed, to z = 0.25 m, and

the export flux is the flux at the river mouth. We chose the two locations to show the

across-channel contrast in export; T192 is a shallow water transect and T193 is on the

edge of the thalweg (10 m depth). The primary sediment delivered to the upper delta

slope, C''
2, is delivered to sea at a much higher rate along T193 than along T192. Bed

sediment, C''
3, is delivered almost exclusively along T193. T193 is shown in detail in

Figure 9, with concentration data for all three Ws-classes, shear velocity and r2 for Step

2. The r2 value for most COBS and CABS decompositions on T193 was above 0.90. The

spatial distribution of the profiles is shown by the r2 data points, with resolution in C''
1

and C''
2 (from OBS) being significantly less than that in C''

3 (from ABS).

5. Assumptions and Uncertainty

A model is normally assumed to be correct in any calibration of a proxy variable with a

desired variable. With a calibration of OBS with SPM concentration, for instance, it is

typically assumed that there is a linear relationship between the two variables, and that

variables such as particle size and color have a negligible effect on OBS response.

Though our calibration involves a dynamical model, there are general similarities with

simpler calibrations. In this section, we explain how: (a) conditions that render the model

assumptions inappropriate can be diagnosed; and (b) uncertainty in calibration slopes and
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final concentration data can be quantified for cases when the model is appropriate. In

Section 6.1, we discuss how a sampling strategy can be optimized to improve the quality

of calibration results.

5.1. Evaluating assumptions

It is important to evaluate whether the model employed in Step 2 is appropriate for the

environment being studied. The evaluation of model assumptions can be carried out in

two ways. One can directly evaluate the SPM dynamic balance (eq. 1), or flag cases

where the model-data fit in Step 2 is poor. In using a vertical SPM distribution model (eq.

2), we have assumed that turbulent diffusion and particle settling dominate the dynamic

balance for suspended sediment. We calculated the horizontal average of each dynamic

balance term in eq. (1) for each transect (e.g. Figure 12) to evaluate this assumption. A

constant Ws was assumed in these calculations, using the modal settling velocity in the

near-bed region (Ws = 7 mm s-1; Figure 7). Derivatives were estimated using

observations and eddy diffusivity (Ks,j) calculations (eqs. 6-13). If the terms are all

accounted for and accurate, the discrepancy, or sum of all signed terms, should balance

out to zero. The discrepancy was typically small but nonzero, because of inaccuracies in

the estimated dynamic terms or because Sj (aggregation and disaggregation) could not be

accounted for in the analysis. Settling and diffusion dominate in the near-bed region,

where other terms are typically smaller by at least a factor of 10. The advection and

discrepancy terms may be of comparable magnitude in the middle and outer water

column. This justifies the weighting of the least-squares analysis for eq. (3) by the factor
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(h-z)/h, as discussed in Section 3.2, causing the near-bed data points to be weighted more

heavily than those near the surface.

Another means of evaluating the applicability of the dynamical model is the

aforementioned coefficient of determination for the regression, r2. High r2 values (Figure

9, bottom panel) do not prove that the model is appropriate, but they do bolster our case.

Another use of the Step 2 r2 values is to locate profiles where the diffusion-settling

balance appears to break down, and objectively omit them from calibration Step 3.

5.2. Quantifying uncertainty

Uncertainty (standard deviation, σ) in model parameters and observations leads to

uncertainty in the results of the model-dependent decomposition (C'
a,j) and settling

velocity class center-points (Wsj). The uncertainty in C'
a,j maps into uncertainty in the

sensor bias calibration slopes (γj), and uncertainty in the final multi-class concentration

data (C''
j). In this section, we summarize previous uncertainty analyses of similar SPM

decompositions, explain a Monte Carlo randomization approach to estimating

uncertainty, and then discuss uncertainty analysis results.

Previous uncertainty analyses of model-dependent SPM decompositions have shown that

such decompositions have limited resolution in Ws, and that the results are dependent on

the quantity and quality of the data and accuracy of the model parameterizations

employed (Lynch and Agrawal, 1991; Lynch et al., 1994; Fain et al., 2001). Lynch and

Agrawal (1991) used least-squares theory to qualitatively estimate the impact of
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observational noise on a model-based SPM decomposition. They demonstrated how σ

and vertical locations (zi) of the backscatter data interact to influence uncertainty in the

results of a model-based SPM decomposition. Rapid-settling SPM presents a difficult

case for the model-dependent SPM decomposition in cases where near-bed data are

limited, because most of this material is located in the near-bed region (Figure 13). Near

the bed, the C of these particles may be readily estimated, even if the observational σ is

large (in absolute terms). Far from the bed, rapid-settling particles are found in such low

quantities that noise in the data can easily overcome the ability of a SPM decomposition

to reliably identify them. Conversely, if there are no data outside the near-bed region,

then it can be difficult to resolve the slow-settling Ws-classes accurately (Lynch and

Agrawal, 1991).

We used a Monte Carlo randomization approach (Manly, 1997) to quantify how

uncertainties propagate through the calibration. This approach involved (a) perturbing the

mean values of the major parameters (U*, COBS, CABS, and Cwatersample) with normally

distributed random noise with the σ values shown in Table 2, column 2; (b) repeating the

least-squares analysis to solve eqs. (3)-(4) using the perturbed data, and adding the

perturbed results to a table; (c) repeating steps a-b until the σ of the tabulated results

converges. Convergence was tested using a jackknife approach, where rows were

systematically removed from the table in several different configurations, and the

resulting estimates of σ were compared. Systematic errors map directly to Ws, instead of

as uncertainty in the results of the model-dependent decomposition (C'
a,j). This occurs

because systematic errors contribute a uniform bias to all profiles, equivalent to a change
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in the value of Ws for a given Ws-class. Sources of systematic uncertainty are shown in

Figure 14, and include the turbulent length scale (L) in eq. (6) and the diffusivity

coefficient (βj) in eq. (12). The uncertainty in Ws was estimated using the Monte Carlo

approach described above.

We estimated parameter and observation σ (Table 2, column 2) using targeted sampling

strategies. The sampling mean σ for COBS (3.5%) was estimated using periods where the

sensor was held steady at depth. The sampling mean σ for CABS (3.2%) and U* (3.6%)

were estimated from a single-ping data set (no averaging prior to data archiving). The

eddy diffusivity for sediment (Ks,j) is represented with the shear velocity (U*) in the

uncertainty analysis. Shear velocity is a function of (and therefore represents uncertainty

in) u300 and cD,300. Uncertainty in the stratification parameters, Ri, R and s, was found to

have very little impact on the calibration results for the low levels of stratification present

here, so it is not included in the table. Using replicate samples, the σ in Cwatersample was

estimated to be 20% for surface samples, and 40% for near-bed samples.

The resulting estimates of uncertainty in C'
a,j, C

''
j, γj, and Wsj are shown in Table 2,

columns 3-5. The σ in the results of Step 2 was 15-23% for C'
a,j, with the largest

uncertainties for the fast-settling Ws-class. The σ in the sensor bias calibration slopes was

21-41%, and the uncertainty in C''
j was from 32-48%. The σ in each of the settling

velocity class center-points (Wsj) was 37%. These uncertainties were primarily a result of

poor near-bed data coverage and uncertainty in Cwatersample estimates. Near-bed coverage

had a large impact on the ABS analysis (and C''
3 results) because there were no ABS data
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near the bed; the CABS σ (3.2%) was amplified in C'
a,2 and C'

a,3 (Table 2, row 2). There

were usually more near-bed COBS data, so the higher σ for COBS (5.1%) was not amplified

as much in these Ws-classes (row 1). Using the Lynch and Agrawal (1991) method with

our CABS σ estimate (3.2%), we found that the σ values for C'
a,2 and C'

a,3 would have been

roughly halved if there were data down to the bottom grid point, at z = 0.25 m. The

weighting of Step 2 was partially responsible for the amplification of sampling

uncertainty in these results, because it reduced the influence of data points far from the

bed and increased the sensitivity of the analysis to a small number of near-bed data

points. As discussed in Section 5.1, this weighting was necessary to focus the

decomposition on the region where the model was most appropriate.

6. Discussion

We briefly discuss the Fraser calibration results and ground-truth, then more broadly

consider optimization, advantages, disadvantages, and future improvements of the multi-

class SPM calibration approach. With respect to the results for T192 and T193, fluxes of

total SPM monitored by OBS (COBS), ABS (CABS) and the multi-class SPM calibration

(ΣC''
j) agreed within 40% at all depths (Figure 11). This suggests that these three

calibration approaches all provide reasonable rough estimates of flux (or total C) in two

regions with sharp differences in SPM composition. The ΣC''
j flux estimate generally lies

between the OBS and ABS estimates. This optimized estimate should be the most

accurate of the three because it utilizes the best sensing capabilities of optics and

acoustics, and accounts for the size-dependent bias of both sensors.
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An important issue in evaluating these results is the omission of the advection term in the

decomposition model, which may bias C''
j and flux estimates far from the bed. Rapid

horizontal gradients in bedform characteristics and velocity along T193 (Figure 6), in

conjunction with strong ebb currents, leads to a substantial advection term (u ∂C/∂x) in

the outer part of the water column (Figure 12). The mouth of the Fraser is, as a result, a

challenging site to apply our calibration without including advection. We are developing

a method in which transect data can be used to incorporate advection into the multi-class

SPM calibration. However, most of the transects used in the calibration had a smaller

advection term, and our current methodology using the simple model in eq. (2) should be

sufficient for a large part of the water column.

Ground-truth data play an important role in the multi-class SPM calibration. The use of

Cwatersample data in Steps 1 and 3 of the calibration assures that the resulting estimates of

C''
j are reasonable. To further verify the results, relative concentrations from the multi-

class SPM calibration were compared with those estimated from LISST size spectra in

Table 3. These Ws-class partitioned concentration data are normalized by the total SPM

concentration, and the high-resolution LISST data were bin-summed into three Ws-

classes using the Ws-class divisions shown in Table 1. For cases where LISST size

spectrum has an unresolved peak going offscale beyond the size range maximum of 500

µm, only C1 and C2 were compared, and these were normalized by C1+C2.
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The correspondence between C data from the multi-class calibration and LISST in situ

observations was generally good for near-bed data, but weakened with height above the

bed. Near-bed relative concentration differences in about half the profiles were 0-0.04,

while the profiles with the poorest agreement were typically off by as much as 0.25-0.35.

The weakening relationship in the outer water column was likely a result of advection, as

mentioned above. Another possible source of discrepancies arises from assumptions

regarding aggregates that were used when translating the LISST data from D and volume

concentration to Ws and mass concentration. We have relied on the negligible

aggregation assumption (Section 4.1). If even a small mass of aggregates is

misrepresented as primary particles, it can create errors in the estimated Ws-spectrum,

because the difference between density (and Ws) of aggregates and primary particles is

large.

6.1. Optimizing a planned calibration

Sampling and calibration strategies can be chosen to minimize calibration uncertainty.

The calibration uncertainty is affected by factors such as the number and choice of Ws-

classes and sensors, the sampling characteristics, and the quantity and quality of

Cwatersample data. Ideally, Step 2 should involve as many Ws-classes as possible, to increase

the resolution of the results in Ws-space. However, when too many Ws-classes are used,

Step 2 results frequently contain zero-concentration values for some of the Ws-classes.

Such results are spiky and unstable. The optimal number of Ws-classes, therefore, is the

number of Ws-classes that can reliably be identified (without frequent zeros) in SPM

profiles comprising a large number of Ws-classes. Lynch and Agrawal (1991) used the
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condition number of the inversion kernel Gij to demonstrate that the maximum number of

Ws-classes is governed by the dynamic range in zi and the noise in the data. To clarify

and elaborate upon their results, we experimented with synthetic SPM profile data and

artificial noise. Figure 15 shows contours of the number of Ws-classes identified in

simulations when Step 2 is applied to synthetic C profiles consisting of twelve Ws-classes

of SPM. Artificial SPM profile data used in the simulations were created based on theory

presented in eq. (2), with a constant depth and U*. One thousand SPM profiles with

differing normally distributed random noise were created for each combination of σ and

m (the number of grid points in zi). A number of Ws-classes were identified for each

profile using the Step 2 methodology. This number was tallied for all thousand results,

and the mean is contoured as the optimal number of Ws-classes.

Figure 15a shows the optimal number of Ws-classes for the sampling characteristics of

our study (shaded box), where three Ws-classes appear to have been appropriate. In some

cases, an instrument may not have enough vertical data points to resolve even two Ws-

classes because the number of constraints on the least-squares solution is near the number

of degrees of freedom. This was the case for a 300 kHz ADCP that was also used during

the 2000 expedition; when the water column depth dropped below 8 m, less than 4 bins

of data were available. In the other extreme, Figure 15b shows that it is possible to

resolve eight or more Ws-classes with high resolution, near-bed data, and a range in zi

such that the regression does not need to be weighted.
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Though the calibration can be utilized for a single sensor, its performance can be

improved using multiple sensors. An optical sensor is vital because optics can detect a

wider range of common marine particle sizes than an acoustic sensor. However, a single

optical sensor is not optimal for cases with a wide range of particle sizes, because the

strong response to fine sediments tends to mask the weaker response to coarse sediments.

Multiple optical sensors with different wavelengths could potentially be used (Hatcher et

al., 2000) to improve size resolution. Acoustic sensors are more attractive for monitoring

coarse sediments, however, because the dependence of ABS on particle size is not strong

for large particle sizes that are in the geometric scattering regime (Clay and Medwin,

1977). If an acoustic sensor is employed, it is best to utilize a vertical-beam profiler,

because this eliminates the loss of data near boundaries due to side-lobe reflection. For

environments with a broad range of sediment sizes, a combination of optics and acoustic

sensors is generally beneficial.

The tradeoff between data uncertainty and horizontal (or temporal) resolution is a critical

aspect of a sampling plan. In our study, large bedforms made it necessary to average data

over distances as large as 90 m for some locations. The variance in CABS, COBS and

velocity was moderate due to the moving-vessel sampling approach and high spatial

variability. OBS data were averages of ~30 samples, leading to σ ≈ 5.1%. Acoustic data

were averages of ~60 samples, with σ ≈ 3.2%. While collection of a time-series at a

single location with substantial averaging (5-10 min) would have improved the quality of

the data and calibration, this improvement would come at a high cost – the loss of spatial
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information useful for averaging over bedforms and understanding spatial variations in

SPM concentration and transport.

The quantity and quality of Cwatersample data are very important, as these are used to

constrain the calibration. The uncertainty in our Fraser Cwatersample data was responsible

for a substantial part of our total γj and C'' uncertainty. By collecting more samples and

better Cwatersample data, this uncertainty could have been reduced substantially. Large-

volume water sampling techniques, in existence for decades, are best for minimizing

uncertainty associated with these samples, and a detailed error analysis with blanks and

replicates is also useful.

6.2. Advantages of the multi-class SPM calibration

Advantages of our calibration approach include its high vertical and temporal (or spatial)

resolution, non-intrusive nature, applicability under conditions of high shear and

turbulence, and general applicability to wave-current boundary layers. Another major

advantage is the fact that the analysis is defined in terms of Ws, not D; Ws is a critical

determinant of SPM dynamics. It is better to avoid using D as an intermediary for Ws,

because uncertainty in D is amplified in the conversion to Ws for fine sands and finer

sediments (Gibbs et al., 1971). If aggregates are present, Ws can also be difficult to

calculate from D. While some approaches rely on acoustic and optical scattering theory,

our method does not, thus avoiding assumptions regarding aggregate shape and density.
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Another benefit is that a broad range of suspended sediment Ws-classes can be

monitored. While any given acoustic or optical sensor can detect only a limited range of

particle sizes, a very broad size range (~1 µm to ~10 mm) can be measured with a few

well-chosen optical and acoustic sensors. The size range to which the method can be

applied varies with flow conditions; the primary requirement is that a sediment type be

suspended in large enough quantities for backscatter sensors to monitor it at the depths of

data collection.

Our approach also provides an objective framework for combining the advantages of

optical sensors, useful for studies of fine sediments and underwater visibility (Bunt et al.,

1999), and acoustic sensors, useful for studies of coarse sediments, bed characteristics,

bedload transport, and bedform migration (Thorne and Hanes, 2002). Few objective

methodologies for a combination of this sort exist. Green et al. (2000) provides an

approach for estimating C in two size classes using ABS and OBS sensors to monitor

sand and silt sediment classes, respectively. This two-component approach was useful in

a tide-dominated estuary with little river input, consisting primarily of two sediment

classes with little or no aggregation. However, a more general approach is needed to cope

with the very broad range of sizes found in many systems, and the effects of aggregation;

with eight Ws-classes or more possible (Figure 15), our calibration approach represents a

large step forward for high-resolution multi-class SPM monitoring technology.

A simple analysis of the short-term fate of our three SPM classes emphasizes the

importance of monitoring at least three Ws-classes in the Fraser. For particles of each Ws-
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class that are exported from the estuary mouth, we calculated the distance traveled

seaward while they settle out of the river plume. Typical values of plume depth (3 m),

plume current velocity (2 m s-1), and sub-plume velocity (~0 m s-1; Figure 6) were used

for this calculation. Prior to deposition, Ws1 particles travel >500 m to the Strait of

Georgia, Ws2 particles travel ~150 m to the upper delta slope; Ws3 particles travel <75 m,

and are retained in the estuary or at the estuary mouth. The Ws2 sediments likely

comprise fine sands and large aggregates with Ws between 2.5 and 18 mm s-1 (Table 1).

This primary fate analysis is supported by a bed sediment survey conducted in 2000,

which shows that upper delta slope sediments are dominantly fine sediments and fine

sands (particle diameter < 200 um). Very little research has been done on sediment export

to the delta, and most studies have simply divided SPM data into two size-classes, bed

material load and washload (NHC, 1999). The utility of the decomposition of C into

several Ws-classes becomes clear at this point, as a two-component approach would not

provide information on the intermediate Ws-class (C''
2) that dominates the upper delta

slope. The multi-class analysis also reveals that there is an order of magnitude cross-

channel difference in export of this Ws-class (Figure 11).

This new calibration approach can help provide a large quantity of high-resolution multi-

class SPM data needed for evaluating three-dimensional (3-D) models. The method can

not only be applied to future SPM transport studies, but also to extensive archives of data

from prior studies. It has been common for more than a decade to collect data sets

including OBS, ABS, and Cwatersample measurements. If calibration uncertainty is kept

within reasonable bounds, and one focuses on regions where assumptions are not violated
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(Section 5.1), our calibrated observations are interchangeable with direct measurements

of Ws and C. Furthermore, the use of data calibrated using a 1-D model is not a circular

exercise, because 3-D models are forced in a fundamentally different way that the 1-D

model used in the calibration, which is forced by observations.

6.3. Limitations of calibration approach

Several important qualifications must be considered when utilizing our calibration

method. Foremost, the calibration employs a dynamical model that includes only vertical

mixing and settling. As noted above, we are developing methods for using transect data

to incorporate horizontal advection into Step 2, for cases where advection cannot be

neglected. The calibration cannot be utilized without ground truth data (Cwatersample), and

we recommend independent verification of results using additional approaches for

monitoring Ws and C (e.g. comparison with LISST data). Also, there is inevitably low Ws

resolution for the finest sediments in suspension, because sediments with a wide range of

Ws can be washload. For our Fraser calibration, with U* up to 0.15 m s-1, the washload

Ws-class includes particles with Ws from ~0.01-2.5 mm s-1 (~1 < D < 60 µm). Resolution

can be improved, however, with lower sampling noise (longer averaging), a higher

vertical sampling density and dynamic range, and more Ws-classes.

Furthermore, aggregation may complicate the interpretation of results. Estimating

sediment particle characteristics within a given Ws-class is difficult when aggregates are

present, because aggregates can be made up of particles of many sizes, and both

aggregates and primary particles may be present within a Ws-class. Also, problems can
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arise because size-bias is corrected in Step 3 by applying separate calibration slopes to

each Ws-class; this implicitly assumes that Ws is a function of D. This assumption may be

inaccurate if aggregates are present, leading to variability in the sensor bias calibration

slopes (γj). A solution for this problem is to perform separate calibrations for different

regions and conditions. For example, a separate calibration can be made for saline waters,

where aggregates are more common. One can facilitate the use of multiple calibrations by

collecting a large quantity of Cwatersample data. Additionally, one could use in situ particle

density estimates to study how γj in these multiple calibrations varies with the profile-

mean particle density. While it is difficult to measure particle density in situ, particularly

at high resolution, it might be possible to use an aggregation model to augment this

analysis.

7. Conclusions

We have presented a new calibration approach useful for monitoring suspended

particulate matter (SPM) concentration in bottom boundary layers. The output of the

calibration is “multi-class” SPM concentration data – concentrations in several discrete

settling velocity (Ws) classes. The calibration is dependent upon a dynamical vertical

SPM model and requires in situ concentration (Cwatersample) data and backscatter (or

transmission) from one or more acoustic or optical sensors. It is generally applicable in

wave-current boundary layers, though this paper was focused on cases with currents only.

The incorporation of Cwatersample data in two stages of the procedure guarantees that the

resulting concentration estimates are reasonable.
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An application to Fraser River estuary greater-ebb SPM export events was used to

demonstrate the method, and results were compared to in situ particle size spectra

obtained with a LISST. There was good agreement between the calibration output and

LISST observations near the bed, but discrepancies increasing with height above the bed,

likely due to violation of model assumptions in the outer water column. Detailed

uncertainty analyses indicated that uncertainty in resulting concentration data was from

32-48%, primarily due to poor near-bed data coverage and uncertainty in Cwatersample. This

degree of uncertainty is not atypical for remote sediment measurement techniques.

Optimized sampling strategies were presented that can dramatically reduce uncertainty

for future sampling efforts.

The advantages of this method include its insensitivity to sediment size variations, wide

particle size detection range, high vertical and temporal (or spatial) resolution,

applicability in the presence of extreme shear or turbulence, non-intrusive nature, and the

lack of assumptions on aggregate shape and/or density. Simulations suggest that the

method can resolve eight Ws-classes or more, using common high-resolution sensors and

substantial averaging to minimize noise. Three to four Ws-classes are more typical for

measurements from a moving vessel, however. No other multi-class SPM monitoring

approach has the same combination of positive attributes, including bulk calibrations, in

situ settling chambers, underwater video, multi-frequency backscatter techniques, or

laser-diffraction methods (LISST).
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There are important limitations to the calibration. Foremost, the calibration employs a

dynamical model that includes only vertical mixing and settling. We are studying

methods for using transect data to incorporate horizontal advection into the calibration,

for cases where advection cannot be neglected. Calibration slopes may vary with the

proportion of aggregates. Thus, if aggregates make up a significant percentage of the

suspension, one may need to stratify the optical and acoustic data in space or time,

providing separate calibrations for each group of data. Water sample data are necessary

as ground-truth, and one should collect at minimum, dozens, and ideally, hundreds of

these samples.

Our calibrated observations are interchangeable with direct observations, as long as

calibration uncertainty is kept within reasonable bounds and one focuses on regions

where assumptions are not violated. Thus, the method could provide high-resolution,

synoptic, spatially distributed multi-class SPM observations useful for evaluating the

planned community coastal SPM transport model (Sherwood et al., 2002) or other three-

dimensional (3-D) models. With the basic framework presented in this paper, this new

calibration approach represents a large step forward for our ability to monitor and

understand multi-class SPM transport.

8.  Symbols

ABS acoustic backscatter (abbreviation)

C SPM concentration, from bulk calibration
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C'
j SPM concentration, after model-based decomposition

C''
j multi-class SPM concentration, after sensor bias correction

Ca,j SPM reference concentration at z = za (eq. 2)

CABS concentration as measured by ABS

cD,b quadratic drag coefficient for reference level z = b (eq. 8)

C SPM concentration

Cj SPM concentration for Ws-class j

COBS concentration as measured by OBS

Cwatersample,k in situ estimate of concentration, Cwatersample,k [k=(1,p)]

D SPM particle diameter

g gravitational acceleration, 9.81 m s-1

Gij inversion kernel

h total water depth

Hbf bedform height (eq. 9)

i, j, k indices in zi [i=(1,m)], Wsj [j=(1,n)], and Cwatersample,k [k=(1,p)]

kN apparent Nikuradse roughness length (eq. 8)

K0 neutral eddy diffusivity (eq. 6)

Km stratification-corrected eddy diffusivity (eq. 10)

Ks,j mass diffusivity for sediment in Ws-class j (eq. 12)

L length scale of the turbulent boundary layer (eq. 6)

Lbf bedform wavelength (eq. 9)

m, n, p number of data points in vectors zi, Wsj, and Cwatersample,k

OBS optical backscatter (abbreviation)
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q number of sensors

R constant factor in algebraic stratification equation (eq. 10)

r2 regression coefficient of determination

Ri gradient Richardson number

s constant exponent in algebraic stratification equation (eq. 10)

S source-sink term in SPM continuity equation (eq. 1)

SPM suspended particulate matter (abbreviation)

t time

u along-channel velocity in the x dimension, positive upriver

v across-channel velocity in the y dimension

U* shear velocity (eq. 6)

Ub mean velocity at height z = b above the bed (eq. 7)

w vertical velocity

Wsj particle settling velocity, Wsj [j=(1,n)]

x along-channel distance, upstream from Fraser buoy S0

y across-channel distance

z height above the bed, zi [i=(1,m)]

za reference level for the bottom boundary condition, Ca,j (eq. 2)

z0 apparent hydraulic roughness length (eq. 8)

βj proportionality coefficient between Ks,j and Km (eq. 13)

ρ water density

γj sensor bias calibration slope (eq. 4)

κ von Kàrmàn’s constant
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σ standard deviation

τ0 total bedstress, the sum of skin friction and form drag (eq. 7)
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Table 1: Settling velocity classes chosen for Step 2, the model-dependent decomposition.

j
Ws-class

Ws
(mm s-1)

Ws range
(mm s-1)

Dominant
Material

ββj from eq. (12)
(for U* = 0.08 m s-1)

1 0.01 <2.5 fine sediments 0.62
2 10 2.5-18 120 µm sand,

large aggregates
0.80

3 37 >18 sand, 300 µm 2.1
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Table 2: Monte Carlo simulation results for the uncertainty analysis, Ws-classes j = 1,2,3.

row
#

Uncertainty Source

(variable or row #; std. dev σσ)

Monte Carlo
outcome, j=1
(variable; σσ))

Monte Carlo
outcome, j=2
(variable; σσ))

Monte Carlo
outcome, j=3
(variable; σσ))

1 COBS ±5.1% C'
a,1±15% C'

a,2±21% C'
a,3±24%

2 CABS ±3.2% C'
a,1±6% C'

a,2±22% C'
a,3±23%

3 U* ±3.6% C'
a,1±2% C'

a,2±3% C'
a,3±3%

4 L ±~33% Ws1±27% Ws2±27% Ws3±27%
5 β ±~25% Ws1±25% Ws2±25% Ws3±25%
6a #1,2,3 C'

a,1±15% C'
a,2±21% C'

a,3±23%
7a,b #1,2,3,Cwatersample ±20-40% γ1±28% γ2±21% γ3±41%
8a,b #1,2,3,Cwatersample ±20-40% C''

1±35% C''
2±32% C''

3±48%
9a,b #4,5a Ws1±37% Ws2±37% Ws3±37%

a For rows 6-9, uncertainty sources are combinations of the row numbers shown

b Rows 7-9 show final calibration uncertainties
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Table 3: Comparison of SPM concentration dataa from the multi-class calibration and

LISST in situ observations.

Sample/
transect

h
(m)

U*

(m s-1)
z

(m)
LISST

C1

Calib.
C''

1

LISST
C2

Calib.
C''

2

LISST
C3

Calib.
C''

3

T187-1 10 0.095 0.5
4

0.443
0.654

0.468
0.561

0.556
0.346

0.532
0.439

offscale
offscale

-
-

T187-2 13 0.091 0.5
4

0.556
0.668

0.355
0.453

0.445
0.332

0.645
0.548

offscale
offscale

-
-

T191 11.5 0.061 0.5
4

0.394
0.634

0.404
0.492

0.495
0.335

0.520
0.467

0.111
0.031

0.076
0.039

T194 12 0.068 0.5
4

0.467
0.609

0.135
0.191

0.533
0.391

0.865
0.809

offscale
offscale

-
-

T195 6 0.057 0.5
4

0.690
0.702

0.650
0.868

0.236
0.232

0.263
0.130

0.074
0.066

0.087
0.003

T198 11 0.083 0.5
4

0.520
0.561

0.314
0.384

0.480
0.439

0.686
0.606

offscale
offscale

-
-

upstream
anchor-1

10 0.026 0.5
4

0.452
0.502

0.485
0.804

0.457
0.436

0.515
0.196

0.091
0.063

0
0

upstream
anchor-2

10 0.027 0.5
4

0.498
0.519

0.747
0.897

0.434
0.433

0.253
0.104

0.069
0.048

0
0

a Ws-class partitioned concentration data are normalized by the total SPM concentration,

or C1+C2 in cases where LISST C3 is offscale.
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Figure Captions

Figure 1: Diagram of the three-step multi-class SPM calibration approach for acoustic

backscatter (ABS) and optical backscatter (OBS), with three Ws-classes. The in situ water

sample concentration data (Cwatersample) are used to constrain the calibration in Steps 1 and

3.

Figure 2: Calibration Step 2 (model-dependent decomposition; eq. 3) results for optical

(left) and acoustic (right) estimates of SPM concentration (COBS, CABS). Scaled basis

functions (C'
1,C

'
2,C

'
3) are shown for three settling velocity classes (0.01, 10, 37 mm s-1).

Scaling was set using a multivariate non-negative least-squares linear regression, so that

their sum (C'
1+C'

2+C'
3) most closely approximates the total concentration estimate from

Step 1 (COBS or CABS).

Figure 3: The theoretical responses of two sensors to Fraser River sediments, an optical

sensor (OBS) and a 1200 kHz acoustic sensor (ABS). Fraser SPM is represented by a

Coulter Counter particle size (D) distribution.

Figure 4: Fraser River entrance, with bathymetry contours in meters, based on a

compilation of bathymetric data from the Canadian Hydrographic Service (Chart 3490,

1997), and shipboard measurements (July 2000). The bold dashed line represents the

location of the 12 m bathymetric contour. The two dotted lines show transects T192 and

T193 (adapted from MacDonald and Geyer, 2002).
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Figure 5: Calibration Step 1, the total (bulk) suspended particulate matter calibrations for

(left) optical backscatter (OBS), and (right) 1200 kHz acoustic backscatter (ABS) for the

Fraser 2000 expedition. The OBS bulk calibration regression statistics correspond to the

regression line for 0.06-0.45 V, while lower OBS responses represent a nearly constant

background concentration of 35 mg l-1.

Figure 6: T193 observations, from top axis down: Salinity, with a dotted line showing

the instrument trackline; the optical estimate of total SPM concentration, COBS, also with

trackline; the acoustic estimate of total SPM concentration, CABS; and the along-channel

velocity (seaward at all points).

Figure 7: A LISST-100 in situ particle size spectrum from the Fraser mouth during a

greater-ebb SPM export event, with estimated settling velocity (Section 4.2.1) on the top

axis. The conversion of LISST volume concentration data to mass concentration is

discussed in Section 4.1. At most, aggregates (dashed lines) made up only a small

fraction of total freshwater SPM mass concentration during Fraser freshet conditions,

according to aggregation indices (D. Reed, unpubl. data).

Figure 8: Vertical profiles of several variables from the upriver end of T193, including

ebb current speed, optically-derived total concentration (COBS), Richardson number, and

eddy diffusivity. Gradients in concentration lead to mild stratification that in turn lead to
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reduced estimates of eddy diffusivity (Km) below the diffusivity for a neutrally buoyant

water column (K0).

Figure 9: T193 concentration data based on the multi-class SPM calibration, from the

top: C''
1, C

''
2, C

''
3, and a combination plot of U* and the r2 values for the COBS and CABS

model-dependent decompositions.

Figure 10: Calibration Step 3, the sensor bias calibration. The sensor bias calibration

slopes for optics, γ1 and γ2, and for acoustics, γ3, are shown on the plot. Error bars are also

shown, based on estimated Cwatersample standard deviations (σ) and estimates of σ in C’
a,j

from row 6 of Table 2.

Figure 11: Seaward fluxes of SPM for T192 and T193, based on COBS, CABS, the multi-

class SPM calibration sum (ΣC''
j = C''

1+C''
2+C''

3), and each separate Ws-class (C''
1, C

''
2,

C''
3).

Figure 12: Comparison of the magnitude of spatially averaged terms in the mass

continuity equation (eq. 1) for T193 (0 < x < 0.9 km). The vertical and cross-channel

advection terms (not shown) were below 0.1 mg l-1 s-1. The discrepancy, the sum of all

signed terms, indicates the size of the net error in this dynamic balance.

Figure 13: Sketch of a hypothetical data set where noise, low resolution (0.5 m), and

poor near-bed data coverage lead to an erroneous result in the model-based
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decomposition (Step 2). The thin-line profile and shaded population standard deviation

(σ) represent a noisy SPM field, while each ‘X’ represents poor-quality observational

data. The bold vertical line represents a possible result where Step 2 detects washload but

no fast-settling SPM.

Figure 14: The systematic uncertainty in decomposition model profile shapes for the

three Ws-classes. The “no bias” profiles were calculated from eq. (2), with U* = 0.10 m

s-1, h = 9 m, and β and L as defined in eqs. (6) and (12).

Figure 15: Contours of the optimal number of Ws-classes in Step 2, the model-dependent

decomposition. In the left panel, we show the optimal number for the Fraser calibration.

The range in number of evenly-spaced vertical grid points (m) and the optical and

acoustic standard deviation (σ) are marked with dashed lines and a shaded area for

reference. In the right panel, it is assumed that no regression weighting is necessary and

data are present throughout the water column. Details are given in Section 6.1.
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Figure 1: Diagram of the three-step multi-class SPM calibration approach for acoustic

backscatter (ABS) and optical backscatter (OBS), with three Ws-classes. The in situ water

sample concentration data (Cwatersample) are used to constrain the calibration in Steps 1 and

3.
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Figure 2, left panel
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Figure 2, right panel

Figure 2: Calibration Step 2 (model-dependent decomposition; eq. 3) results for optical

(left) and acoustic (right) estimates of SPM concentration (COBS, CABS). Scaled basis

functions (C'
1,C

'
2,C

'
3) are shown for three settling velocity classes (0.01, 10, 37 mm s-1).

Scaling was set using a multivariate non-negative least-squares linear regression, so that

their sum (C'
1+C'

2+C'
3) most closely approximates the total concentration estimate from

Step 1 (COBS or CABS).
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Figure 3: The theoretical responses of two sensors to Fraser River sediments, an optical

sensor (OBS) and a 1200 kHz acoustic sensor (ABS). Fraser SPM is represented by a

Coulter Counter particle size (D) distribution.
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Figure 4: Fraser River entrance, with bathymetry contours in meters, based on a

compilation of bathymetric data from the Canadian Hydrographic Service (Chart 3490,

1997), and shipboard measurements (July 2000). The bold dashed line represents the

location of the 12 m bathymetric contour. The two dotted lines show transects T192 and

T193 (adapted from MacDonald and Geyer, 2002).
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Figure 5, left panel
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Figure 5, right panel

Figure 5: Calibration Step 1, the total (bulk) suspended particulate matter calibrations for

(left) optical backscatter (OBS), and (right) 1200 kHz acoustic backscatter (ABS) for the

Fraser 2000 expedition. The OBS bulk calibration regression statistics correspond to the

regression line for 0.06-0.45 V, while lower OBS responses represent a nearly constant

background concentration of 35 mg l-1.
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Figure 6: T193 observations, from top axis down: Salinity, with a dotted line showing

the instrument trackline; the optical estimate of total SPM concentration, COBS, also with

trackline; the acoustic estimate of total SPM concentration, CABS; and the along-channel

velocity (seaward at all points).
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Figure 7: A LISST-100 in situ particle size spectrum from the Fraser mouth during a

greater-ebb SPM export event, with estimated settling velocity (Section 4.2.1) on the top

axis. The conversion of LISST volume concentration data to mass concentration is

discussed in Section 4.1. At most, aggregates (dashed lines) made up only a small

fraction of total freshwater SPM mass concentration during Fraser freshet conditions,

according to aggregation indices (D. Reed, unpubl. data).
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Figure 8: Vertical profiles of several variables from the upriver end of T193, including

ebb current speed, optically-derived total concentration (COBS), Richardson number, and

eddy diffusivity. Gradients in concentration lead to mild stratification that in turn lead to

reduced estimates of eddy diffusivity (Km) below the diffusivity for a neutrally buoyant

water column (K0).
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Figure 9: T193 concentration data based on the multi-class SPM calibration, from the

top: C''
1, C

''
2, C

''
3, and a combination plot of U* and the r2 values for the COBS and CABS

model-dependent decompositions.
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Figure 10: Calibration Step 3, the sensor bias calibration. The sensor bias calibration

slopes for optics, γ1 and γ2, and for acoustics, γ3, are shown on the plot. Error bars are also

shown, based on estimated Cwatersample standard deviations (σ) and estimates of σ in C’
a,j

from row 6 of Table 2.
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Figure 11: Seaward fluxes of SPM for T192 and T193, based on COBS, CABS, the multi-

class SPM calibration sum (ΣC''
j = C''

1+C''
2+C''

3), and each separate Ws-class (C''
1, C

''
2,

C''
3).
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Figure 12: Comparison of the magnitude of spatially averaged terms in the mass

continuity equation (eq. 1) for T193 (0 < x < 0.9 km). The vertical and cross-channel

advection terms (not shown) were below 0.1 mg l-1 s-1. The discrepancy, the sum of all

signed terms, indicates the size of the net error in this dynamic balance.
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Figure 13: Sketch of a hypothetical data set where noise, low resolution (0.5 m), and

poor near-bed data coverage lead to an erroneous result in the model-based

decomposition (Step 2). The thin-line profile and shaded population standard deviation

(σ) represent a noisy SPM field, while each ‘X’ represents poor-quality observational

data. The bold vertical line represents a possible result where Step 2 detects washload but

no fast-settling SPM.



68

Figure 14: The systematic uncertainty in decomposition model profile shapes for the

three Ws-classes. The “no bias” profiles were calculated from eq. (2), with U* = 0.10 m

s-1, h = 9 m, and β and L as defined in eqs. (6) and (12).
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Figure 15, left panel
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Figure 15, right panel

Figure 15: Contours of the optimal number of Ws-classes in Step 2, the model-dependent

decomposition. In the left panel, we show the optimal number for the Fraser calibration.

The range in number of evenly-spaced vertical grid points (m) and the optical and

acoustic standard deviation (σ) are marked with dashed lines and a shaded area for

reference. In the right panel, it is assumed that no regression weighting is necessary and

data are present throughout the water column. Details are given in Section 6.1.
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