Portland State University [PDXScholar](https://pdxscholar.library.pdx.edu/)

[Undergraduate Research & Mentoring Program](https://pdxscholar.library.pdx.edu/mcecs_mentoring) [Maseeh College of Engineering & Computer](https://pdxscholar.library.pdx.edu/mcecs) **Science**

2018

Generating Adversarial Attacks for Sparse Neural **Networks**

Jack H. Chen Portland State University

Walt Woods Portland State University

Follow this and additional works at: [https://pdxscholar.library.pdx.edu/mcecs_mentoring](https://pdxscholar.library.pdx.edu/mcecs_mentoring?utm_source=pdxscholar.library.pdx.edu%2Fmcecs_mentoring%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages)

 \bullet Part of the Digital Communications and Networking Commons [Let us know how access to this document benefits you.](http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/mcecs_mentoring/31)

Citation Details

Chen, Jack H. and Woods, Walt, "Generating Adversarial Attacks for Sparse Neural Networks" (2018). Undergraduate Research & Mentoring Program. 31. [https://pdxscholar.library.pdx.edu/mcecs_mentoring/31](https://pdxscholar.library.pdx.edu/mcecs_mentoring/31?utm_source=pdxscholar.library.pdx.edu%2Fmcecs_mentoring%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Poster is brought to you for free and open access. It has been accepted for inclusion in Undergraduate Research & Mentoring Program by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [pdxscholar@pdx.edu.](mailto:pdxscholar@pdx.edu)

Jack Chen, Walt Woods Advisor: Christof Teuscher

Problem

Results and Next Steps

Generating Adversarial Attacks for Sparse Neural Networks

Image Recognition:

- Relies on **Neural Networks**
- Classifies images with state-of-the-art accuracy

Adversarial Attacks:

- Neural Networks are highly susceptible to **imperceivable** changes to its input that **changes prediction** called adversarial attacks.
- Has huge security implications, therefore it is beneficial to make attacks **more perceivable.**
- Attack perceivability measured with **Mean Square Error (MSE).**
- Attack effectiveness to change classification is measured with **loss.**

Figure 1: Adversarial Attack changing image classification from Sports Car to Fur Coat

Attack Generation

Hypothesis

Sparsity:

- Inversely related to accuracy. As loss of Low MSE a class increases, accuracy of that class decreases.
- Generating adversarial attacks must minimize both loss and MSE.

Figure 4: Number of iterations before successful classification change on white box attack generator.

Figure 7: Cumulative Sum Distribution (CDF) of fitness over time on black box attack generator. Blue is when generator optimizes loss. Red is when generator optimizes MSE.

To test our hypothesis, we need to generate adversarial attacks that are both effective and computed in reasonable amount of time. We began by creating **white box** and **black box** attack generators.

Mean Square Error (MSE):

• In Figure 4 we observe that around timestep 470 the success rate starts to stagnate, **signifying loss is fully maximized.** ● We observe similar results in Figure 7. At timestep 470, fitness is about -1.64 and we can confirm that the log of 1.64 is about 0.5; the maximum allowed loss.

● In an attack, MSE is the mean of the magnitude of changed pixels

Loss:

Figure 2: Example of relatively high (top) and low MSE (bottom)

Sparsity can provide benefits, such as less power usage, with little difference in accuracy [Woods & Teuscher, 2017]. We predict that there exists a sparse architecture that takes only the **relevant parts of an image** as inputs to a neural network. Taking only relevant parts of an image reduces the space an adversarial attack can affect and therefore we predict **the MSE of that attack will increase**.

Black Box Generation:

-
-

● Generally the internals of a neural network are unknown. ● We used a genetic algorithm where attacks were evaluated as a logarithmic function of loss, max loss being 0.5, plus MSE.

○ After timestep 470, the black box generator minimizes MSE which produces the imperceivable attacks seen in Figure 6.

Next Steps:

-
-

● We must find sparse architectures that models the relevant parts of images for neural network input and test these architectures with our black box generator.

● We will also examine our generator with state-of-the-art classifiers and examine the attack's MSE.

 "The authors acknowledge the support of the Semiconductor Research Corporation (SRC) Education Alliance (award # 2009-UR-2032G) and of the Maseeh College of Engineering and Computer Science (MCECS) through the Undergraduate Research and Mentoring Program (URMP)" **MSE: 1.14e-3 MSE: 2.44e-4**

| Maseeh College of Engineering
| and Computer Science PORTLAND STATE UNIVERSITY

Figure 6: CIFAR-10 images of before and after black box attack and resulting MSE of the attack

Contact Information:

Presenter: Jack Chen Email: chenjac@pdx.edu

Semiconductor Research Corporation

Figure 8: Representation of Future Work

Figure 2: Representation of a white box attack. Internal gradients of a neural network is known to a generator.

Figure 3: Representation of a black box attack. Only the inputs and outputs of network are known to the generator.

Figure 5: White box attacks on CIFAR-10 dataset with class accuracies before (leftmost) and after (rightmost) an attack.

MSE: 2.95e0

Truck 71.6% Attack Airplane 49.6%

MSE: 2.21e-1

