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A PRIMAL DPG METHOD WITHOUT A FIRST ORDER
REFORMULATION

L. DEMKOWICZ AND J. GOPALAKRISHNAN

Communicated by Norbert Heuer

Abstract. We show that it is possible to apply the DPG methodology without reformu-

lating a second order boundary value problem into a first order system, by considering the

simple example of the Poisson equation. The result is a new weak formulation and a new

DPG method for the Poisson equation, which has no numerical trace variable, but has a

numerical flux approximation on the element interfaces, in addition to the primal interior

variable.

1. Introduction

A typical approach to derive a discontinuous Petrov Galerkin (DPG) method for a second
order boundary value problem, as presented in [5, 6], is to reformulate the problem as a first
order system, multiply by test functions, and integrate every equation by parts. In this note,
we show that it is not necessary to reformulate higher order equations into first order systems
to apply the DPG methodology. This methodology applied to a simple transport equation
was presented in [4] but the present paper uses the generalized methodology described in [5].

The DPG methodology relies on automatically computed test spaces. To describe it,
suppose we want to approximate x ∈ X satisfying

b(x, y) = l(y), ∀y ∈ Y. (1.1)

Here X and Y are real Hilbert spaces, b(·, ·) : X × Y → R is a continuous bilinear form,
and l(·) : Y → R is a continuous linear form. We use a closed subspace Xh ⊆ X for
approximation and a closed subspace Y r ⊆ Y to define the test spaces of the DPG method.
Typically Xh and Y r are finite-dimensional spaces and the indices h and r are related to
their dimension. Let T r : X → Y r be defined by (T rw, y)Y = b(w, y) for all y ∈ Y r. Here
and throughout, the inner product (and norm) on any Hilbert space W is denoted by (·, ·)W
(and ‖ · ‖W , respectively). The DPG method uses the test space Y r

h = T r(Xh) and computes
an approximation xh ∈ Xh satisfying

b(xh, y) = l(y) ∀y ∈ Y r
h . (1.2)

This defines a Petrov-Galerkin method as Xh 6= Y r
h in general. It is clear from this abstract

description of the method that the DPG methodology applies very generally to various
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2 L. DEMKOWICZ AND J. GOPALAKRISHNAN

bilinear forms. In particular, there is no need to rewrite a second order boundary value
problem as a first order system to formulate the method (1.2).

Nonetheless, for the method to be practical, the operator T r must be local. This is usually
ensured by finding a variational setting where Y r is a DG space, i.e., it admits functions with
no continuity constraints across mesh element interfaces. For the Dirichlet problem, we have
shown in [6] that this can be achieved by rewriting it as a first order system. In this note, we
show that it can also be accomplished without using the first order reformulation. In doing
so, we obtain perhaps the simplest example illustrating the ideas of the DPG method.

By way of preliminaries, we recall one of the basic theorems used to analyze DPG methods,
proved in [7]. It uses these three assumptions:

(1) Uniqueness:

{w ∈ X : b(w, v) = 0 ∀v ∈ Y } = {0}. (1.3a)

(2) Inf-sup and Continuity: There exist C1, C2 > 0 such that

C1‖v‖Y ≤ sup
w∈X

|b(w, v)|
‖w‖X

≤ C2‖v‖Y . (1.3b)

(3) There is a linear operator Π : Y → Y r and a CΠ > 0 such that for all wh ∈ Xh and
all v ∈ Y ,

b(wh, v −Πv) = 0, ‖Πv‖Y ≤ CΠ‖v‖Y . (1.3c)

Theorem 1.1 (see [7]). Suppose Assumptions (1.3a) and (1.3b) hold. Then there is a unique
x ∈ X solving (1.1), i.e., Problem (1.1) is well posed. If, in addition, Assumption (1.3c)
holds, then

‖x− xh‖X ≤
C2CΠ
C1

inf
w∈Xh

‖x− w‖X . (1.4)

In the next section, we present the new weak formulation of the Dirichlet problem. In
Section 3, we verify the first two assumptions of the above theorem, thus proving that the
new formulation is well-posed. In this proof we use that a piecewise harmonic function can
be controlled by its jumps and the jumps of its normal derivatives, a fact established in [6].
The novelty lies in the bounds of gradients of piecewise H1-functions using the orthogonal
projection into ∇H1

0 (Ω). In Section 4, we give a convergence result for the DPG method
applied to the new formulation. We conclude in Section 5 with numerical reports.

2. The formulation

Let Ω be an open subset of RN (N = 2 or 3) with Lipschitz connected boundary. The
boundary value problem under consideration is

−∆u = f on Ω, (2.1a)

u = 0 on ∂Ω. (2.1b)

The weak formulation of this problem that we intend to study, is defined using a mesh Ωh

of Ω. We assume that Ωh is a disjoint partitioning of Ω into open elements K such that the
union of their closures is the closure of Ω. The element boundaries ∂K (for all the elements
K ∈ Ωh) form the collection ∂Ωh. We assume that ∂K is Lipschitz for all K ∈ Ωh, so
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that we may use trace theorems on each element, but the shape of the elements is otherwise
arbitrary.

The new Petrov-Galerkin weak formulation of this problem is as follows: Find (u, q̂n) ∈ X
satisfying

(∇u,∇v)Ωh
− 〈q̂n, v〉∂Ωh

= (f, v)Ω ∀v ∈ Y (2.2)

where the spaces and the notations used are defined below.
First, define a broken Sobolev space (where as usual we use the adjective “broken” for

spaces admitting functions with interelement discontinuities) by H1(Ωh) = {v : v|K ∈
H1(K), ∀K ∈ Ωh}, and normed naturally by

‖v‖2H1(Ωh)
= (v, v)Ωh

+ (∇v,∇v)Ωh
. (2.3)

The derivatives above, in (2.2), and in such notations throughout, are always calculated
element by element, and

(r, s)Ωh
=
∑
K∈Ωh

(r, s)K , 〈`, w〉∂Ωh
=
∑
K∈Ωh

〈`, w〉1/2,∂K .

where (·, ·)K denotes the L2(K)-inner product and 〈`, ·〉1/2,∂K denotes the action of a func-

tional ` in H−1/2(∂K). We will also use ‖r‖Ωh
to denote the norm (r, r)

1/2
Ωh

. Next, define the
space of numerical fluxes by

H−1/2(∂Ωh) = {η ∈
∏
K

H−1/2(∂K) : ∃ q ∈ H(div, Ω) such that

η|∂K = q · n|∂K , ∀K ∈ Ωh},

where n generically denotes the unit outward normal of any domain under consideration – for
instance, above it denotes the unit outward normal on the boundary of a mesh element K.
This space is normed by

‖r̂n‖H−1/2(∂Ωh)
= inf

{
‖q‖H(div,Ω) : ∀q ∈ H(div, Ω) such that r̂n|∂K = q · n|∂K

}
. (2.4)

With these notations, we can now complete the definition of the weak formulation (2.2) by
setting the trial and test spaces in (2.2) by

X = H1
0 (Ω)×H−1/2(∂Ωh)

Y = H1(Ωh).

The norm in Y is defined by (2.3) and the norm in X is defined by

‖(w, r̂n)‖2X = ‖∇w‖2L2(Ω) + ‖r̂n‖2H−1/2(∂Ωh)
.

This completes the definition of all the notations that appeared in (2.2).
At this point, we note that a variational problem very similar to (2.2) can be found in [2,

p.141], by the name of a primal hybrid method. There, it is used as motivation to introduce
hybrid and non-conforming methods. An important difference between their formulation
and (2.2) is that while theirs is standard Galerkin (or Bubnov-Galerkin), ours is a Petrov-
Galerkin formulation since X 6= Y . We now proceed to prove that (2.2) is well-posed in the
norms introduced above.
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3. Wellposedness

Let us denote the bilinear form in (2.2) by

b( (w, r̂n), v) = (∇w,∇v)Ωh
− 〈r̂n, v〉∂Ωh

for any (w, r̂n) ∈ X and any v ∈ Y . The wellposedness of (2.2) follows from Theorem 1.1,
once we verify (1.3a) and (1.3b).

Lemma 3.1 (Uniqueness). Any (w, r̂n) ∈ X satisfying

b( (w, r̂n), v) = 0 ∀v ∈ Y (3.1)

vanishes.

Proof. Choosing v ∈ D(K) on any fixed mesh element K ∈ Ωh, equation (3.1) implies that
−∆(w|K) = 0. Then r = −∇w|K is in H(div, K). Therefore, considering a general v ∈ Y ,
we may integrate (3.1) by parts element by element, and use ∇ · (r|K) = 0 to obtain

〈r · n− r̂n, v〉∂Ωh
= 0 ∀v ∈ H1(Ωh).

Choosing v supported only on K, this shows that r · n = r̂n on ∂K. Furthermore, for any
φ ∈ D(Ω), integrating by parts element by element,

−(r,∇φ)Ω = (∇ · r, φ)Ωh
+ 〈r · n, φ〉∂Ωh

= (∇ · r, φ)Ωh
+ 〈r̂n, φ〉∂Ωh

Now, by definition of H−1/2(∂Ωh), there is a q ∈ H(div, Ω) such that q · n = r̂n on each
∂K. Hence integrating by parts, first element by element, and then over all Ω, we have
〈r̂n, φ〉∂Ωh

= 〈q · n, φ〉∂Ωh
= (∇ · q, φ)Ω + (q,∇φ)Ω = 〈q · n, φ〉∂Ω = 0. In particular, this

proves that the distributional divergence of r satisfies (∇ · r)(φ) = −(r,∇φ)Ω = (∇ · r, φ)Ωh
,

so r ≡ −∇w ∈ H(div, Ω). Therefore, ∆w = 0 on Ω and since w ∈ H1
0 (Ω), we conclude that

w ≡ 0. Moreover on the boundary of each element, r̂n = −∂w/∂n = 0. �

Next, to prove (1.3b), we start by defining∣∣[τ · n]
∣∣
∂Ωh

def
= sup

φ∈H1
0 (Ω)

〈τ · n, φ〉∂Ωh

‖φ‖H1(Ω)

, (3.2a)

∣∣[vn]
∣∣
∂Ωh

def
= sup

r̂n∈H−1/2(∂Ωh)

〈r̂n, v〉∂Ωh

‖r̂n‖H−1/2(∂Ωh)

= sup
r∈H(div,Ω)

〈r · n, v〉∂Ωh

‖r‖H(div,Ω)

. (3.2b)

The last equality is a consequence of the definition of the quotient norm in (2.4).
An important ingredient in our analysis is L2(Ω)-orthogonal projection into ∇H1

0 (Ω),
which we denote by P :

(Pq,∇φ)Ω = (q,∇φ)Ω ∀φ ∈ H1
0 (Ω). (3.3)

Lemma 3.2. There is a positive constant C independent of Ωh such that for all v in H1(Ωh),

‖v‖Ωh
≤ C

(
‖P∇v‖Ωh

+
∣∣[vn]

∣∣
∂Ωh

)
.

Proof. This can be proved along the same lines as [6, Lemma 4.2]. �

Lemma 3.3. There is a positive constant C independent of Ωh such that for all v in H1(Ωh),

‖∇v‖Ωh
≤ ‖P∇v‖Ωh

+ C
∣∣[vn]

∣∣
∂Ωh

.
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Proof. By the definition of P , there is z ∈ H1
0 (Ω) such that P∇v = ∇z. Let ε = v − z and

define r|K = −∇ε|K on all K ∈ Ωh. Then, (3.3) implies

(r,∇φ)K = 0 ∀φ ∈ H1
0 (Ω). (3.4)

Choosing φ ∈ D(K), we immediately find that ∇ · (r|K) = 0. In other words,

r +∇ε = 0 on K,

∇ · r = 0 on K,

Applying a known result [6, Lemma 4.3] for locally harmonic functions, we thus obtain

‖r‖Ωh
= ‖∇ε‖Ωh

≤ C
(∣∣[r · n]

∣∣
∂Ωh

+
∣∣[εn]

∣∣
∂Ωh

)
. (3.5)

Now we claim that
∣∣[r · n]

∣∣
∂Ωh

= 0. This is because we may integrate by parts element by

element to conclude from (3.4) that

−(∇ · r, φ)Ωh
+ 〈r · n, φ〉∂Ωh

= 〈r · n, φ〉∂Ωh
= 0.

Since this holds for all φ ∈ H1
0 (Ω), the definition (3.2a) immediately proves the claim. It also

follows from (3.2b) that
∣∣[εn]

∣∣
∂Ωh

=
∣∣[vn]

∣∣
∂Ωh

. With these facts in mind, returning to (3.5),

we conclude that

‖∇v‖Ωh
≤ ‖P∇v‖Ωh

+ ‖∇ε‖Ωh
≤ ‖P∇v‖Ωh

+ C
∣∣[vn]

∣∣
∂Ωh

,

which proves the lemma. �

Lemma 3.4 (Inf-sup condition). There exists a mesh-independent C1 > 0 such that

C1‖v‖Y ≤ sup
(w,r̂n)∈X

b( (w, r̂n), v)

‖(w, r̂n)‖X
, ∀v ∈ Y. (3.6)

Proof. Let s denote supremum in (3.6). Choosing r̂n = 0 and taking the supremum over
nontrivial w ∈ H1

0 (Ω) we obtain

s ≥ sup
w∈H1

0 (Ω)

(∇w,∇v)Ωh

‖∇w‖L2(Ω)

= ‖P∇v‖L2(Ω).

Next, setting w = 0 and maximizing over r̂n, we also obtain

s ≥ sup
r̂n∈H−1/2(∂Ωh)

−〈r̂n, v〉∂Ωh

‖r̂n‖H−1/2(∂Ωh)

=
∣∣[vn]

∣∣
∂Ωh

where we have used the definition (3.2b). Thus, we have shown that

2s ≥ ‖P∇v‖L2(Ω) +
∣∣[vn]

∣∣
∂Ωh

for all v ∈ Y . The required inf-sup condition now follows from Lemmas 3.2 and 3.3. �

Lemma 3.5 (Continuity). There is a mesh-independent C2 > 0 such that

b( (w, r̂n), v) ≤ C2 ‖(w, r̂n)‖X ‖v‖Y , ∀ (w, r̂n) ∈ X, v ∈ Y. (3.7)

holds.
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Proof. Since it is immediate from the definition (3.2b) that

〈r̂n, v〉∂Ωh
≤ ‖r̂n‖H−1/2(∂Ωh)

∣∣[vn]
∣∣
∂Ωh

we have

b( (w, r̂n), v) ≤ ‖(w, r̂n)‖X
(
‖∇v‖2Ωh

+
∣∣[vn]

∣∣
∂Ωh

)1/2
.

Hence, it suffices to prove that∣∣[vn]
∣∣
∂Ωh
≤ C‖v‖Y ∀v ∈ Y. (3.8)

But using the definition (3.2b) again,∣∣[vn]
∣∣
∂Ωh

= sup
r∈H(div,Ω)

〈r · n, v〉∂Ωh

‖r‖H(div,Ω)

= sup
r∈H(div,Ω)

(r,∇v)Ωh
+ (∇ · r, v)Ωh

‖r‖H(div,Ω)

,

we find that an application of Cauchy-Schwarz inequality proves (3.8). �

4. The DPG approximation

In this section, we assume that Ωh consists of a conforming shape regular finite element
mesh of simplices and h = maxK∈Ωh

(diamK). We turn to the DPG approximation of
(u, q̂n) ∈ X, denoted by (uh, q̂n,h). It lies in Xh, which is set to

Xh = {(w, r̂n) ∈ X : w|K ∈ Pk+1(K), r̂n|∂K ∈ Pk(∂K)}, (4.1)

where k ≥ 0 is an integer, Pk(K) denotes the space of polynomials of degree at most
k restricted to K and Pk(∂K) denotes the set of functions on ∂K whose values on each
(N − 1) dimensional subsimplex F (face) of K is a polynomial of degree at most k on F .
Next, we set

Y r = {v ∈ Y : v|K ∈ Pr(K)}.

With these settings, we consider the DPG method (1.2) and its solution (uh, q̂n,h), and prove
the following result.

Theorem 4.1. Suppose r ≥ k +N . Then, there is a constant C > 0 independent of h such
that

‖u− uh‖H1(Ω) + ‖q̂ − q̂n,h‖H−1/2(∂Ωh)
≤ C inf

(wh,r̂n,h)∈Xh

(
‖u− wh‖H1(Ω) + ‖q̂ − r̂n,h‖H−1/2(∂Ωh)

)
.

Proof. We apply Theorem 1.1. We only need to verify (1.3c). This can be verified element
by element. Let K ∈ Ωh. It suffices to show that there exists a bounded linear map
Π : H1(K)→ Pr(K) such that

(∇wh,∇(v −Πv))Ωh
− 〈q̂n,h, v −Πv〉∂Ωh

= 0 (4.2)

for all v ∈ H1(K), wh ∈ Pk(K) and q̂n,h ∈ Pk(∂K).
We now recall the result of [7, Lemma 3.2], which asserts that, on any simplex K, there

exists a C independent of hK = diam(K) and a bounded linear operator Πp+N : H1(K) →
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Pp+N(K) such that

(Πp+Nv − v, qp−1)K = 0, ∀qp−1 ∈ Pp−1(K), (4.3)

〈Πp+Nv − v, µp〉∂K = 0, ∀µp ∈ Pp(∂K), (4.4)

‖Πp+Nv‖H1(K) ≤ C‖v‖H1(K), ∀v ∈ H1(K).

Since r ≥ k +N , we may set Π = Πk+N . Then,

(∇wh,∇(v −Πv))Ωh
− 〈q̂n,h, v −Πv〉∂Ωh

=− (∆wh, v −Πv)Ωh
− 〈q̂n,h − n · ∇wh, v −Πv〉∂Ωh

= 0,

which proves (4.2), and concludes the proof. �

Remark 4.1. The above analysis can be easily generalized to a mesh of hypercubes. For
example, consider the case of squares (N = 2) and let Qp,p denote the (tensor product)
space of polynomials of degree at most p in each variable. Then, a generalization of the
construction in [7, Lemma 3.2] shows that on any square K, there is a bounded linear
operator Πsqr

k+2 : H1(K)→ Qk+2,k+2(K) such that

(Πsqr
k+2v − v, qk)K = 0, ∀qk ∈ Qk,k(K),

〈Πsqr
k+2v − v, µk〉∂K = 0, ∀µk ∈ Pk(∂K).

(Details of this construction on squares are explicitly written down in [3].) Therefore, pro-
ceeding as in the proof of Theorem 4.1, we find that for any integer k ≥ 1, the error estimate
of the theorem continues to hold on square meshes with

Xh = {(w, r̂n) ∈ X : w|K ∈ Qk,k(K), r̂n|∂K ∈ Pk(∂K)}, (4.5)

Y r = {v ∈ Y : v|K ∈ Qk+2,k+2(K)}. (4.6)

Note the difference in the degree of w with that in (4.1).

Remark 4.2. It is easy to see that the condition number κ of the resulting symmetric positive
definite DPG matrix system is O(h−2) on quasiuniform meshes. It is proved abstractly in [7,
Remark 2.3] that any DPG method has

κ ≤ λ1
λ0

C2
2C

2
Π

C2
1

,

where λ0 and λ1 are positive constants for which the vector of coefficients ~x in the basis
expansion of any x ∈ Xh satisfies λ0‖~x‖2`2 ≤ ‖x‖2X ≤ λ1‖~x‖2`2 . Using the norm equivalences
in the proof of [7, Theorem 3.7], or the ones in [1], we can easily see that λ1/λ0 ≤ Ch−2 for our
method. The remaining constants C0, C1, CΠ have already been proved to be independent
of h for the formulation under consideration.

5. Numerical illustration

We now report a few numerical results. We consider square meshes of two dimensional
domains and set, for integers k ≥ 1,

Xh = {(w, r̂n) ∈ X : w|K ∈ Qk,k(K), r̂n|∂K ∈ Pk−1(∂K)},
Y r = {v ∈ Y : v|K ∈ Qk+2,k+2(K)}.



8 L. DEMKOWICZ AND J. GOPALAKRISHNAN

100 102 104 10610−8

10−6

10−4

10−2

100

102
Square domain: h and p convergence

# Degrees of Freedom 

R
el

at
iv

e 
er

ro
r i

n 
H1  n

or
m

 

 

h

h2

h3

h4

k=1
k=2
k=3
k=4

(a) The square case

100 102 104 10610−1

100

101

102
L−shaped domain: h convergence

# Degrees of Freedom 

R
el

at
iv

e 
er

ro
r i

n 
H1  n

or
m

 

 

h2/3

k=1
k=2
k=3
k=4

(b) The case of the L-shaped domain

Figure 1. Convergence rates on a square and L-shaped domain

The above defined Xh is contained in (although not equal to) the space defined in (4.5), so
by Remark 4.1, the error estimate of Theorem 4.1 continues to hold. We choose this Xh so
that the best approximation rates for both the variables are comparable. Convergence rates
in terms of h can be immediately obtained (the H−1/2(∂Ωh) best approximation error can
be bounded using known H(div)-projections of the flux q = −∇u as in [6, Corollary 4.1]),
namely,

‖u− uh‖H1(Ω) + ‖q̂ − q̂n,h‖H−1/2(∂Ωh)
≤ Chs

(
|u|Hs+1(Ω) + |div q|Hs(Ω)

)
(5.1)

for all s ≤ k, whenever the right hand side norms are finite.
We illustrate the practical manifestation of this error bound by solving the Dirichlet prob-

lem (2.1) on the unit square with f set such that the exact solution is u = sin(πx) sin(πy).
Due to the difficulties in computing the H−1/2(∂Ωh)-norm, we only report the error in the
H1(Ω)-norm of the primal variable:

eh =
‖u− uh‖H1(Ω)

‖u‖H1(Ω)

.

The computations were done on a sequence of meshes with h = 1/2n, from n = 1, . . . , 6. A
plot of eh versus the number of degrees of freedom (which is O(h−2)) is shown in Figure 1(a).
Clearly, eh decreases at the rates predicted by (5.1) for each k. By cross connecting the
multiple curves, one can also see that the method exhibits exponential decrease of error with
k (i.e., p-convergence), even though that is not covered by Theorem 4.1.

Since the solution in above experiment was infinitely smooth, the maximal rate of con-
vergence with s = k obtainable in (5.1) was observed in Figure 1(a). In contrast, if we
approximate the singular solution u(r, θ) = r2/3 sin

(
2
3
(θ + π

2
)
)

on an L-shaped domain us-
ing the DPG method, then as seen from Figure 1(b), due to the regularity limit, we only
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observe convergence at O(h2/3). Moreover, the convergence rate does not improve even if
k is increased. Since the solution is in Hs+1(Ω) for s < 2/3, these observations are also in
accordance with (5.1). Note, however, that by cross connecting the multiple curves, one can
observe that the p-refinements deliver also an algebraic convergence with a doubled rate com-
pared with h-refinements. This is consistent with a similar behavior of standard conforming
elements.
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