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Abstract 

High-performance byte copying is important for many operating systems because it is the 
principle method used for transferring data between kernel and user protection domains. For 
example, byte copying is commonly used for transferring data from kernel buffers to user buffers 
during file system read and IPC recv calls and to kernel buffers from user buffers during 'Write 
and-send calls. Because of its impact on overall system performance, commercial operating 
systems tend to employ many specialized byte copy routines, each one optimized for a different 
circumstance. 

This paper revisits the opportunities for optimizing byte copy performance by discussing a 
series of experiments run under HP-UX 9.03 on a range of Hewlett-Packard PA-RISC proces­
sors. First, we compare the performance improvements that result from several existing byte 
copy optimizations. Then we show that byte copy performance is dominated by cache effects 
that arise when source and target addresses overlap. Finally, we discuss the opportunities and 
difficulties associated with choosing appropriate source and target addresses to optimize byte 
copy performance. 
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1 Introduction 

The motivation for this paper developed, almost by accident, as a result of our quest to understand 
some unexpected fluctuations in file system read performance in the Synthetix [2] and lIP-UX [3] 
operating systems running on Hewlett-Packard PA-RISC processors. As part of our experiment we 
were attempting to measure the performance of the fast path through the read system call in both 
systems. The fast path represents the case in which the required data already resides in the file 
system buffer cache, i.e .. , no disk I/O is involved. 

vVe were surprised to observe up to an order of magnitude variation in execution cost for different 
runs of the same code, despite the fact that we were careful to ensure that all the necessary data 
was resident in memory. Since a significant component of the read cost (for large reads which 
hit in the buffer cache) is the cost of byte copying between kernel and user buffers, we suspected 
that the observed variations in read performance might be a reflection of performance variations in 
the underlying byte copy routine. This suspicion turned out to be valid. In other words, on this 
architecture performance can vary by as much as an order of magnitude between runs of the same 
code which simply copies a fixed number of bytes from a kernel buffer to a user buffer. 

vVe were already aware of the fact that there were a multitude of different byte copy routines in 
IIP-UX 9.0, each one optimized for a particular situation. lIowever, the performance variations we 
were observing appeared to be unrelated to the choice of underlying byte copy implementations. In 
addition, we suspected that the performance variation we were observing not only dominated other 
factors relating to byte copy performance, but also presented a new opportunity for optimization: 
if some runs execute an order of magnitude faster than others, the operating system code should 
attempt to ensure that the fast cases occur more frequently, or conversely, it should avoid the slow 
cases. 

In this paper we study, experimentally, the performance of various byte copy optimizations used 
by lIP-UX and investigate some new opportunities for optimization. The remainder of this paper 
is organized as follows. Section 2 describes the support for efficient byte copying provided by the 
PA-RISC architecture and the HP-UX operating system. This section also contains a description of 
the implementation-dependent features of PA-RISC implementations that caused the erratic read 
performance. Section 3 describes the experiments we ran to measure the performance impact of 
different byte copy implementations and section 4 presents and analyzes the results. vVe conclude 
with a discussion about our experiences. 

2 Byte Copying on HP Series 700 Workstations 

2.1 Architectural Support for Efficient Byte Copying 

The Hewlett-Packard PA-RISC architecture [14,8] has several features to improve the performance 
of byte copying. 

1. Instructions for unaligned byte copies. If the source and destination addresses are not aligned 1 

with each other, then it is impossible to transfer the data using word 2 loads and stores. The 
PA-RISC provides two instructions to assist in copying unaligned data. Once source data is 
loaded into registers, vshd (variable shift dou ble) instructions can be used to align the data to 
the destination address. The stbys instruction can then be used to store a variable number 

I For the purposes of this paper, alignment indicates the least significant 2 bits of the addresses are identical. 
2ln this paper, a word is four bytes, a double word is eight bytes, and a quad word is 16 bytes in length. 
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of bytes from a register to memory. These instructions allow unaligned copy routines to avoid 
transferring data at the byte granularity. 

2. Cache hints. Ilints are used to avoid reading in a cache line on a store miss. A store miss can 
generate up to three bus transactions: (1) writing back the data in the cache (if dirty), (2) 
reading in the designated cache line from memory, and (3) writing the designated line back to 
memory. When software writes the entire cache line, hints can be used to avoid the read from 
memory. Since the contents of the entire line are being modified, there is no need to preserve 
the old contents of the cache line. Note that the third bus transaction is rarely measured by 
copy benchmarks since most PA-RISC implementations use a write-back cache. lIence, this 
cost is passed on to other routines in the same manner that the first cost is inherited by the 
copy benchmark. 

3. The floating point (FP) co-processor has 64-bit registers and supports dou ble word loads and 
stores. Using the FP registers may increase the amount of data transferred by each load and 
store.3 

2.2 copyout in HP-UX 

The HP-UX operating system [3J uses the routine copyout to copy data from the kernel's address 
space to the user's address space. copyout must ensure the target of the copy is a valid user virtual 
address and resident in physical memory. In addition, it must also set up a recovery environment to 
ensure that any memory access faults occurring during the copy are assigned to the user code and 
not to the kernel. Finally, copyout calls ulbcopy to transfer the data to the user's buffer. While 
it is possible to specialize all three of these operations, this work focuses on the last operation. 

The HP-UX 9.0 version of ulbcopy is already very specialized. The routine examines the 
source and destination addresses along with the number of bytes to be copied to decide the proper 
approach to take. For copying small amounts of data, a byte-by-byte routine is used. If the 
source and destination address are not aligned with each other then vshd and stbys instructions 
are used in conjunction with standard word loads and stores. If the source and destination are 
aligned, stbys is used to get to the nearest word boundary and then a word-aligned copy is 
performed. When the source and destination are aligned on 64 byte boundaries, one of three 
possible code loops is used. During kernel initialization, HP-UX measures the performance of the 
three loop implementations and modifies a branch target address to use the loop implementation 
that achieves the best performance. The first loop uses the PA-RISC's general registers to hold 
the data being copied. The loop performs four word loads followed by four word stores. The 
second loop uses floating point co-processor registers and instructions. This loop performs four 
double word loads followed by four double word stores. The third loop uses a slight variation of 
the second. Rather than using double load stores, it uses an implementation-specific instruction, 
fstqs, to store a quad word. Though the HP-UX assembler accepts this instruction, not all PA­
RISe implementations support it.4 In order to perform this kind of low-level code specialization, 
operating system programmers must be aware of the various hardware mechanisms provided by the 
implementation. 

3 All the machines we tested support a 64-bit data path between the processor and the cache. This wide data 
path allowed FP load/store instructions to transfer twice as much data as conventional load/store instructions when 
hitting the cache. 

4This instruction is not supported by the PA7100 and follow-on processors. 
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2.3 Memory Effects and PA-RISC Cache Implementations 

In order to determine the memory effects on byte copy performance, we needed to support a well­
defined memory environment for our experiments. This required an understanding of the PA-RISC 
memory management unit architecture and the implementation features of the cache, The HP 
9000 series 700 workstations use a direct-mapped, virtually indexed, physically tagged cache. For 
control purposes, we wanted to know where data was being placed in the cache. This process 
requires converting a 32-bit UNIX address, referred to as a short pointer, into a cache address. We 
describe this in two steps: obtaining a virtual address given a short pointer, then obtaining the 
cache address from the virtual address. 

The PA-RISC supports a segmented 64-bit virtual address space. The 264 address space is 
partitioned into 232 spaces. Each space is identified by a space identifier (SID). The number of 
SIDs supported depends on the level of the PA-RISC implementation. The workstations we used 
for our experiments all support level 1 implementations that have 216 SIDs; so the implementation 
only supports a 48-bit virtual address space. A 32-bit short pointer is converted into a 64-bit 
address in the following manner: the most significant two bits are used to select one of four space 
registers. The contents of the selected space register are concatenated with the 32-bit short pointer 
to form a virtual address. Figure 1 illustrates this conversion. 

Since the cache is virtually indexed, the cache address is generated using the virtual rather than 
the physical address. Figure 2 shows how the cache address is calculated from the virtual address. 
Some of the least significant bits of the SID are hashed with the middle bits of the space offset. 
These are concatenated with the lower bits of the space offset to form the cache address. 5 Given 
the hash index function, the cache address can be calculated using the space offset and the space 
identifier. This allowed us to choose appropriate pairs of virtual addresses to guarantee that source 
and destination buffers would not overlap in the cache. 

SIt is possible to disable the hash function using special diagnostic instructions. Disabling the hash function 
removes the space identifier bits in the cache address calculation. 
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3 Experiments 

We designed a set of experiments to analyze the effects of data alignment and bulk copy optimiza­
tions, and how they are influenced by cache temperature. 

3.1 Data Alignment 

We used the standard HP-UX 9.03 libc routine memcpy to test the impact of non-aligned data 
copies. An analysis of memcpy shows that it performs the equivalent non-aligned optimizations 
performed by ulbcopy, but never uses the floating point registers to transfer data. The experiment 
uses two 4 KB buffers, known not to conflict with each other in the cache. The contents of the 
first buffer are transferred to the second. Starting with a source and destination address that are 
page-aligned, the destination buffer is moved one byte at a time while timing the performance of 
the copy. 

3.2 Bulk Copy Optimizations 

vVe implemented four different versions of 32-byte-aligned copy routines. Three of them are similar 
in nature to the loops used in the HP-UX ulbcopy routine except they deal only with 32-byte­
aligned addresses and sizes of 32 byte multiples. Table 1 describes the various copy implementations. 
As a base for our measurements, we used the C library routine memcpy. Note that the optimized 
loop in memcpy performs only a four word load followed by four word stores. 

Table 1: Data Copy Experiments 

Routine Description 

memcpy HP-UX 9.03 library call 
8Wld-8Wst ASM function whose main loop performs 8 word loads to 

registers followed by 8 word stores. 
8Wld-8WstH Identical to 8Wld-8Wst but stores use cache hints 
4Dld-4Dst ASM function whose main loop performs 4 double word loads 

to registers followed by 4 double word stores. 
4Dld-2Qst ASM function whose main loop performs 4 dou ble word loads I 

to registers followed by 2 quad word stores. 
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3.3 Cache Environment 

In addition to the various implementations, we wanted to measure the effect the memory hierarchy 
has on copy performance. In order to measure the memory effect, we needed to control the tem­
perature of the cache. Cache temperature is an indication of the percentage of memory references 
that hit the cache. For the experiments outlined above, both the source and destination addresses 
were placed in one of three uniform temperature states. 

Dirty: The memory region was considered dirty if the contents of the region were not present in the 
cache and the cache lines consigned to that region were modified, i.e., write back required. 

Clean: The memory region was considered clean if the contents of the region were not present in 
the cache and the cache lines assigned to that region were clean, i.e., no write back required. 

Hot: The memory region was considered hot if the contents of the region were present in the 
cache. 

4 Results 

The experiments were run on three different HP platforms: the HP 9000/720, 9000/755, and 
9000/712-80 "Snakes" workstations. The lIP 720 uses an early PA-RISC 1.1 implementation CPU 
with a clock speed of 50 MlIz [7]. The lIP 720 has split instruction and data caches. The data 
cache is direct-mapped, 256 KB in size, with a line size of 32 bytes. The IIP 755 uses the PA 7100 
CPU running at 99 MHz [4]. The 755's data cache is also direct-mapped, 256 KB in size, with a 
line size of 32 bytes. The 712-80 uses a PA7100LC CPU running at 80 MlIz [12]. The 712 has a 
combined data and instruction cache of 256 KB. The cache is direct-mapped with a line size of 32 
bytes. The DRAM memory speed of the machines was not specified in the documentation we had 
available. All machines were running HP-UX 9.03. 

All experiments were compiled using each platform's C compiler with no optimization. The 
level of optimization should not affect the results since all the measured routines are either in the 
C library (libc) or written in PA-RISC assembler. 6 The experiments were run in user mode using 
real-time priority to avoid context switches and interference from other user processes. Each run 
performed twenty copies in a tight loop. Programs were run ten times and the lowest value was 
recorded. Cycle counts were measured using the PA-RISC interval timer, a register-based counter 
that increments at an implementation-dependent rate. For the PA-RISC implementations used in 
our experiments, all rates were based on the clock speed of the CPU. Appendix A contains the 
complete results of the experiments but the following sections attempt to present the results in a 
more enlightening manner. 

4.1 Alignment Results 

Figure 3 shows the effects of source and destination alignment for the IIP-UX memcpy routine. 
Having the source and destination word aligned is important, more so on the older architectures. 
Source and destination alignment have a smaller effect on the 712 since its processor has two integer 
units. This allows it to execute concurrently vshd instructions with stores. 

6ln fact, using the +03 level of optimization removed the cache temperalure control loops since they generated 
memory references but did not perform any noticeable computation. 
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4.2 Bulk Copy Results 

Figure 4 shows the results of our experiments run on the HP 720 for two cache environments. The 
first cache environment measures cache-to-cache copy speed while the second environment tests 
memory-to-memory speed. Of all the byte copy implementations, the ones using the floating point 
registers have the best performance. As expected, the temperature of the cache has more impact on 
performance than the implementation of the various copy routines. The cache-to-cache copies are 
roughly twice the speed of the memory-to-memory copies. On the other hand, cache temperature 
emphasizes the difference between the various copy implementations. The ratio between the best 
and worst copy is 0.45 in a 'hot' cache, but nearly doubles to 0.78 in a 'clean' cache environment. 

Figure 5 illustrates the performance results of some experiments run on the HP 755. The relative 
performance of the copy implementations was similar to that of the 720 with the exception of the 
4Dld-2Qst implementation. This result is not shown in the figure because it is nearly two orders 
of magnitude larger than any other. As mentioned previously, the floating point quad word store 
is not part of the PA-RISC instruction set. The HP 755 floating point unit does not support the 
quad word store so that instruction is executed by the IIP- UX floating point emulation library. The 
severe increase in cost is caused by handling a FP emulation trap, executing within the emulation 
library, and returning from the exception. 

The growing divergence between cache performance and memory performance can be seen when 
comparing the 755's numbers to the 720's. We expected the difference between cache and memory 
performance to grow as the speed of the processor increases. Figure 6 shows this effect. Using 
4Dld-4Dst as an example, the cost of a memory to memory copy (with no write back) on the 50 
MHz HP 720 is 350% the cost of the cache to cache copy. This becomes 660% on the 100 MHz 
HP 755! It is unusual that the cold copy performance of the lIP 712 exceeds that of the HP 755. 
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One reason for this may be that the PA7100LC processor handles memory to memory copies better 
than the older PA7100 due to the additional features that mask the cost of cache misses [12]. 

We had hoped that the cache hints would improve the performance of the memory copy oper­
ation since it would avoid reading the line from memory. However, as figure 7 shows, cache hints 
have no effect on store performance to memory on any of the architectures. 'While the HP 720 
CPU does not implement cache hints, the 755 and the 712 CPUs should implement them. One 
possible reason for the non-effect of cache hints could be that the benchmarks were run in user 
mode. Due to security reasons, implementations of the PA-RISC 1.1 architecture must zero the 
cache line before writing to the line. On the 755 and 712, the implementations may simply ignore 
cache hints while in user mode. 

5 Discussion 

'While there is a measurable difference between aligned and unaligned copies, alignment does not 
have much effect on mamcpy performance. Alignment has more of an effect on copyout performance 
since the floating point unit can only be used when source and designation are aligned on 32-byte 
boundaries. The differences between the copy implementations is noticeable but performance is 
dominated by cache temperature. Any differences from the various optimizations were reduced 
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when copies required more memory traffic. This result indicates that operating systems should 
investigate means to reduce the amount of memory traffic incurred while copying. 

On a direct-mapped virtually indexed cache, memory traffic can increase when the source and 
destination buffer occupy the same cache addresses. This situation generates cache conflict misses 
which lower the temperature of the cache and degrade copy performance. Cache conflict misses 
can be removed by assuring that the source and destination addresses of the copies are placed in 
virtual memory regions that do not overlap in the cache. The operating system has little choice of 
the user address since most UNIX system calls transfer data to a user-specified buffer. For example, 
the read interface transfers data to an address specified as an input parameter to the system call. 
Given this situation, the kernel can only determine the address of the kernel buffer. 

Selecting the appropriate non-conflicting kernel address is complicated. Removing an existing 
conflict requires the kernel to change the virtual address of its buffer. One way is to copy the 
buffer to a different region but this may pollute the cache and may be more expensive than simply 
performing a single conflicting copy. Re-mapping the kernel buffer to a different virtual address 
is another option. While it avoids physical copying, re-mapping operations may require cache 
flushes to preserve address translation consistency [9]. In either case, removing the conflict can 
be expensive and only worthwhile if the conflict is persistent. Since read system calls tend to 
sequentially access a file there is little temporal locality in the kernel buffers so conflicts are rarely 
persistent. 

Rather than resolve conflicts once they are detected, the operating system may attempt to 
avoid creating conflicts through clever buffer cache management. If application programs reuse user 
buffers, than the kernel can avoid future conflicts by placing read-ahead buffers at "safe" virtual 
addresses that do not overlap the user buffer in the cache. This policy will not avoid conflicts if 
application programs vary the buffer addresses they transfer data into. Choosing non-conflicting 
addresses is complicated by the cache index function. 7 

Another possible optimization is to choose buffer cache addresses for a particular file so all the 
buffers map to the same region of the processor cache which does not conflict with the user buffer. 
Sequentially reading a file would continuously use that small region of the cache, and not flush the 
entire cache for large reads. 

7This is rather ironic since the index function was originally implemented to avoid cache conflicts measured during 
transaction processing benchmarks. 
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6 Related Work 

In this paper, we have concentrated on physical copying (duplicating data in physical memory) but 
other copying techniques avoid this problem by using logical copying techniques, such as copy-on­
write (COW). COW techniques duplicate data in the virtual memory domain but avoid duplicating 
data in the physical memory domain unless data integrity needs to be preserved. In the COW 
scheme, physical memory data may be shared by multiple virtual memory regions as long as it 
is not modified. Data integrity is preserved by performing a physical memory copy when writes 
are detected. Many research projects have implemented techniques that perform data movement 
without duplicating physical memory. A couple of examples are fbufs and Accent. Fbufs move 
data from network devices to user space and back again with a minimum of both virtual and 
physical memory duplication [5]. Accent used copy-on-write memory for high-performance local 
IPC [6]. Many contemporary virtual memory designs support the notion of copy-on-write or copy­
on-reference memory to support both local bulk data movement and efficient copying of address 
spaces using virtual memory (VM) techniques that manipulate the TLB and VM data structures 
[16, 1, 10]. VM techniques cannot be used in all cases, such as when the data being copied is smaller 
than a page or not page-aligned with the user's buffer address. This limits the number of cases 
where read can benefit from COW techniques. In addition to these limitations, VM techniques 
have their own overhead and complexity associated with their use. 

There has been some work at removing persistent conflicts using dynamic page remapping 
policies [15]. These policies focus on conflicts within an application program running on a processor 
with a direct-mapped physically addressed cache. Possible conflicts are detected using coloringS 
information and hardware mechanisms such as cache miss counters. Once conflicts are detected 
they are removed by recoloring operations, which change the color of a virtual page by moving data 
from one physical page to another and adjusting the address translation accordingly. Diagnosing 
performance-degrading conflicts is the most difficult part of this process. Only persistent conflicts 
that cost more than recoloring operations should be removed. Cache miss counters help to identi(y 
times when large number of cache misses are occurring, but fail to distinguish between capacity 
and conflict misses. Recoloring a virtually addressed cache is more difficult because the page color 
is dependent on the virtual, rather than the physical, address. 

There will be more architectural support for byte copying in future I1ewlett-Packard worksta­
tions. The new PA 7200 chip has an internal 64 entry, fully associative cache in addition to the 
traditional direct-mapped off-chip cache [13]. On each memory reference, the tag is compared to 
65 entries (the 64 fully associative entries and the single entry returned by the off-chip cache). A 
cache line sent by memory to satisfy a miss is placed in the internal cache. The internal cache line 
selected for replacement is sent to the off-chip cache unless a "spatial locality hint" is given in which 
case it is returned to memory. This allows large byte copies to be performed without polluting the 
larger off-chip cache. Now the operating system must make another choice while copying. Should 
it leave the data in the off-chip cache or return it to memory? This decision depends on what 
the user plans to do with the data! If the data is going to be operated on immediately, then it 
might be better to leave it in the off-chip cache to avoid future cache misses. If the data has low 
temporal locality, then it is preferable to return it to main memory and avoid polluting the off-chip 
cache. Unfortunately, the operating system may not have sufficient information to make the right 
decision. Operating system can provide applications with meta-interfaces that allow programmers 
to specify the expected behavior of their programs [11]. For example, BSD UNIX introduced the 
madvise system call as a meta-interface for application programs to inform the operating system 

8Cache is divided into separate page-size colors. Conflicts may occur when two pages have the same color. 
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of a memory region's paging behavior. 

7 Summary 

This paper examines the various optimizations performed by the HP-UX ulbcopy routine and show 
that, while useful, they do not significantly affect performance compared to cache temperature. The 
temperature of the cache can be reduced by cache conflict misses when the source and destination 
overlap each other in a direct-mapped cache. While it is important for the operating system to make 
use of the hardware features of processor implementations, it is also important for the operating 
system to reduce the number of conflict misses generated by copies. 

In the case of the read system call, this can be done using a variety of methods. Sophisticated 
buffer cache management may avoid conflicts by inferring user buffer addresses based on past 
behavior and choose non-conflicting buffer cache addresses. IIowever, since the operating system 
has to "guess" about user addresses this method is not 100% effective. Operating systems can 
also provide meta-interfaces to allow applications to specify their behavior. While meta-interfaces 
provide more accurate information, they place more of a burden on application programs and 
require the system call interface to be extended. 

The architecture world has addressed this problem by providing higher associativity and cache 
hints to reduce cache pollution by data with low temporal locality. But this hardware poses 
essentially the same problem. The operating system must still determine the best policy to use to 
sustain a low number of cache conflict misses. The hardware has provided a new mechanism, but 
the operating system still has to determine the policy. This provides operating system researchers 
with an opportunity to improve byte copy performance by minimizing the amount of memory 
traffic, both immediate and future, in the system. 
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A Experimental Results 

Table 2 summarizes the various attributes of the machines used for the experiments. Table 3 and 4 
show the effect of source and destination alignment on byte copy performance. Table 5 contains 
the results of the bulk copy experiments in respective machine cycles. Table 6 presents the result 
in terms of microseconds. 

Table 2: Machine Configuration 

I Make/Model CPU Clock I Cache 

HP 9000/720 PA89 50 MHz 128 KB D-cache, 128 KB I-cache 
HP 9000/755 PA7100 99 MHz 256 KB D-cache, 256 KB I-cache 
HP 9000/712-80 PA7100LC 80 MHz 256 KB combined cache 

Table 3: Byte Alignment Effects (Warm-to-Warm) 

HP 9000/720 4418 4418 4147 • 
HP 9000/755 4163 4163 3636 
HP 9000/712-80 3376 3387 3387 3387 3376 

Table 4: Byte Alignment Effects (Clean-to-Clean) 

HP 9000/720 
HP 9000/755 13978 
HP 9000/712-80 8306 
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Table 5: Data Copy Time (in CPU cycles) 

HP 9000/720 
copy Cache Temperature 
method hot-hot hot-clean hot-dirty clean-hot clean-clean clean-dirty dirty-hot dirty-clean dirty-dirty 

memcpy 4147 6973 7475 6707 9553 10035 7357 10616 1l1l0 
8Wld-8Wst 4154 6975 7482 6714 9556 10042 7363 10217 10756 
8Wld-8WstH 4153 6974 7481 6713 9555 10041 7357 10216 10755 
4Dld-4Dst 2105 4923 5447 4683 7495 8045 5307 8554 9109 
4Dld-2Qst 1850 4925 5448 4410 7483 8046 5062 8361 8853 

HP 9000/755 
copy Cache Temperature 
method hot-hot hot-clean hot-dirty clean-hot clean-clean clean-dirty dirty-hot dirty-clean dirty-dirty 

memcpy 3636 8519 8552 8518 13196 13211 8550 15176 15185 
8Wld-8Wst 3384 8127 8190 8124 13203 13605 8186 14328 14817 
8Wld-8WstH 3384 8127 8190 8124 13203 13605 8186 14325 14820 
4Dld-4Dst 1592 .5081 7409 6213 10481 12818 7418 12434 14798 
4Dld-2Qst 283226 286288 286605 288051 291109 291442 288068 291121 291442 

HP 9000/712-80 
copy Cache Temperature 
method hot-hot hot-clean hot-dirty clean-hot clean-clean clean-dirty dirty-hotj dirty-clean dirty-dirty 

memcpy 3384 5314 6510 6328 8287 9983 6640 11268 12972 
8Wld-8Wst 3255 5193 6510 6199 8158 10491 6518 10639 12968 
8Wld-8WstH 3258 5196 6513 6202 8161 10495 6521 10642 12971 
4Dld-4DstH 1592 3270 6460 4548 6767 9967 6506 9712 12928 
4Dld-2Qst 357609 359118 359705 360565 362126 362427 360567 362126 362417 

~~~~~. ------



Table 6: Data Copy Time (in usecs) 

lIP 9000/720 
copy Cache Temperature 
method hot-hot hot-clean hot-dirty dean-hot clean-clean dean-dirty dirty-hot dirty-clean dirty-dirty 

memcpy 82.9 139 150 134 191 201 147 212 222 
8Wld-8Wst 83.1 140 150 134 191 201 147 204 215 
8Wld-8WstH 83.1 140 150 134 191 201 147 204 215 
4Dld-4Dst 42.1 98.7 109 93.9 150 161 106 171 182 
4Dld-2Qst 37.0 98.7 109 88.3 150 161 101 167 177 

HP 9000/755 
copy Cache Temperature 
method hot-hot hot-clean hot-dirty clean-hot clean-dean clean-dirty dirty-hot dirty-dean dirty-dirty 

memcpy 36.7 86.1 86.4 86.0 133 133 86.4 153 153 
8Wld-8Wst 34.2 82.1 82.7 82.1 133 137 82.7 145 150 
8Wld-8WstH 34.2 82.1 82.7 82.1 133 137 82.7 145 150 
4Dld-4Dst 16.1 51.3 74.8 62.8 106 129 74.9 126 149 
4Dld-2Qst 2861 2892 2895 2910 2941 2944 2910 2941 2944 

HP 9000/712-80 
-------

copy Cache Temperature 
method hot-hot hot-clean hot-dirty clean-hot dean-clean dean-dirty dirty-hot dirty-clean dirty-dirty 

memcpy 42.3 66.4 81.4 79.1 104 125 83.0 141 162 
8Wld-8Wst 40.7 64.9 81.4 77.5 102 131 81.5 133 162 
8Wld-8WstH 40.7 65.0 81.4 77.5 102 131 81.5 133 162 
4Dld-4Dstll 19.9 40.9 80.8 56.9 84.6 125 81.3 121 162 
4Dld-2Qst 4470 4489 4496 4507 4527 4530 4507 4527 4530 
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