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NANO EXPRESS Open Access

CdS quantum dot-sensitized solar cells based on
nano-branched TiO2 arrays
Chang Liu1, Yitan Li1, Lin Wei2, Cuncun Wu1, Yanxue Chen1*, Liangmo Mei1 and Jun Jiao3

Abstract

Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet
chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the
growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive
ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs).
The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically.
A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95%
were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared
to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly
enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional,
well-aligned TiO2 nanorod trunks.

Keywords: TiO2; CdS; Nanobranch; Solar cells

Background
Solar cells have attracted considerable attention because
of their potential application in low-cost and flexible en-
ergy generation devices. Since the seminal work pio-
neered by O'Regan and Grätzel in 1991, dye-sensitized
solar cells have been investigated extensively all over the
world [1-11]. Assembly of branched nanostructures also
received intense scrutiny due to their potential effects to
a number of promising applications such as solar cells,
water splitting, optoelectronics, sensing, field emission,
and more [12,13]. In 2013, Roh et al. studied solar cells
based on nano-branched TiO2 nanotubes, specifically,
nanotubes characterized by increased surface area [14].
The results were attractive; they were able to achieve an
impressive light-to-electricity conversion rate. Also of
note, Roh et al. used organic dye as a sensitizer to fabri-
cate solar devices. However, the use of dye as a sensitizer
is problematic for two reasons: first, organic dye is ex-
pensive; second, and perhaps more importantly, the or-
ganic dye proved to be unstable. As a result, using dye

to sensitize solar cells is still not feasible for practical
applications.
Because it is critical to tailor materials to be not only

cost-effective but also long-lasting, inorganic semicon-
ductors such as CdSe [15,16], PbS [17-19], CdS [20], and
Sb2S3 [21,22] have several advantages over conventional
dyes: first, the band gap of semiconductor nanoparticles
can be tuned by size to match the solar spectrum; sec-
ond, their large intrinsic dipole moments can lead to
rapid charge separation and a large extinction coefficient,
which is known to reduce the dark current and increase
the overall efficiency; third, and finally, semiconductor
sensitizers provide new chances to utilize hot electrons to
generate multiple charge carriers with a single photon.
Hence, nano-sized, narrow band gap semiconductors are
ideal candidates for the optimization of solar cells to
achieve improved performance. To date, CdS-sensitized
solar cells have been studied by many groups [23-26]. In
most reported works, CdS quantum dots were grown on
TiO2 nanotubes and TiO2 nanoporous photoanodes with
hierarchical pore distribution. However, little work has
been carried out on utilizing nano-branched TiO2 arrays
as photoanodes. Compared to polycrystal TiO2 nano-
structures, such as nanotubes and nanoparticles, nano-
branched TiO2 nanorod arrays, which are grown directly
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on transparent conductive oxide electrodes, increase the
photocurrent efficiency by avoiding the particle-to-particle
hopping that occurs in polycrystalline films. These nano-
structures could simultaneously offer a large surface
area for deposition of CdS quantum dots, excellent light-
trapping characteristics, lower charge carrier recombin-
ation rates, and a highly conductive pathway for charge
carrier collection, resulting in a highly efficient photoa-
node for solar cell applications.
In this study, a facile, two-step wet chemical synthesis

process at low temperature was applied to vertically
grown TiO2 nano-branched arrays on F:SnO2 conductive
glass (FTO). By varying the growth time, the length of
nanobranches was optimized to provide a larger area
for deposition of CdS quantum dots. Using the suc-
cessive ionic layer adsorption and reaction (SILAR)
method, CdS quantum dots were deposited on the surface
of TiO2 nano-branched arrays to make a photoanode
for quantum dot solar cells. The efficiency of the
solar cells varied as the growth time of TiO2 nano-
branches changed. A light-to-electricity conversion ef-
ficiency of 0.95% was recorded for solar cells based
on an optimized nano-branched array, indicating an
increase of 138% compared to that of solar cells based on
unbranched arrays.

Methods
Growth of single-crystalline rutile TiO2 nano-branched
arrays by facile, two-step wet chemical synthesis process
The TiO2 nanorod arrays were obtained using the fol-
lowing hydrothermal methods: 50 mL of deionized water
was mixed with 40 mL of concentrated hydrochloric acid.
After stirring at ambient temperature for 5 min, 400 μL of
titanium tetrachloride was added to the mixture. The
feedstock prepared above was injected into a stainless steel
autoclave with a Teflon lining. The FTO substrates were
ultrasonically cleaned for 10 min in a mixed solution of
deionized water, acetone, and 2-propanol with volume ra-
tios of 1:1:1 and were placed at an angle against the Teflon
liner wall with the conducting side facing down. The
hydrothermal synthesis was performed by placing the
autoclave in an oven and keeping it at 180°C for 2 h. After
synthesis, the autoclave was cooled to room temperature
under flowing water, and the FTO substrates were taken
out, washed extensively with deionized water, and dried in
the open air.
The TiO2 nanobranches were grown by immersing the

TiO2 nanorod arrays prepared above in a bottle filled
with an aqueous solution of 0.2 M TiCl4. The bottle
was sealed and kept at a constant temperature of 25°C
for 6 to 24 h. Finally, the TiO2 nano-branched arrays on
FTO were rinsed with ethanol and air-dried at 50°C. After
synthesis, the nano-branched arrays were annealed under
450°C for 30 min.

Deposition of CdS quantum dots using successive ionic
layer adsorption and reaction method
In a typical SILAR deposition cycle, Cd2+ ions were
deposited from a 0.05 M Cd(NO3)2 ethanol solution;
the sulfide source was 0.05 M Na2S in methanol/water
(1:1, v/v). The conductive FTO glass, pre-grown with TiO2

nano-branched arrays, was dipped into the Cd(NO3)2
ethanol solution for 2 min, then dipped into a Na2S
solution for another 5 min. This entire SILAR process
was repeated to obtain the optimal thickness of CdS
quantum dots.

Characterization
A field emission scanning electron microscope (FESEM;
Hitachi S-4800, Hitachi, Ltd., Chiyoda, Tokyo, Japan)
was used to characterize the morphology of the samples.
The crystal structure of the TiO2 nano-branched arrays
was examined by X-ray diffraction (XRD; XD-3, PG
Instruments Ltd., Beijing, China) with Cu Kα radi-
ation (λ = 0.154 nm) at a scan rate of 4° per min. X-ray
tube voltage and current were set to 36 kV and 20 mA,
respectively. The optical absorption spectrum was ob-
tained using a UV-visible spectrometer (TU-1900, PG
Instruments, Ltd., Beijing, China).

Solar cell assembly and performance measurement
Solar cells were assembled using nano-branched TiO2/
CdS nanostructures as photoanodes. Pt counter electrodes
were prepared by depositing a 20-nm-thick Pt film on
FTO glass using magnetron sputtering. A 60-μm-thick
sealing material (SX-1170-60, Solaronix SA, Aubonne,
Switzerland) with a 5 × 5 mm2 aperture was pasted onto
the Pt counter electrodes. The Pt counter electrode and
the nano-branched TiO2/CdS photoelectrode were sand-
wiched and sealed with the conductive sides facing in-
ward. A polysulfide electrolyte was injected into the space
between the two electrodes. The polysulfide electrolyte
was composed of 0.5 M sulfur, 1 M Na2S, and 0.1 M
NaOH, all of which were dissolved in methanol/water
(7:3, v/v) and stirred at 80°C for 2 h.
A solar simulator (Model 94022A, Newport, OH,

USA) with an AM1.5 filter was used to illuminate the
working solar cell at a light intensity of 1 sun illumi-
nation (100 mW/cm2). A sourcemeter (2400, Keithley
Instruments Inc., Cleveland, OH, USA) provided elec-
trical characterization during the measurements. Mea-
surements were calibrated using an OSI standard silicon
solar photodiode.

Results and discussion
Figure 1 shows the typical FESEM images of TiO2 nano-
rod arrays on FTO-coated glass substrates, at both (a)
low magnification and (b) high magnification. It can be
observed that the FTO-coated glass substrate was
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uniformly covered with ordered TiO2 nanorods. The
density of the nanorods was 20 nanorods/μm2, which al-
lows suitable space for growth of TiO2 nanobranches.
After immersion in an aqueous TiCl4 solution for a period
of time ranging from 6 to 24 h, nanobranches appeared
along the trunks of the TiO2 nanorods. The morphology
of the branches, shown in Figure 2, is strongly dependent

on the amount of time the nanorods remain immersed
in the TiCl4 solution. As the immersion time increases,
the branches become greater in number and longer in
length. These branches coated on TiO2 nanorod would
greatly improve the specific surface area and roughness,
which is urgent for solar cell applications. However, when
immersed for 24 h or more, the branches form continuous

Figure 1 Typical FESEM images of bare TiO2 nanorod arrays at (a) low and (b) high magnifications.

Figure 2 Morphologies of TiO2 nano-branched arrays. FESEM images of TiO2 nano-branched arrays synthesized via immersing TiO2 nanorod
arrays into an aqueous TiCl4 solution for (a) 6, (b) 12, (c) 18, and (d) 24 h.
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networks that greatly suppress the effective surface area,
preventing the CdS quantum dots from fully contracting
with the TiO2 and therefore decreasing the overall photo-
voltaic performance.
Figure 3 shows XRD patterns of (a) TiO2 nanorod

arrays and (b) nano-branched arrays without and (c) with
annealing treatment, each on FTO. As illustrated in
Figure 3a, with the exception of the diffraction peaks
from cassiterite-structured SnO2, all the other peaks
could be indexed as the (101), (211), (002), (310), and
(112) planes of tetragonal rutile structure of TiO2

(JCPDS no. 02–0494). The formation of rutile TiO2

nanorod arrays could be attributed to the small lattice
mismatch between FTO and rutile TiO2. Both rutile
and SnO2 have near-identical lattice parameters with
a = 0.4594 nm, c = 0.2958 nm and a = 0.4737 nm, c =
0.3185 nm for TiO2 and SnO2, respectively, making
the epitaxial growth of rutile TiO2 on FTO film pos-
sible. On the other hand, anatase and brookite have
lattice parameters of a = 0.3784 nm, c = 0.9514 nm
and a = 0.5455 nm, c = 0.5142 nm, respectively. The
production of these phases is unfavorable due to a
very high activation energy barrier which cannot be
overcome at the low temperatures used in this hydro-
thermal reaction. No new peaks appear in Figure 3b,
c, indicating that the TiO2 nano-branched arrays are
also in a tetragonal rutile phase.
CdS quantum dots were deposited on the surface of

nano-branched TiO2 arrays by SILAR method. The morph-
ologies of CdS/TiO2 nano-branched structures were shown
in Figure 4. As the length of the nanobranches increased,

the space between nano-branched arrays was reduced, in-
dicating that more CdS quantum dots were deposited on
the surface of the arrays. For the sample which was
immersed in the TiCl4 solution for a full 24 h, a porous
CdS nanoparticle layer formed on the surface of the TiO2

nano-branched arrays. As discussed later, this porous CdS
layer causes a dramatic decrease in the photocurrent and
efficiency for solar cells.
A brief schematic can provide a better impression of

these nanostructures. The schematic illustrations of CdS/
TiO2 nano-branched structures grown in TiCl4 solution
for (a) 0, (b) 12, (c) 18, and (d) 24 h appear in Figure 5. As
the length of nanobranches increased, more contract area
was provided for the deposition of CdS quantum dots.
However, once the deposition time reached the 24-h
mark, the nanobranches intercrossed or interconnected
with one another, preventing the CdS quantum dots from
making robust connections with the TiO2 nano-branched
arrays. Once this occurred, a CdS layer then formed a cap
on top of the nano-branched TiO2 array, resulting in the
decrease of the photocurrent and the efficiency of the
solar cells.
The typical UV-visible absorption spectrum of CdS/

TiO2 nano-branched structure sample is shown in
Figure 6. An optical band gap of 2.34 eV is estimated
for the as-synthesized CdS quantum dots from the
absorption spectra, which closely mirrors the band gap of
bulk CdS. No obvious blueshift caused by quantum con-
finement is observed, indicating the size of the CdS grains
is well above the CdS Bohr exciton diameter (approxi-
mately 2.9 nm). A strong absorption was observed for

Figure 3 XRD patterns of TiO2 nanorod and nano-branched arrays. TiO2 nanorod arrays (a) and nano-branched arrays without (b) and with
(c) annealing treatment on FTO.
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Figure 4 Morphologies of nano-branched TiO2/CdS nanostructures. FESEM images of nano-branched TiO2/CdS nanostructures with growth
time of TiO2 nanobranches for (a) 6, (b) 12, (c) 18, and (d) 24 h.

Figure 5 Schematic of CdS/TiO2 nano-branched structures grown in TiCl4 solution. (a) 0, (b) 12, (c) 18, and (d) 24 h.

Liu et al. Nanoscale Research Letters 2014, 9:107 Page 5 of 8
http://www.nanoscalereslett.com/content/9/1/107



light with a wavelength shorter than 540 nm, correspond-
ing to the most intensive part of the solar spectrum.
The photocurrent-voltage (I-V) performances of the

solar cells assembled using CdS/TiO2 nano-branched
structures grown in TiCl4 solution for 6 to 24 h are
shown in Figure 7. The I-V curves of the samples were
measured under 1 sun illumination (AM1.5, 100 mW/
cm2). For solar cells based on bare TiO2 nanorod arrays,
a short-circuit current density (Jsc) of 3.72 mA/cm2, an
open voltage of 0.34 V, and an overall energy conversion
efficiency of 0.44% were generated. As the growth time
of TiO2 nanobranches increased from 6 to 18 h, the
solar cell performance improved correspondingly. The
short-circuit current density (Jsc) improved from 3.72 to
6.78 mA/cm2; the open circuit voltage (Voc) improved
from 0.34 to 0.39 V. A power conversion efficiency of
0.95% was obtained for the sample with nano-branched
structures grown in TiCl4 solution for 18 h, indicating
an increase of 138% compared to that based on bare

TiO2 nanorod arrays. Detailed parameters of the solar
cells extracted from the I-V characteristics are listed in
Table 1. As the growth time reaches 24 h or more, the
branches on the nanorod arrays were interconnected.
The active area of TiO2 for CdS deposition decreased,
and a porous CdS capping layer formed on top of TiO2

arrays. Therefore, excessive long growth time is disad-
vantageous and leads to a reduced photovoltaic perform-
ance of the solar cells.
From the above results, it is clear that solar cells based

on the TiO2 nano-branched arrays show an improved
photovoltaic performance. This significant improvement
can be attributed to the following: (1) the specific surface
area and roughness factor of TiO2 nano-branched arrays
were markedly enlarged, leading to expanded areas for
the deposition of CdS quantum dots; (2) the photo-
generated electrons transport quickly from the TiO2

nanobranches through the single-crystalline TiO2 nano-
rods to the FTO substrates, facilitated by the increased
electron conductivity of TiO2 nanorods; and (3) these
nanobranches can fill the gaps between nanorods, which
may improve their ability to harvest light, and thereby
improve power conversion efficiency.
In our present work, the power conversion efficiency

of our solar cells remains too low for use in practical
applications. The rather poor fill factor is considered to
be the main factor limiting the energy conversion effi-
ciency. This low fill factor may be ascribed to the lower
hole recovery rate of the polysulfide electrolyte, which
leads to a higher probability for charge recombination.
To improve the efficiency of these CdS/TiO2 nano-
branched quantum dot-sensitized solar cells, a new hole
transport medium must be developed, one with suitable
redox potential and low electron recombination at the
semiconductor-electrolyte interface.
Counter electrodes have also been reported to be an-

other important factor influencing the energy conversion
efficiency. Recently, a number of novel materials have
been examined and tested as counter electrode mate-
rials; these studies prove the influence of various counter
electrode materials on the fill factors of solar devices
[27-29]. In addition, graphene with outstanding, trans-
parent conducting properties has been explored as an

Figure 6 Typical optical absorption spectra of CdS/TiO2

nano-branched structures.

Figure 7 I-V curves for the solar cells assembled using CdS/TiO2

nano-branched structures.

Table 1 Jsc, Voc, FF, and efficiency

Voc (V) Jsc (mA/cm2) FF (%) η (%)

TiO2 NR/CdS 0.34 3.72 0.35 0.44

TiO2 NB (6)/CdS 0.34 4.61 0.32 0.51

TiO2 NB (12)/CdS 0.38 5.65 0.37 0.78

TiO2 NB (18)/CdS 0.39 6.78 0.36 0.95

TiO2 NB (24)/CdS 0.32 3.01 0.34 0.33

Voc, open-circuit voltage; Jsc, short-circuit photocurrent density; FF, fill factor; η,
energy conversion efficiency; NR, nanorod arrays; NB, nano-branched arrays.
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efficient constituent for solar cell applications [30-32].
Further studies will be conducted to optimize the nano-
structures and counter electrode materials to improve
the performance of our solar cells.

Conclusion
In this study, large-area nano-branched TiO2 nanorod
arrays were grown on fluorine-doped tin oxide glass by a
low-cost two-step hydrothermal method. The resultant
nanostructures consisted of single-crystalline nanorod
trunks and a large number of short TiO2 nanobranches,
which is an effective structure for the deposition of CdS
quantum dots. CdS quantum dots were deposited on the
nano-branched TiO2 nanorod arrays by a successive
ionic layer adsorption and reaction method to form an
effective photoanode for quantum dot-sensitized solar
cells. As the length of nanobranches increased, the con-
version efficiency varied respectively. An optimal effi-
ciency of 0.95% was recorded in solar cells based on
TiO2 nanorod arrays with optimized nanobranches, indi-
cating an increase of 138% compared to those based on
bare TiO2 nanorod arrays. In this aspect, the nano-
branched TiO2 arrays on FTO turned out to be more
desirable than bare nanorod arrays for the applications
of quantum dot-sensitized solar cells. Further studies of
both quantum dot-sensitized solar cells and dye-
sensitized solar cells based on these hierarchical TiO2

nanostructures grown directly on the FTO conductive
glass would be promising and significant for solar cell
applications.
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