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Abstract 

Developments in high resolution traffic sensors over the past decades 

are providing a wealth of empirical speed-flow data. Travel demand models 

use speed-flow relationships to assign traffic flows to network links. However, 

speed-flow relationships have not been revalidated against new detailed 

traffic sensor data.  Therefore, it is necessary to revisit speed-flow 

relationships based on actual measured conditions on network links rather 

than assuming constant speed-flow relationships over entire highway 

network systems.  

Speed-flow relationships have been particularly difficult to calibrate 

and estimate when traffic volumes approach capacity, i.e. when the v/c ratio 

approaches one. This thesis empirically evaluates the speed-flow relationships 

for v/c < 1 using field data. For congested conditions (v/c > 1) a theoretical 

approach is taken. A new methodology to determine the distribution of the 

activation of bottlenecks, bottleneck duration, and bottleneck deactivation is 

proposed. This thesis is a new contribution to understand the stochastic nature 

of freeway capacity as well as bottleneck duration, activation, and 

deactivation.  Unlike previous research efforts, this thesis studies speed-flow 
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relationships at the lane level and later presents a method to estimate speed-

flow relationships at the link level.  
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1.0     INTRODUCTION 

For the past 40 years, transportation professionals have used a four-step 

approach in modeling transportation demand. The classical four-step urban 

transportation planning procedure includes trip generation, trip distribution, 

modal split, and traffic assignment. In this procedure, the transportation 

system can be viewed as a conventional economic system with demand and 

supply subsystems. The demand side is comprised by mode specific origin-

destination (O-D) matrices. The supply side of a transportation system is 

comprised by a network represented by links, nodes and their associated 

costs. Link costs are usually a function of a number of factors including link 

distance, free-flow speed, capacity, and a speed-flow relationship. In traffic 

assignment, an O-D trip matrix is loaded onto the network and a set of link 

flows is produced. The speed-flow relationship is important as it relates the 

use of the network links to link travel time and thus link travel cost (Ortúzar 

and Willumsen, 2001).  

The relationship between speed and flow has been a topic of intense 

research in traffic flow theory. Assuming that traffic conditions on a given 

road segment are stationary and that drivers behave the same way, on 
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average, under the same average conditions, a relationship between speed 

and flow exists (TRB, 1975). A speed-flow relationship is usually presented as 

in figure 1.1, left. For traffic assignment applications, this relationship is 

presented in terms of travel time per unit distance versus flow as in figure 1.1, 

right. 

 

Figure 1.1. Typical speed-flow and travel time-flow relationship 

It is worth mentioning that the flow used in the travel time-flow 

relationship for planning applications is demand flow while the flow utilized in 

traffic flow theory is detected flow at a section of a road. In free-flow traffic 

conditions, prior to queue formation, detected flow equals demand flow at the 

detection point. As soon as a queue forms, the usual counting procedures (by 

loop detectors, tubes, or etc.) are only able to count the served demand, and 

not the demand flow (Dowling and Skabardonis, 2008).  

Speed

(mph)

Flow

(vph)

Travel time

(min/mile)

Flow

(vph)



 

 

3 

1.1 Problem Statement 

Travel demand models use speed-flow relationships to assign traffic to 

links in a network. Speed-flow equations currently used for planning 

applications do not adequately reflect travel times on transportation facilities. 

In addition, developments in high resolution traffic sensors over the past 50 

years have provided a wealth of empirical speed-flow data.  Improved speed-

flow relationships can be developed based on actual empirical measurements, 

rather than assuming constant relations over entire highway network systems. 

The use of volume-to-capacity (v/c) ratio based models also raises concerns 

about the accuracy of their predictions because existing constant capacity 

analysis methodologies for use in traffic assignment are inadequate.  This 

study empirically evaluates the speed-flow relationships for v/c < 1 using field 

data. For congested conditions (v/c > 1) a theoretical approach is taken. This 

research also presents an initial step toward understanding the stochastic 

nature of freeway capacity as well as bottleneck duration, activation, and 

deactivation.    
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1.2 Research Objectives 

The objective of this research is to investigate freeway speed-flow 

relationships and evaluate existing speed-flow equations used for planning 

applications. In particular, this study focuses on:  

1. Testing the accuracy of different speed-flow equations using field 

data, 

2. Calibrating existing speed-flow models, and 

3. Improving existing speed-flow relationships by incorporating new 

concepts of queuing theory, specifically taking into account the 

probabilistic nature of capacity. 

Note that the primary interest is not to derive an alternative speed-flow 

model, but to gain more insight into the relationship of travel time and flow, 

and particularly whether existing models estimate travel time with an 

acceptable accuracy. Some modifications to existing models will be also 

presented. 
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1.3 Thesis Overview 

1.3.1 Main Contributions 

The two main contributions of this research are to: (1) evaluate the 

accuracy of existing speed-flow relationships used in planning and calibrate 

them for selected locations, and (2) propose modifications for speed-flow 

equations taking into account the variation of capacity. 

1.3.2 Organization 

This thesis is organized as follows. Chapter 2 will provide a literature 

review of different speed-flow relationships and discusses some of the prior 

work done in relation to capacity estimation. Chapter 3 will present the data 

used in this research as well as the methodology used to estimate travel time, 

capacity, and free-flow speed and to segment congested and uncongested 

regimes. Chapter 4 will report results of the performed data analysis, accuracy 

tests, calibration of speed-flow equations as well as capacity estimation. 

Chapter 5 will propose modifications to existing speed-flow models for 

congested conditions. Finally, Chapter 6 will summarize findings and discuss 

suggested future work. 
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2.0     LITERATURE REVIEW 

Speed-flow relationships have been studied to a large extent in the 

literature. The first section of this chapter provides a brief introduction about 

traffic assignment. The second section reviews existing speed-flow models for 

planning applications. The third section discusses calibration of speed-flow 

models. The fourth section reviews basics of queuing theory. The fifth section 

reviews one of the existing models, Akçelik model, in detail. In the sixth 

section capacity uncertainty will be discussed. To conclude this chapter, gaps 

in current research are discussed. 

2.1 Traffic Assignment 

Static traffic assignment (STA) has been used by planners for decades to 

estimate current and future use of transportation networks. A limitation of 

STA is its inability to capture the dynamic aspects of traffic and networks. 

However, due to its simplicity and relatively good results in most cases, it is 

still widely used. More recently, dynamic traffic assignment (DTA) models 

have been developed to better represent route and departure time choices in a 

time-varying environment. DTA loads a road network with time varying O-D 

demand matrices. The time-varying nature of the demand in DTA has the 
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potential to better account for queuing in congested networks. However, 

DTA adds complexity to traffic propagation in the network. Merchant and 

Nemhauser (1978a, 1978b) suggested that commonly used travel time-flow 

equations in STA are not appropriate for dynamic networks. They suggested 

the use of an ‚exit function‛ to capture congestion on a link. An exit function 

computes the outflow as a function of the number of vehicles on the link. Exit 

flow functions have been criticized as they typically violate the first in-first 

Out (FIFO) condition on the links (Carey, 1986, 1987). Other formulations 

including simulation based models, cell transmission based models (Daganzo, 

1994), and microscopic models have been also proposed. Temporal extension 

of static travel time-flow functions has been used in Janson (1991), Ran et al. 

(1996), and Chen and Hsueh (1998). Ben-Akiva et al. (1998) divided network 

links into moving and queuing sections in DynaMIT. The static function is 

applied only to the moving part in their simulation model. Mahmassani (2001) 

moves vehicles on links based on a modified Greenshield type speed-density 

relationship in DYNASMART. Other traffic flow models could also be 

applied. Since travel time-flow relationships tend to be convex, they are 

convenient to use in assignment procedures.  
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2.2 Speed-Flow Relationships for Planning Applications 

The most well known speed-flow equation is a function proposed by 

the Bureau of Public Roads (1964), known as the standard BPR function: 












b

c

v
a

V
V

)(1

0  
(2.1) 

where 

V  = average travel speed (mph), 

0V = free-flow speed (mph), 

v  = demand volume (vph), 

c  = practical capacity (vph) (about 80 percent of the maximum capacity), 

a  = 0.15, and b  = 4. 

Note that a clear definition of capacity and ways to measure it were not 

provided by the BPR. In the BPR function, parameter a  determines the ratio of 

free-flow travel time to the travel time at capacity and parameter b  

determines how rapidly travel time increases from the free-flow travel time. 

Higher values of b make estimated travel time less sensitive to v/c ratio until 

v/c approaches 1. For v/c ratios greater than 1, higher values of b  cause travel 

time to be more sensitive to v/c ratio. Dowling et al. (1997) and Dowling and 
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Skabardonis (1993) empirically evaluated the standard BPR function (with a  

= 0.15 and b  = 4) with field data and concluded that the standard BPR function 

overestimates travel times at v/c ratios between 0.8 and 1 and underestimates 

travel times in queued conditions. A number of limitations of the standard 

BPR function are identified in Skabardonis and Dowling (1997). The BPR 

function is based on data that do not reflect today’s traffic operating 

conditions. It also does not take into account characteristics of different 

facilities. Also it highly underestimates travel times for congested conditions. 

The standard BPR function was used as outlined above in the Highway 

Capacity Manual (HCM) (1965). The HCM (1985) described the same speed-

flow relationship with higher sensitivity of speeds to traffic volumes for the 

low volumes. The HCM (1994) described a different shape for the speed-flow 

relationship based on empirical observations. Most recently, the HCM (2000) 

describes speed-flow relationships for different classes of roads (See figure 

2.1). One of the major drawbacks of the relationship proposed by the HCM 

(2000) is its inability to estimate speeds for v/c ratios greater than 1. A review 

of different speed-flow functions can be found in Branston (1976).  
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Figure 2.1. Speed-Flow Relationships for Freeway Segments (HCM, 2000) 

Calibrated versions of BPR with different values of parameters a  and b  

are proposed in Singh (1995), Kurth et al. (1996), Dowling et al. (1997), 

Skabardonis and Dowling (1997), Singh (1999), and Hansen et al. (2005). For 

example, the Portland metropolitan planning organization (METRO) uses a 

slightly modified version of the BPR function where a  = 0.15, and b  = 7 

(Hansen et al., 2005): 









 b

c

v
att )

75.0
(10  (2.2) 

where  

t  = average travel time per unit distance, 

0t = free-flow travel time per unit distance, 
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Because of a number of limitations of the BPR function, conical 

functions were introduced by Spiess (1990): 

)(.0 xftt   

  )1()1(2)( 222 xxxf  

(2.3) 

(2.4) 

where  

t  = average travel time per unit distance, 

0t = free-flow travel time per unit distance, 

x  = v/c ratio (no clear definition of capacity was provided), 

22

12









 , and   is a number greater than 1. 

It is shown in Spiess (1990) that the conical function compared to the 

standard BPR function has better computational efficiency in the assignment 

process, in spite of its apparently more complex formula. METRO uses a 

calibrated version of the conical function where 7  and 0833.1  (Hansen 

et al., 2005). 

Davidson (1966, 1978) proposed a travel time function based on 

concepts of queuing theory: 













)1(
10

X

XJ
tt D  (2.5) 
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where 

t  = average travel time per unit distance, 

0t = free-flow travel time per unit distance, 

X = degree of saturation (volume-to-capacity ratio; no clear definition of 

capacity was provided), and 

DJ = delay parameter (time per unit distance). 

Davidson derived equation 2.5 from the steady-state delay formulation 

for a single channel queuing system with random arrival rates and 

exponentially distributed service rates. In this system, delay can be calculated 

as follows: 

)1(

1

XQ

X

Q
d


  (2.6) 

where 

d = delay (time unit), 

Q = capacity (veh/hr), and 

X = degree of saturation (volume-to-capacity ratio). 

The first term in equation 2.6 represents the service time and the second 

term represents the queuing delay. To obtain equation 2.5 from equation 2.6, 



 

 

13 

Davidson multiplied the queuing delay term by a delay factor ( DJ ) and 

assumed that the service time equals free-flow travel time. 

Q
t

1
0   (2.7) 

The Davidson equation has a definitional inconsistency which was first 

raised by Golding (1977) and then further discussed by Akçelik (1991). The 

inconsistency of the Davidson equation is due to its implication that the 

capacity can be defined as the inverse of free-flow travel time and the degree 

of saturation as volume times free-flow travel time, which is meaningless. 

Davidson function estimates finite travel times for v/c smaller than 1 and 

negative travel times for v/c greater than 1. It estimates an infinite travel time 

for v/c equal to 1. 

Akçelik (1991) developed a time-dependent version of Davidson’s 

function using the steady-state delay equation for a single channel queuing 

system: 














cT

XJ
XXTtt A8

)1()1(25.0 2

0  (2.8) 

where 

t  = average travel time per unit distance, 
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0t = free-flow travel time per unit distance, 

X = degree of saturation (volume-to-capacity ratio; no clear definition of 

capacity was provided), 

T = duration of analysis period (h), 

c = capacity (vph), and 

AJ = delay parameter (unitless). 

The delay parameter AJ  corresponds to the quality of service provided 

by the road section and is independent of the traffic flow but sensitive to the 

value of travel time at capacity (Akçelik, 1994; Dowling et al., 2004). A detailed 

analysis of the Akçelik equation is presented in section 2.4.  

Chapter 30 of the HCM 2000 suggests the following modified speed-

flow equation: 
















2

2
2

0

16
)1()1(25.0

T

XJL
XXTDtt q

 (2.9) 

where 

t  = average travel time (h), 

0t = free-flow travel time (h), 

qD = delay due to leftover queue from prior hour (h), 

X = degree of saturation (volume-to-capacity ratio), 
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T = duration of analysis period (h),  

L = segment length (mi), and 

J  = delay parameter ( 22 mih ). 

The delay caused by leftover queue is computed as follows as in 

Dowling et al. (2004): 

cT

tuQ
Dq

2

)1( 
  (2.10) 

where 

Q  leftover queue from prior period (veh), 

c  capacity (veh/hr), 

t  duration of unserved demand; t = 0 if Q = 0 else 
 











),1min(1
,min

Xc

Q
Tt  

u delay parameter; u = 0 if Q = 0 else  ),1min(11 X
Q

cT
u   

Dowling and Skabardonis (2008) proposed a simplified version of the 

Akçelik equation as follows:  

 JXXXTtt  2

0 )1()1(25.0  (2.11) 

where all variables are the same as defined before in equation 2.9. Parameter J 

in equation 2.11 is unitless. 
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In this equation, the constant multiplier 8 for the Akçelik AJ  

parameter is subsumed within the J calibration parameter itself and the 

variable capacity is dropped. An hour-long analysis period is assumed. 

A study by Dowling and Skabardonis (2008) showed that the Akçelik 

curve is consistent with the theoretical delay due to queuing for v/c > 1. T in 

the Akçelik equation is the time interval during which a constant flow rate 

persists. In addition, the Akçelik equation assumes no initial queue at the start 

of the flow period. However, the extra delay caused by the leftover queue 

from the prior period can be calculated and added to the Akçelik equation as 

in Dowling et al. (2004) and HCM (2000).  

Figure 2.2 shows a comparison of the standard BPR, METRO updated 

BPR, METRO conical, Davidson, Akçelik, and the HCM 2000 speed-flow 

curves with a free-flow speed of 60 mph, link length of 1 mile, 1 hour long 

analysis period, and a capacity of 2,300 vehicle per hour per lane (vphpl) for 

v/c smaller than 1. Delay parameters 1.0AJ  and 04.0J 22 mihr  are used 

for the Akçelik and HCM 2000 equations, respectively. The Akçelik curve 

closely matches the HCM 2000 curve. The Davidson and METRO conical 

models predicts higher average travel times when compared to the other 

models. The travel times predicted by the standard BPR and METRO BPR 
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models are constantly higher than those predicted by Akçelik and 

HCM2000 except for v/c ratios close to 1. 

 

Figure 2.2. Comparison of travel time estimation functions for v/c < 1. 

Figure 2.3 compares the same travel time estimation functions for v/c 

greater than 1. The Davidson function is excluded from this figure since it only 

estimates travel times for v/c smaller than 1. The Akçelik curve closely 

matches the HCM2000 curve. Travel times estimated by the Akçelik and 

HCM2000 models increase almost linearly for v/c ratios greater than 1. While 

the BPR curves increase nonlinearly.  For METRO BPR formulation (with 
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a=0.15 and b=7), the travel time estimates increase rapidly with higher v/c 

ratios. The conical function behaves as a quasi-linear function for large v/c 

ratios. 

 

Figure 2.3. Comparison of travel time estimation functions for v/c > 1. 

2.3 Calibration of Speed-Flow Models 

In the literature, calibration of speed-flow equations has not been given 

enough attention despite its importance. As mentioned earlier, calibrated 
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values of parameters a  and b  are proposed in Singh (1995), Kurth et al. 

(1996), Dowling et al. (1997), Skabardonis and Dowling (1997), Singh (1999), 

and Hansen et al. (2005). As mentioned earlier, currently METRO uses an 

updated version of the BPR function where a  = 0.15, and b  = 7 (Hansen et al., 

2005). 

The conical function like all the other models presented can be 

calibrated by fitting its curve to observed speed-flow data. METRO has 

developed a calibrated version of the conical function where 7  and 

0833.1  (Hansen et al., 2005). 

The delay parameter ( AJ ) in the Akçelik model corresponds to the 

quality of service on the road which depends on the frequency of delay-

causing elements in the road section. To obtain rough estimates of the delay 

parameter, Akçelik provided the following formula: 

2

0 )(
2

tt
T

c
J CA   (2.12) 

where Ct  is the value of travel time at capacity (in hours per mile) and the rest 

of the variables are the same as defined before in equation 2.8. For example, 

using 5.1
0


t

tC , c  2,000 vphpl, T=1 hour, and a free-flow speed of 60 mph, 
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AJ  0.28  is found. If 2
0


t

tC , then for the same values of capacity and free-

flow speed,          AJ  1.11. This indicates the sensitivity of the delay 

parameter to the travel time at capacity. Another appropriate way to calibrate 

the Akçelik function to determine the value of the delay parameter is using the 

data points for medium and high flow conditions (0.4 < v/c < 0.9) but not 

oversaturated conditions (Akçelik, 1991). Table 2.1 shows the suggested values 

by Akçelik for AJ . 

Table 2.1. Akçelik suggested values for AJ  (Akçelik, 1991) 

Road type 

Free-Flow  

Speed 

 
Capacity  

(vphpl) 0t

tC  
AJ  

(km/h) (mph)  

Freeway 120  74.6    2,000 1.59 0.1 

Arterial 

(uninterrupted) 
100   62.1 

 
1,800 1.75 0.2 

Arterial 

(interrupted) 
80  49.7 

 
1,200 2.04 0.4 

Secondary 

(interrupted) 
60  37.3 

 
900 2.27 0.8 

Secondary (high 

friction) 
40  24.9 

 
600 2.44 1.6 

 

The delay parameter ( J ) in the HCM 2000 model relates to the travel 

time of traffic when demand is equal to capacity and free-flow travel time. 

Substituting      X = 1 in equation 2.9 and solving for J  yields equation 2.13: 
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2

2

0 )(

L

Dtt
J

qC 
  (2.13) 

where all variables are the same as defined before in equation 2.9. 

A number of studies have addressed some of the calibration issues as 

well as variation in capacity, demand, and travel time (Hurdle et al., 1997; Tarko 

and Tian, 2003; Olstam et al., 2008).  A study by Taylor (1984) suggested 

including dynamic components in speed-flow equations. Waller et al. (2001) 

addressed the impact of demand uncertainty on the evaluation of network 

improvements using stochastic traffic assignment. A recent study by Tu et al. 

(2007) empirically investigated travel time variability as a function of freeway 

inflow. Studies exploring the stochastic nature of freeway capacity will be 

discussed in section 2.5. 

2.4 Basics of Queuing Theory 

When arrival rate exceeds departure rate at a specific location and for a 

period of time, a queue is formed. Traditionally, queuing analysis requires five 

basic elements (May, 1990): 

1. Arrival rate 

2. Arrival distribution 

3. Service rate 
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4. Service distribution 

5. Queue discipline 

Arrival and service rates are usually expressed as flow rates. Arrival 

and service rates can be specified as constants or random variables. Queuing 

discipline represents the order to get service. The most commonly used queue 

discipline in traffic operations is ‚first in, first out‛.  

Generally, queuing analysis is classified into two categories: 

deterministic queuing analysis and stochastic queuing analysis. If arrival rates 

and departure rates are constant then deterministic queuing analysis is 

selected. If arrival rates or departure rates are random variables then 

stochastic queuing analysis is selected (May, 1990).  

In traffic analysis, cumulative plots are commonly used for graphical 

representation. A cumulative plot ‚is the graph of a function N(t) that gives 

the cumulative number of vehicles (or other moving objects) to have passed an 

observer by time t starting from an arbitrary initial count, e.g. at t = 0‛ 

(Daganzo, 2007). Figure 2.4 shows hypothetical arrival and departure curves 

observed at two locations absolutely close to each other where A(t) and D(t) 

are arrival and departure curves observed upstream and downstream of a 

bottleneck. Q(t) is defined as the number of vehicles in between the two 
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locations at time t (See equation 2.14) and w(N) represent a trip time 

through the system for the Nth vehicle (See equation 2.15). 

 

Figure 2.4. Hypothetical arrival and departure curves. 

 
)()()( tDtAtQ   

)()()( 11 NANDNw    

(2.14) 

(2.15) 

where )(1 ND  is the inverse of )(tD  and )(1 NA  is the inverse of )(tA . 

The shaded area in figure 2.4 is the total wait time in the system: 

 
tt

dttDtAdttQArea ))()(()(  (2.16) 

It should be noted that the queuing analysis presented graphically in 

figure 2.4 only allows to predict the queuing process in a system in a very 

D(t)

A(t)

t

N Q

w
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short term where the two observers are located close to each other. This 

analysis method assumes vehicles are stacked on top of each other and form a 

‚point‛ queue next to the bottleneck. However, in the real world, a queue 

takes considerable physical space and backs up. Therefore, a different analysis 

method is required to consider the actual characteristics of a queue.  

A method using a ‚virtual arrival curve‛ is described in Daganzo 

(2007). This method assumes that the queue forms directly upstream of the 

bottleneck and vehicles travel at an average speed qv  within the queue, qd  is 

defined as the length of the physical queue (in distance units) and qt  is 

defined as the queuing time of any vehicle. It is also assumed that vehicles 

approach the queue at a free-flow speed fv . For the qd  and qt  of any vehicle, 

the following relationships exist: 

q

q

q
v

d
t   (2.17) 

f

q

q
v

d
tw   (2.18) 

Equation 2.18 expresses that the delay of any vehicle is the difference 

between its travel time within the queue and the time that it would take to 
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travel the same distance at free-flow speed. Therefore, by substituting 
q

q

v

d
 

with qt , the queuing time ( qt ) is calculated as follows: 

)1(
f

q

q

v

v

w
t





 

(2.19) 

Equation 2.19 can be simplified: 

wtq    

)1(

1

f

q

v

v


  1  

(2.20) 

 

(2.21) 

Since parameter   is only related to the free-flow speed and the 

average speed of vehicles within the queue, it is the same for all the vehicles 

within the queue. However it is a random variable. For details see Daganzo 

(2007).  

2.5 Detailed Analysis of the Akçelik Model 

Akçelik model is a modified version of Davidson’s function with a 

different definition of the delay parameter and applicable even when v/c   1. 

The Akçelik equation is developed from the steady-state delay equation for a 

single channel queuing system in a time-dependent format using a coordinate 
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transformation method (Akçelik, 1991). It assumes a constant arrival rate and 

no initial queue at the start of the analysis period. The Akçelik curve increases 

near linearly when demand exceeds capacity. The slope of the Akçelik curve 

for situations where v/c   1 depends on the chosen value of T (time period of 

analysis in hours). For example, for analysis periods of one hour in length, the 

slope of the Akçelik curve with respect to X (v/c ratio) approaches (but never 

exactly matches) the slope of 21  for large values of X.  

A simple queuing analysis is done to explore the consistency of the 

Akçelik model with the classical queuing theory (See figure 2.5). Assuming an 

analysis period length of T, a constant arrival rate of V, and a constant 

departure rate of Q, the total delay ( TD ) is calculated as follows: 

)1(
2

1 2 
Q

V
VTDT  (2.22) 
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Figure 2.5. Stationary arrival and departure curves for oversaturated 

conditions. 

 

Replacing 
Q

V
 by X, equation 2.22 can be rewritten as: 

)1(
2

1 2  XVTDT  (2.23) 

The average delay ( AD ) can be calculated as: 

)1(
2

1
 XTDA  (2.24) 

Equation 2.25 shows the derivative of the average delay with respect to 

X. For an analysis period of T = 1 (in time unit), the slope of the average delay 

equals 
2

1
. 

t

N

Q

V

T
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T
dX

TXdDA

2

1)(
  (2.25) 

 
Figure 2.6. Akçelik model versus queuing theory for T = 1 hr. 

Figure 2.6 illustrates the average delay estimated by Akçelik model 

versus the average delay according to the deterministic queuing theory. As 

can be seen, for v/c greater than 1, the Akçelik curve is consistent with the 

deterministic queuing delay. A similar analysis can be found in Dowling and 

Skabardonis (2008).  
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Figure 2.7. Sensitivity of the Akçelik model to T. 

Figure 2.7 shows the sensitivity of the Akçelik model to analysis time 

period of T. Analysis time period is defined in Akçelik (1991) as ‚the time 

period which an average demand flow rate persists.‛ As mathematically 

shown earlier in equation 2.25, increasing the value of T increases the 

sensitivity of Akçelik model to v/c ratio. Figure 2.6 illustrates this graphically. 
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Figure 2.8. Sensitivity of the Akçelik model to delay parameter. 

Figure 2.8 shows the sensitivity of the Akçelik model to delay 

parameter AJ . The delay parameter in the Akçelik model corresponds to the 

quality of service on the road which depends on the frequency of delay-

causing elements (such as on-ramps, off-ramps, weaving sections, etc) in the 

road section. Increasing the value of AJ  increases the sensitivity of the Akçelik 

model to the v/c ratio. It also increases the value of travel time at capacity. 

Figure 2.9 shows the sensitivity of the Akçelik model to free-flow speed 

(FFS). As can be seen, poor choice of free-flow speed greatly affects travel time 

estimates by the Akçelik model when v/c <1. 
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Figure 2.9. Sensitivity of the Akçelik model to free-flow speed. 

2.6 Capacity Uncertainty 

The proper definition and quantification of capacity have been topics of 

debate among researchers for debates. For example, capacity has been defined 

as ‚a description of the limit of the vehicle-carrying ability of a roadway‛ 

(Lorenz and Elefteriadou, 2001). HCM (2000) defines freeway capacity as ‚the 

maximum sustained 15-min rate of flow, expressed in passenger car per hour 

per lane (pcphpl), that can be accommodated by a uniform freeway segment 

under prevailing traffic and roadway conditions in a specified direction.‛ 

Freeway capacity is also defined as a bottleneck’s long-run queue discharge 
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rate (Agyemang-Duah and Hall, 1991; Banks, 1990, 1991; Cassidy and Bertini, 

1999). Several research efforts have studied the relationship between flow 

breakdown and capacity (Elefteriadou et al., 1995; Persaud et al., 1998; O’Leath, 

1998).  

Traffic breakdown ‚describes freeway operation near a bottleneck 

entrance during a period when there is a change from operation with vehicles 

flowing freely to operation with a queue present‛ (Persaud et al., 1998). 

Empirical studies have shown that flow breakdown does not necessarily occur 

at the nominal maximum flow (Elefteriadou et al., 1995; Persaud et al., 1998; 

Kerner, 2000; Evans et al., 2001). Breakdown flow may be lower or higher than 

the maximum flow. 

Traditionally, the capacity of a freeway facility is treated as a constant 

value. However, several studies show that freeway capacity has a stochastic 

nature (Minderhoud, 1997; Persaud, 1998; Lorenz and Elefteriadou, 2001; Brilon et 

al., 2007; Geistefelft, 2008; Dong and Mahmassani, 2009). Taking into account the 

probabilistic nature of capacity and flow breakdown, Lorenz and Elefteriadou 

(2001) suggested a new definition of capacity as the rate of flow (expressed in 

pcphpl) along a uniform freeway segment corresponding to the expected 
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probability of breakdown deemed acceptable under prevailing traffic and 

road conditions in a specified direction. 

2.7 Discussion 

2.7.1 Gaps in Current Research 

In the literature, there are few studies examining the goodness of fit of 

the existing speed-flow models utilize empirical data. Also, calibration of 

speed-flow equations has been given less attention despite its importance. 

Although several studies have explored the stochastic characteristics of 

capacity (Minderhoud, 1997; Persaud, 1998; Lorenz and Elefteriadou, 2001; Brilon et 

al., 2007; Geistefelft, 2008; Dong and Mahmassani, 2009) and probabilistic 

queuing models have been developed (Viti and van Zuylen, 2010) there has 

been no improvement in existing travel time estimation models that take into 

account the variation in capacity.   

2.7.2 Potential Improvements 

The main question of this research is: ‚How can traffic data be used to 

improve travel time estimation models?‛ Using data from the Portland 

Oregon Regional Transportation Archive Listing (PORTAL), the accuracy of 
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existing speed-flow models can be examined and more site-specific models 

can be developed. Building on previous studies, the stochastic nature of 

capacity can also be explored. Toward this end, existing speed-flow models 

can be calibrated and modified to estimate more accurate travel times and to 

consider variation in variables such as capacity. Queuing theory can be 

applied to modify existing models to take into account the time-varying flows 

used in dynamic traffic assignment. 
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3.0     METHODOLOGY 

This chapter presents the data, study location, and methods used in this 

research. The first section describes the study location. In the second section, 

data used in this research are described. In the third section, the method used 

for the segmentation of congested and uncongested regimes will be described. 

The fourth section discusses the methods used to measure travel time, 

capacity, and free-flow speed. In the fifth section, to capture the stochastic 

nature of capacity, the quantile function is introduced. 

3.1 Study Location 

The freeway system in the Portland metropolitan region consists of 

several Interstate and U.S. highways and state routes. OR-217 is a 7-mi 

corridor that serves the western suburbs of Portland. It is a limited access 

freeway that connects U.S. Route 26 and Interstate 5 (See Figure 3.1). Two 

study locations are used here. Both are segments of OR-217 (southbound). 
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Figure 3.1. Portland Metropolitan Area freeway network 

Typically, queues form on the OR-217 southbound during morning and 

afternoon peak periods. In the morning peak period, a recurrent bottleneck (a 

point where traffic flow is restricted due to the merging/separation of freeway 

traffic) is located between Scholls-Ferry Road and Greenburg Road, and the 

N 
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resulting queue propagates over 4–5 mi upstream. The bottleneck activates 

as a result of a large inflow from the onramp at Scholls-Ferry Road and 

remains active from 7 a.m. to 9 a.m. During the afternoon peak, a queue forms 

between Denney Road and Allen Boulevard and propagates several miles 

upstream (often to Barnes Road). However, a queue from this active 

bottleneck is often overridden by another queue that forms on I-5 southbound 

and spills over to OR-217 southbound (Ahn et al., 2007) (See figure 3.2 and 

figure 3.3).  

  

   

Figure 3.2. Map of ORE 217 Southbound, Portland, OR (Ahn et al., 2007) 

OR-217 SB

T
ra

v
e

l 
D

ir
e

c
ti
o

n

MP 0.45 – Wilshire Rd.

MP 0.76 – Walker Rd.

MP 1.92 – B-H Hwy

MP 2.55 – Allen Blvd.

MP 0.1 – Barnes Rd.

MP 3.12 – Denney Rd.

MP 3.5 – Hall Blvd.

MP 4.35 – Scholls-Ferry Rd.

MP 5.11 – Greenburg Rd.

MP 5.95 – Pacific Hwy

MP 6.77 – 72nd Ave.



 

 

38 

 

Figure 3.3. Speed Map of ORE 217 Southbound, Portland, OR on Thursday, 

April 8, 2010 

 

The study area includes mileposts 1.92 (Beaverton-Hillsdale Hwy) and 

3.12 (Denney Rd). At both locations the freeway has two main lanes. At 

milepost 1.92, a two-lane off-ramp to Allen Blvd is located 0.25 mile 

downstream of the Beaverton-Hillsdale Hwy on-ramp. At milepost 3.12, a 

one-lane off-ramp to Hall Blvd is located 0.32 mile downstream of the Denney 

Rd on-ramp. Figure 3.4 shows a sketch of the study locations. The data 

analysis to be presented in later sections results is for these two locations. 
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Figure 3.4. Schematic map of the study locations: milepost 1.92 (Beaverton-

Hillsdale Hwy) and milepost 3.12 (Denney Rd) 

 

3.2 Data 

The data used in this study are from Portland Oregon Regional 

Transportation Archive Listing (PORTAL: http://portal.its.pdx.edu/). In 

partnership with the Oregon Department of Transportation (ODOT), PORTAL 

archives data from more than 670 inductive loop detectors that compose the 

Portland region’s advanced traffic management system (ATMS) (one detector 

station per segment, segment boundaries established at the midpoints 

between detectors). These detectors were initially deployed as part of a 

comprehensive ramp metering system. Therefore, dual mainline loops are 

located just upstream of on-ramp locations, and the on-ramps themselves are 

also instrumented. The mean detector spacing is approximately 1 mile. At 20-

second intervals, each loop detector records vehicle count, average speed of 
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these vehicles, and occupancy, or percentage of the sample period when a 

vehicle was over the detector (Bertini et al., 2005). PORTAL uses the standard 

midpoint algorithm to generate travel time estimates from 20-second time 

mean speed data. For this study, archived loop detector data aggregated over 

20-second intervals for 30 weekdays from September 2009 to February 2010 

are used (see appendix A). Adverse weather can add noise to the speed-flow 

data. The impact of weather on freeway traffic operations have been widely 

studied in the literature (Saberi and Bertini, 2010; Rakha et al., 2008; Agarwal 

et al., 2006; Kyte et al., 2001). To remove variations in speed-flow data due to 

adverse weather conditions and to be consistent with previous speed-flow 

studies, we have limited the analysis to days with no adverse weather 

conditions (i.e. days with no rain or snow). Also only days with good data 

quality and no major incidents are selected. The analysis is for morning peak 

periods (6 a.m. to 10 a.m.). 

3.3 Segmentation of Congested and Uncongested Regimes 

Speed-flow relationships for planning applications require v/c ratio to 

estimate speeds. The v/c ratio represents traffic conditions. If v/c < 1 then the 

traffic condition can be considered ‚uncongested‛ and if v/c 1 then the traffic 
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condition can be considered ‚congested.‛ To examine speed-flow models 

with field data recorded by loop detectors, segmentation of congested and 

uncongested data points is necessary because traffic counts recorded by loop 

detectors do not measure demand volume during congested conditions. Thus 

in the absence of vehicle trajectories, queuing theory can be used when 

demand exceeds capacity. With a spatio-temporal analysis, using data from 

series of loop detectors upstream of a bottleneck up to the end of the queue, a 

queuing graph can be created for further queuing analysis (Cassidy and 

Windover, 1995; Daganzo, 2007). As mentioned earlier, this study empirically 

evaluates the speed-flow relationships for v/c < 1 using field data. For 

congested conditions (v/c > 1) a theoretical approach is taken. 

For segmentation of congested and uncongested regimes, different 

algorithms have been proposed. Several methods utilize speed threshold-

based algorithms. Chen et al. (2004) uses only vehicle speed to indentify traffic 

states. Zhang and Levinson (2010) developed a similar algorithm but based on 

occupancy differentials. The ASDA/FOTO algorithm uses Kerner’s three-

phase traffic theory and speed and flow thresholds to identify different traffic 

states (Kerner et al., 2004). The rescaled cumulative curve method proposed by 

Cassidy and Bertini (1999) is another tool to track congested traffic features. A 
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recent study by Li and Bertini (2010) has tested the rescaled cumulative 

curve method with speed thresholds and with ASDA/FOTO rules. Their 

results indicate that the rescaled cumulative curve with speed thresholds 

works well when only two traffic states (congested and uncongested) are 

defined. The Chen algorithm was optimized for use in Portland by Wieczorek 

et al. (2010). They suggested a speed threshold of 35 mph for Portland 

freeways. Thus, in order to separate congested and uncongested data points in 

our analysis, rescaled cumulative plots with a speed threshold of 35 mph 

using 20-second aggregated data are used.  

3.3.1 Rescaled Cumulative Curve 

Rescaled cumulative (oblique) plots of traffic data are a powerful tool 

for exploring traffic flow phenomena over time and space. Several analyses of 

traffic features using transformed curves of cumulative vehicle arrival number 

versus time and cumulative occupancy versus time measured at freeway 

detector locations can be found in Cassidy and Windover (1995), Cassidy and 

Bertini (1999), Cassidy and Mauch (2001), Munoz and Daganzo (2002), and 

Lindgren et al. (2006). A line of constant slope on an oblique cumulative curve 

can identify nearly stationary traffic patterns where flow or speed alternate 
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between higher and lower rates. The use of an oblique coordinate system 

magnifies changes in flows or speeds and the times when these changes 

occurred.  

Defining N(t) as the speed at time t, then the cumulative speed ),( txN  

is defined as: 


t

t

tNtxN
0

)(),(  (3.1) 

where N(t) is obtained by taking linear interpolations through the 20-second 

speed data so that a curve’s slope at time t  is the speed at location x  at that 

time (See figure 3.5 (a)) as in Li and Bertini (2010).   

An oblique coordinate system can be set by reducing tv 
0  from ),( txN , 

where 0v  is an oblique scaling rate and t   is the elapsed time from the 

beginning of the curve (See Figure 3.5 (b)). The time window length is defined 

as 0ttTL N  ; 0t  and Nt  are the beginning and end of the analysis period 

respectively. The oblique scaling rate can be calculated as follows: 

0

0

0

),(),(

tt

txNtxN
v

N

N




  (3.2) 

The elapsed time is: 
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0ttt   (3.3) 

Then, the oblique value of speed is: 

tvtxNtx  0),(),(  (3.4) 

To interpolate lines of constant slope representing stationary traffic 

conditions, the oblique value ),( tx  which is the speed deviation from the 

mean can be used. On an oblique cumulative plot of speed, a local maximum 

oblique value indicates a time at which a speed reduction occurs, and a local 

minimum indicates the time at which a speed increase occurs. 

 

Figure 3.5. Rescaled cumulative curve construction, ORE 217 SB, milepost 

4.35, January 22, 2010 
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3.3.2 Traffic State Identification 

The rescaled cumulative curve method with a speed threshold was 

suggested by Li and Bertini (2010) for traffic state identification when only 

two traffic states (congested and uncongested) are defined. From figure 3.5 (b), 

bottleneck activation and deactivation times can be identified. Between the 

bottleneck activation and deactivation times, the average speed of 22 mph, 

which is below the speed threshold of 35 mph, is observed. Therefore, from 

7:33:20 to 8:35:00, the traffic state is congested and for the rest of the time 

period (from 6:00:00 to 7:33:20 and from 8:35:00 to 10:00:00), the traffic state is 

uncongested. For the same rescaled cumulative curve constructed before, 

using 20-second aggregated data, hourly equivalent flow over all lanes versus 

occupancy averaged over all lanes is plotted in figure 3.6. As can be seen, the 

fundamental diagram has a clear separation between congested and 

uncongested regimes with a very few exceptions.  
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Figure 3.6. Traffic state identification, ORE 217 SB, milepost 4.35, January 

22, 2010 

 

3.4 Parameter Measurement 

3.4.1 Travel Time Estimation 

For each detector individually, all reported 20-second volume-speed 

pairs during the study period were used. Data points from the congested 

conditions were removed. All volumes were then multiplied by a factor of 180 

to convert the reported 20-second counts to equivalent hourly flows. A travel 

time rate (min/mile) was determined for each data point by inversing the 

reported speed. Because the 20-second volume figures are integer values, the 

equivalent hourly rates are integer numbers multiples of 180. The resulting 
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flow – travel time pairs can therefore be sorted into about sixteen ‘bins’ 

based on these different hourly flows. For each of these bins, the average of 

the reported travel times was calculated and plotted. For each day, flows were 

divided by measured ‚capacity‛, which is defined as the breakdown flow of 

that day, to allow presentation of the data in a volume to capacity ratio form. 

Figure 3.7 shows a sample of equivalent hourly flows versus average travel 

times plus/minus one standard deviation of travel times for the left lane at 

milepost 1.92 on January 25th, 2010. Associated travel time distributions as a 

function of volume are included in Appendix C.   

 
Figure 3.7. Equivalent hourly flows versus average travel times plus/minus 

one standard deviation of travel times for left lane at milepost 4.35, on 

January 22th, 2010. 
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3.4.2 Capacity Measurement 

For each detector on each day, the apparent maximum flow before 

breakdown and breakdown flow using 5-minute and 15-minute aggregated 

data were measured. 5-minute and 15-minute aggregation levels are used to 

be consistent with the literature and HCM definition. Figure 3.8 shows a 

sample time-series of averages of flow and speed aggregated over 5-minute 

intervals on the left lane at milepost 1.92 on December 10th, 2009. The 

maximum observed flow before breakdown is 1,944 vph while the breakdown 

flow occurs at 1,536 vph. Breakdown points are identified when the speed 

drop between two consecutive time intervals exceeds a threshold of 10 mph 

and low speed (lower than 55 mph) is sustained for some time as defined in 

Dong and Mahmassani (2010). 
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Figure 3.8. Time-series of average flows and speeds for left lane at milepost 

4.35, on January 22th, 2010. 

3.4.3 Free-Flow Speed Measurement 

HCM (2000) defines free-flow speed as ‚the mean speed of passenger 

cars under low to moderate flow rates that can be accommodated on a 

uniform roadway under prevailing roadway and traffic conditions.‛ For each 

detector on each day, the average speed under equivalent hourly flow rates 

equal and smaller than 360 vph was calculated as free-flow speed. 

3.5 Quantile Function 

The behavior of a random variable (e.g. capacity) can be characterized 

by its probability distribution. The cumulative distribution function (CDF) 
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describes the probability distribution of a real-valued random variable X. 

For any real number x, the CDF is expressed as Equation 3.4. CDF represents 

the probability that the random variable X takes on a value less than or equal 

to x. 

pxXPxFX  )()(  (3.5) 

A quantile function of a probability distribution is the inverse of its 

cumulative distribution function. Generally, a distribution does not have an 

inverse. Thus, for  1,0p , the quantile function is expressed as: 

 pxFpF
Rx




 )(inf)(1
 (3.6) 

For a probability 10  p , the quantile function returns the minimum 

value of x for which the Equation 3.5 holds. Quantile functions are widely 

used in statistical applications and Monte Carlo simulations. Based on the 

measured capacities at each location, the empirical CDF and quantile function 

of capacity will be developed and discussed later in chapter 4. The quantile 

function will be used as a tool to take into account the stochastic nature of 

capacity when modeling the travel time and volume to capacity ratio 

relationship. 
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4.0     DATA ANALYSIS 

This chapter will present the results of the data analysis. In the first 

section, measured free-flow speed, speed at capacity and capacity are 

analyzed. The second section presents the results of the goodness of fit tests. 

In the third section, results of the calibration of different models are presented. 

The fourth section analyses capacity. In the fifth section, a summary of key 

findings are presented. 

4.1 Measured Free-Flow Speed, Speed at Capacity, and Capacity 

Poor choices of free-flow speed, capacity, and speed at capacity can 

seriously compromise the accuracy of the speed-flow models. Therefore, 

before performing the goodness of fit tests, free-flow speed, capacity (defined 

as 5-minute breakdown flow here), and speed at capacity as defined in the 

previous chapter have been measured. Figures 4.1 to 4.3 show box plots of 

measured free-flow speed, speed at capacity, and capacity over the selected 30 

days at each location (‚Lane1‛ is the left lane and ‚Lane2‛ is the right lane in 

the figures) using 5-minute aggregated data. As can be seen in figure 4.1, the 

measured median free-flow speed in the left lane is 4 mph larger than the 

measured median free-flow speed in the right lane at both locations. Results of 
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t-tests show that the observed differences between lanes are statistically 

significant at the 99% level.  

 
Figure 4.1. Box plots of free-flow speed 

 

 
Figure 4.2. Box plots of speed at capacity 
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It can be seen in figure 4.2 that the measured median speed at 

capacity in the left lane is 2-4 mph larger than the measured median speed at 

capacity in the right lane. Results of t-tests show that the observed differences 

between lanes are statistically significant at the 95% level. Also it is observed 

that the measured median speed at capacity is 9-12 mph lower than the 

measured median free-flow speed.  

Figure 4.3 shows the box plots of measured capacity (5-minute 

breakdown flows) for each lane. The figure clearly shows the difference 

between measured capacities at each lane. Results of t-tests show that the 

observed differences between lanes are statistically significance at the 99% 

level. For both of the locations, the left lane has a higher measured capacity 

compared to the right lane.  
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Figure 4.3. Box plots of capacity 

 

It is observed that the right lane at milepost 1.92 has the lowest 
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the conical function fall closely into the cloud of the field data. The median 

value of 5-minute breakdown flow at each location is used as capacity in 

calculating the v/c ratios. 

The next step is to test goodness of fit of the various equations to the 

data. A statistical comparison of the models at each location is presented in 

Table 4.1. This table shows the parameters used in each model along with the 

bias, root mean square error (RMSE), and mean absolute error (MAE) for each 

equation when compared against the observed data. Bias, RMSE, and MAE 

are calculated as follows: 

n

tt
Bias

n

i ii 


)ˆ(
 (4.1) 

n

tt
RMSE

n

i ii

2

)ˆ( 
  (4.2) 

MAE = 
n

tt
n

i

ii ˆ

 
(4.3) 

where it̂  is the estimated value of travel time by the model, it  is the actual 

travel time value, and n is the total number of observations. 

For the left lane at milepost 1.92, the standard BPR function has the 

lowest RMSE and MAE. For this location, the Akçelik function has the lowest 
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Bias. For the left lane at the same milepost, the updated BPR by METRO has 

the lowest RMSE and MAE while the HCM 2000 function has the lowest Bias. 

For the left lane at milepost 3.12, similar to the left lane at previous 

milepost, the standard BPR function has the lowest RMSE and MAE while the 

Akçelik function has the lowest Bias. For the left lane at the same milepost, the 

standard BPR function has the best overall performance of the equations 

tested. It has the lowest Bias, RMSE, and MAE. 
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Figure 4.4. Comparison of travel time estimation functions against field data 

for v/c < 1 for the left lane at milepost 1.92 

 

 
Figure 4.5. Comparison of travel time estimation functions against field data 

for v/c < 1 for the right lane at milepost 1.92 
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Figure 4.6. Comparison of travel time estimation functions against field data 

for v/c < 1 for the left lane at milepost 3.12 

 

 
Figure 4.7. Comparison of travel time estimation functions against field data 

for v/c < 1 for the right lane at milepost 3.12 
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To explore the possible trend in errors, residuals are plotted. 

Residual is the difference between the observed value of the desired variable 

(travel time here) and the value estimated by the model (
ii tt ˆ ). The residuals 

can be used to visualize the distribution of bias. Therefore, if the residuals 

appear to behave randomly, it suggests that the model fits the data well. 

However, if the residuals display a systematic pattern, it is a clear sign that the 

model fits the data poorly.  

Figures 4.8 to 4.11 show the residual values for each model at each 

location and in each lane (note that the y-scales are different). As can be seen, 

for all of the models, a systematic error can be observed. For the standard BPR 

function, for v/c < 0.8, the residuals appear randomly scattered around zero 

indicating that the model describes the data well. However, for v/c between 

0.8 and 1, the residuals are systematically negative for much of the data range 

indicating that this model is a poor fit for the data. The METRO updated BPR, 

Akçelik, and HCM 2000 functions behave similarly for v/c ratios close to 1. A 

systematic error for smaller v/c ratios is also observed in these models. For v/c 

ratios between 0 and 0.8, the residuals are increasing positively. For the 

conical function, a different systematic error is observed. The residuals 



 

 

61 

increase negatively while the v/c ratio gets larger. Similar trends in residuals 

are observed at all study locations. 

 

 

 
Figure 4.8. Residual values for the tested equations for the left lane at 

milepost 1.92 
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Figure 4.9. Residual values for the tested equations for the right lane at 

milepost 1.92 
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Figure 4.10. Residual values for the tested equations for the left lane at 

milepost 3.12 
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Figure 4.11. Residual values for the tested equations for the right lane at 

milepost 3.12 

 



 

 

65 

To further explore the goodness of fit of tested models, for each 

model, bias, RMSE, and MAE are calculated separately for different ranges of 

v/c ratios (See figures 4.12 to 4.14). Based on the results from the analysis of 

residuals, v/c ratio is subdivided into three categories: a) 5.0/0  cv ; b) 

8.0/5.0  cv ; and c) 1/8.0  cv . As can be seen, the absolute bias, RMSE, 

and MAE for 1/8.0  cv  have higher values than the absolute bias, RMSE, 

and MAE for other v/c ratio ranges for all the tested models at all locations 

except for the METRO BPR function at the right lane of milepost 3.12. Result 

confirm what previously observed in residuals that all the tested models work 

poorly for v/c ratios close to 1 compared to smaller v/c ratios. 



 

 

66 

  
 

  

Figure 4.12. Bias values for different ranges of v/c ratio 
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Figure 4.13. RMSE values for different ranges of v/c ratio 
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Figure 4.14. MAE values for different ranges of v/c ratio 
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4.3 Calibration 

Model calibration generally consists of changing values of model input 

parameters in an attempt to match field conditions within some acceptable 

criteria. Lack of proper site characterization may result in a model that is 

calibrated to a set of conditions which are not representative of actual field 

conditions. The data used for calibration here are from days with no adverse 

weather (no rain or snow) and no major accident at the study locations. 

Calibration is also performed for each lane separately since the characteristics 

of the study lanes are different. The objective function of calibration is set to 

minimize the RMSE as follows: 

n

tt
Minimize

n

i ii

2

)ˆ( 
, (4.4) 

Table 4.2 shows the calibration results including calibrated input 

parameters of each model with the measures of goodness of fit after 

calibration for each study location. For all of the locations, the calibrated BPR 

function has the best overall performance, with smallest bias and RMSE, of the 

equations tested while the calibrated conical function has the lowest MAE. 

Figures 4.15 to 4.18 show estimated travel times by calibrated equations vs. v/c 

ratio curves with field data for v/c < 1 at each study location and in each lane. 
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As can be seen, the calibrated BPR curve fits data better than other plotted 

curves.  

In the BPR function, parameter a  determines the ratio of free-flow 

travel time to the travel time at capacity. The calibrated a  is smaller than the 

a  used in the standard BPR function. Parameter b  determines how rapidly 

travel time increases from the free-flow travel time. Smaller values of b  makes 

estimated travel time more sensitive to v/c ratio. The calibrated b  is also 

smaller than the b  used in the standard BPR function.  

For the calibrated conical function, smaller values for parameters a  and 

b  are obtained as compared to the values used in the METRO updated 

function which makes estimated travel time more sensitive to v/c ratio. 

However, the calibrated conical function still has a high RMSE and bias. The 

conical function assumes that the travel time at capacity is two times greater 

than the free-flow travel time which may not necessarily be true.  

In the Akçelik function, the calibrated parameter J  is much smaller 

than what is originally suggested by Akçelik. Smaller values of J  make 

estimated travel time less sensitive to the v/c ratio. This is contrary to the 

calibration results of the other models. In the calibrated BPR and conical 

functions, estimated travel time has become more sensitive to v/c ratio while 
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the calibrated Akçelik function reveals opposite results. This is because the 

Akçelik curve for v/c ratios smaller than 0.9 is too flat compared to the field 

data.  
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Figure 4.15. Comparison of calibrated travel time estimation functions 

against field data for v/c < 1 for the left lane at milepost 1.92 
 

 
Figure 4.16. Comparison of calibrated travel time estimation functions 

against field data for v/c < 1 for the right lane at milepost 1.92 
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Figure 4.17. Comparison of calibrated travel time estimation functions 

against field data for v/c < 1 for the left lane at milepost 3.12 
 

 
Figure 4.18. Comparison of calibrated travel time estimation functions 

against field data for v/c < 1 for the right lane at milepost 3.12 
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Figures 4.19 to 4.22 show the residual values for each calibrated 

model at each location and in each lane. As can be seen, the systematic error 

previously observed in the standard BPR function does not longer exist in the 

calibrated BPR function while the calibrated conical function and the 

calibrated Akçelik function still suffer from a systematic error. For the 

calibrated Akcelik function, the residuals are increasing positively except for 

v/c ratios close to 1. For the calibrated conical  function, the residuals increase 

negatively while the v/c ratio gets larger. 
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Figure 4.19. Residual values for the tested calibrated equations for the left 

lane at milepost 1.92 
 

 

 
Figure 4.20. Residual values for the tested calibrated equations for the right 

lane at milepost 1.92 
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Figure 4.21. Residual values for the tested calibrated equations for the left 

lane at milepost 3.12 
 

 

 
Figure 4.22. Residual values for the tested calibrated equations for the right 

lane at milepost 3.12 
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For further exploration, the bias, RMSE, and MAE for each calibrated 

model are calculated and plotted for different v/c ratio ranges as described 

earlier (see figures 4.23 to 4.25). As can be seen, for the calibrated conical 

function and the calibrated Akçelik function, the values of RMSE and MAE 

are higher for 1/8.0  cv  compared to other v/c ratio ranges. For the 

calibrated BPR function, the RMSE and MAE remain roughly constant for all 

the v/c ratio ranges. The bias for the calibrated BPR function is almost zero 

while other calibrated functions have higher values of bias. 

Table 4.3 shows a comparison of the bias, RMSE, and MAE for 

uncalibrated and calibrated travel time estimation functions. A considerable 

improvement in bias, RMSE, and MAE is achieved by calibrating the tested 

functions.  
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Figure 4.23. Bias values of calibrated models for different ranges of v/c ratio 
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Figure 4.24. RMSE values of calibrated models for different ranges of v/c 

ratio 
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Figure 4.25. MAE values of calibrated models for different ranges of v/c 

ratio 
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4.4 Capacity as a Random Variable 

As mentioned earlier, literature suggests that the magnitude of the 

freeway capacity is not a single, unchanging numerical value. Figures 4.26 and 

4.27 illustrate the empirical cumulative distribution of breakdown flows and 

maximum flows using 5-minute aggregated data for the selected 30 days. A 

statistically significant difference at 99% level based on chi-square test results 

between capacity distributions at each lane is observed. This implies the 

possible effects of lane and road characteristics on capacity. At milepost 1.92, a 

0.25 mile weaving segment is located upstream of the Beaverton-Hillsdale 

Hwy and at milepost 3.12, a 0.32 mile weaving segment is located upstream of 

the Denney Rd on-ramp. The left lane at milepost 3.12 has the largest range of 

capacities while the right lane at milepost 1.92 has the lowest range of 

capacities.  At both locations, the left lanes experienced higher values of 

capacities.  
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Figure 4.26. Empirical cumulative distribution of 5-minute breakdown 

flows 
 

 

 
Figure 4.27. Empirical cumulative distribution of 5-minute maximum flows 
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The difference observed between capacity distributions at milepost 

1.92 and milepost 3.12 could be because of two possible reasons: 1) longer 

weaving segment upstream of the milepost 3.12  compared to the milepost 

1.92 and 2) higher ramp flows at milepost 1.92 compared to milepost 3.12. 

Figure 4.28 shows the average flow of the on-ramp at milepost 1.92 and 

milepost 3.12. As can be seen, the average flow of the on-ramp at milepost 1.92 

is larger than the average flow of the on-ramp at milepost 3.12 throughout the 

study time period.  As mentioned earlier, this could be one of the reasons for 

lower capacity of the right lane at milepost 1.92 compared to the right lane at 

milepost 3.12. 

 
Figure 4.28. Average on-ramp volumes at study locations 
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The 15-minute interval, which is typically used in capacity analyses, 

is also selected for analysis because it provides an interesting comparison to 

the 5-minute interval. Figures 4.29 and 4.30 illustrate the empirical cumulative 

distribution of 15-minute breakdown flows and maximum flows for the 

selected 30 days. It is apparent from the figures that if the aggregation level is 

increased to 15 minute, the shape of the cumulative distribution does not 

differ considerably. As expected, the 15-minute cumulative distributions have 

shorter end tails compared to the 5-minute cumulative distributions. Table 4.4 

shows the median values of measured breakdown flows and maximum flows 

using 5- and 15-minute aggregated data. The median value of measured 5-

minute breakdown flow is 1%-5% larger than the median value of measured 

15-minute breakdown flow. The median value of measured 5-minute 

maximum flow is 5%-9% larger than the median value of measured 15-minute 

maximum flow. 

Table 4.4. Median measured breakdown flows and maximum flows 

 

  Breakdown Flow (vphpl)   Maximum Flow (vphpl) 

  5 min 15 min   5 min 15 min 

Left Lane, MP 1.92 1,818 1,782  1,968 1,794 

Right Lane, MP 1.92 1,368 1,346  1,476 1,358 

Left Lane, MP 3.12 2,076 2,048  2,166 2,054 

Right Lane, MP 3.12 1,896 1,806   1,956 1,806 
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The results confirm literature that the magnitude of the freeway 

capacity is not a single, unchanging numerical value. Flow breakdown and 

maximum flow can occur over a wide range of flow rates. 
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Figure 4.29. Empirical cumulative distribution of 15-minute breakdown 

flows 

 

 

Figure 4.30. Empirical cumulative distribution of 15-minute maximum flows 
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4.5 Summary 

The analysis described in this chapter resulted in the following key 

conclusions: 

 Results in section 4.1 show that lanes do not necessarily have similar 

characteristics. It is shown that free-flow speed, speed at capacity 

and capacity have different values in different lanes. Therefore, the 

approach of using relationships between speed and flow on 

individual lanes is beneficial because it makes it possible to model 

freeway segments at which the capacity for different reasons 

corresponds to fraction of lanes. 

 The accuracy of the existing speed-flow models with default 

parameters are explored in section 4.2. The standard BPR and 

METRO updated functions overestimate travel times for v/c ratios 

close to 1. The conical function highly overestimates travel times for 

v/c < 1. The conical function assumes that the travel time at capacity 

is two times larger than the free-flow travel time which is not 

always true. The Akçelik and HCM 2000 models underestimate 
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travel times for v/c < 0.9 and overestimate travel times for v/c 

close to 1.  

 The results presented in section 4.3 show that for v/c < 1, the BPR 

function has the best overall performance among models tested 

when calibrated. 

 The results of the analysis described in section 4.4 suggest that 

capacity is not a deterministic measure. The results show that it is 

worthwhile to apply an alternative definition of capacity in traffic 

assignment in light of the probabilistic nature observed.  

 

Similar analyses can be done using pooled data over the lanes to 

investigate the speed-flow relationships at link level and to find out the 

possible advantages of using lane specific speed-flow relationships. 
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5.0     MODIFICATIONS 

In this chapter some deterministic modifications, based on calibration 

results and queuing theory, will be proposed for the speed-flow relationship 

for both static and dynamic traffic assignment applications. A probabilistic 

modification will also be presented in order to make the proposed formulation 

capture variations in capacity. The probabilistic modification can be applied to 

any v/c ratio based speed-flow model. 

5.1 Deterministic Modification 

Shortcomings of different speed-flow models have been discussed in 

previous chapters. Calibration results showed that the BPR function has the 

best overall performance for v/c < 1, when calibrated. For v/c > 1, it was shown 

that the Akçelik model and the HCM 2000 model, which is a modified version 

of the Akçelik model, have the highest consistency with queuing theory 

among tested models. However, estimated travel time by the Akçelik model 

for congested conditions is based on the average delay in the queue. As 

discussed in chapter 2, the average delay ( AD ) for stationary arrival and 

departure rates for oversaturated conditions can be expressed as: 
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)1(
2

1
 XTDA

 (5.1) 

where X is the v/c ratio and T is the time period which the demand rate 

persists. 

The actual delay experienced by individual vehicles in a queue 

depends on the vehicle’s departure time or the time when the vehicle joins the 

queue. Figure 5.1 illustrates a graphical representation of the delay 

experienced by vehicle i in a queue with stationary arrival and departure rates 

where it  is the time when the vehicle joins the queue, id  is the delay 

experienced by the vehicle i, and T is the time interval during which an 

average demand flow rate persists. 

 

Figure 5.1. The delay experienced by vehicle i in a queue with stationary 

arrival and departure rates 
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Note that different graphical representations of delay in a queue can be 

plotted and therefore different modifications can be proposed. The delay 

experienced by vehicle i, as shown in figure 5.1., is calculated as follows: 

)1( 
Q

V
td ii ,  Tti 0  and i=1 to n (5.2) 

Assuming the queue forms directly upstream of the bottleneck and 

takes considerable physical space, the actual delay experienced by vehicle i is 

calculated as follows as explained in section 2.4: 

)1( 
Q

V
td ii   (5.3) 

)1(

1

f

q

v

v


  
(5.4) 

where qv  is the average speed of vehicles within the queue and fv  is the 

average speed of vehicles approaching the queue (free-flow speed). The speed 

qv  can be estimated using a rescaled cumulative curve. For example, in the 

rescaled cumulative curve of speed between 6:00 to 10:00 at milepost 4.35 on 

January 22, 2010 which was shown in figure 3.5, the interpolated lines with 

constant slope represent stationary traffic conditions. Between the bottleneck 

activation and deactivation times, the slope of the interpolated line represents 
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the average speed within the queue which is 22 mph in this example. Figure 

5.2 shows the empirical cumulative distribution of vehicle’s speed within the 

queue at the study locations. As can be seen, higher speeds within the queue 

are observed on the left lanes compared to the right lanes at both locations. 

 

Figure 5.2. Empirical cumulative distribution of vehicles’ speed within the 

queue. 
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Figure 5.3. Time dependent travel time and v/c ratio relationship 
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where the bottleneck duration time at each lane is defined as follows: 

bottleneck duration time = bottleneck deactivation time  – bottleneck 

activation time 

(5.6) 

5.1.1 Speed-Flow Relationship at Link Level 

The analysis reported in chapter 4 concentrated on speed-flow 

relationships on individual lanes; similar analyses can be performed at the 

link level by simply pooling lane data. A previous study by Hurdle et al. 

(1997) showed that the speed-flow curve for a full roadway is significantly 

different from the curves for the individual lanes. Since traffic flow 

characteristics are not the same in different lanes as shown earlier, measuring 

free-flow speed, speed at capacity, and estimating total capacity of freeway 

over lanes may require a different approach that needs to be studied further. If 

T, as shown in figure 5.1 and defined in equation 5.5, is being calculated over 

all the lanes to be used in speed-flow relationship at link level, bottleneck 

deactivation and activation times can be estimated as follows: 

 bottleneck deactivation time = min {bottleneck deactivation 

time at lane 1, bottleneck deactivation time at lane 2}  

(5.7) 
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 bottleneck activation time = max {bottleneck activation time at 

lane 1, bottleneck activation time at lane 2} 

(5.8) 

Figure 5.4 shows the empirical cumulative distributions of the 

bottleneck activation and deactivation times over all the lanes at milepost 1.92 

and milepost 3.12. 

 
Figure 5.4. Empirical cumulative distributions of bottleneck activation and 

deactivation times over all the lanes at milepost 1.92 and milepost 3.12 
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stated values of measured traffic parameters at each lane indicates that the 

traffic parameters may vary considerably among lanes and over the lanes. 

 

Table 5.1. Statistical description of free-flow speed, speed at capacity, speed 

within the queue, breakdown flow, and maximum flow at link level 

 

  min mean median max stdv 

 

Milepost 1.92 

Free flow speed (mph) 58 60 60 61 1 

Speed at capacity (mph) 46 53 53 57 3 

Speed within the queue (mph) 15 21 21 34 4 

Breakdown flow (vph) 2,940 3,234 3,222 3,732 201 

Maximum flow (vph) 3,192 3,429 3,444 3,732 164 

      

 

Milepost 3.12 

Free flow speed (mph) 58 60 60 63 1 

Speed at capacity (mph) 48 52 52 55 2 

Speed within the queue (mph) 23 32 32 39 4 

Breakdown flow (vph) 3,420 4,008 3,990 4,596 271 

Maximum flow (vph) 3,720 4,151 4,140 4,596 191 

 

 

Figure 5.5 shows the calibrated BPR curves (for v/c < 1) separately for 

the left lane, right lane, and over the lanes at each study location against 

pooled field data. As can be seen, at both locations, the calibrated BPR 

function for the left lane estimates higher travel times than the calibrated BPR 
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function over the lanes while the calibrated BPR function for the right lane 

estimates lower travel times than the calibrated BPR function over the lanes. 

 
                                                               Milepost 1.92 

 
Milepost 3.12 

 

Figure 5.5. Comparison of the calibrated BPR functions for v/c < 1 at lane 

and link levels 
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Toward this end, the following speed-flow formulation is proposed. 

Equation 5.3 can be used for v/c > 1 to account for the vehicle’s arrival time at 

the qeueu. For v/c < 1, the calibrated BPR function is suggested: 
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 (5.9) 

 

where: 

t  = average travel time per unit distance, 

0t = free-flow travel time per unit distance, 

ct = travel time at capacity per unit distance, 

it = time when the vehicle i joins the queue, 

c

v
= volume-to-capacity ratio, 

a and b are calibrated BPR parameters, and   is as defined in equation 5.4. For 

a congested corridor consisted of two or more links, it  for each link can be 

calculated using shockwave speed and link length. For example, assume a 2 

mile corridor, connecting A to B, including two 1-mile long links. A bottleneck 

which is located at the end of the downstream link is activated at 8:00 A.M. 

and a queue backs up with a constant shockwave speed of 3 mph. A vehicle 
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joins the queue at 8:30 A.M. Therefore, it  for the whole corridor is 30 

minutes. Since the shockwave travel time (link length divided by shockwave 

speed) for the downstream link is smaller than the it  for the whole corridor, 

this means the queue backs up to the upstream link. Therefore, it  for the 

downstream link is 20 minutes and it  for the upstream link is 10 minutes. 

Where it  information is not available or using the average delay suffices, 

equation 5.1 can be used for v/c > 1. For v/c < 1, the calibrated BPR function is 

suggested. Therefore, equation 5.4 can be expressed as: 
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 (5.10) 

where all the variables are as defined before. 

The proposed formulations can be used for both lane-specific and link 

level purposes if required traffic parameters are obtained appropriately. 

However, it is worth mentioning that validating the proposed modifications 

requires further research. 
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5.2 Probabilistic Modification 

As discussed in section 2.6, capacity is treated as a constant value 

traditionally. However, as shown in section 4.4, it has rather a stochastic 

nature with a distribution. Also, as introduced earlier in section 3.5, a quantile 

function of a probability distribution is the inverse of its cumulative 

distribution function. In this section, the quantile function of capacity 

probability distribution will be used as a tool to take into account the 

probabilistic nature of capacity when modeling the travel time and volume to 

capacity ratio relationship. Toward this end, the quantile function of capacity 

probability distribution is replaced with the constant value of capacity in the 

v/c ratio in the proposed speed-flow formulation in the previous section. 

Therefore the probabilistic version of the equation 5.9, accounting for vehicle’s 

arrival time at the queue, can be expressed as: 
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where )(1 pFc

  is the quantile function of capacity probability distribution and 

the rest of variables are as defined before.  

Similarly, the probabilistic version of the equation 5.10 is as follows: 
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where all the variables are as defined before. 

It is worth mentioning that all the variables used in the proposed 

formulations including 0t , ct , it , and   are random variables. Bottleneck 

duration is also a random variable.  Table 5.2 provides key statistical 

descriptors for the bottleneck activation, deactivation, and duration time 

distributions at link level. 

 

Table 5.2. Statistical description of bottleneck activation, deactivation, and 

duration time at link level 

 

  min mean median max stdv 

 

Milepost 1.92 

Bottleneck activation 7:28:00 7:39:22 7:39:40 7:50:20 0:05:45 

Bottleneck deactivation 8:00:00 8:26:06 8:21:20 9:07:40 0:21:17 

Bottleneck duration 0:15:40 0:46:44 0:38:30 1:31:00 0:20:54 

      

 

Milepost 3.12 

Bottleneck activation 7:17:00 7:30:42 7:30:50 7:43:20 0:05:52 

Bottleneck deactivation 8:03:40 8:33:40 8:26:30 9:07:20 0:20:40 

Bottleneck duration 0:33:40 1:02:58 0:51:30 1:37:20 0:19:20 
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The values of T that can be applied to equation 5.12 are bounded by 

zero and the bottleneck duration time. Hence, Table 5.1 can be used to provide 

an indication of the appropriate values of T. 

 

 
Figure 5.6. Probabilistic volume vs. travel time relationship for the left lane 

at milepost 1.92 against field data from 5 days 

 

Figure 5.6 shows the volume vs. travel time relationship using equation 

5.6 for the left lane at milepost 1.92 where a = 0.07, b = 1.6, T = 60 min,      0t  = 

0.9524 min/mi ( fv = 63 mph), ct  = 1.0190 min/mi ( cv = 58.88 mph), and     qv = 

21.8 mph ( = 1.53) against field data from 5 days. The empirical quantile 

function of capacity of the selected lane is used with probabilities of 0.1, 0.5, 

and 0.9 to plot different curves.   
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6.0     CONCLUSIONS 

This final chapter summarizes the findings of this thesis and proposes 

possible future work. 

6.1 Summary of Findings 

Different existing speed-flow models for traffic assignment applications 

were evaluated empirically and theoretically. It was found that for v/c < 1, the 

calibrated BPR function has the best overall performance among tested 

models for studied locations. Results showed that for v/c > 1, the Akçelik and 

the HCM 2000 models were found to be the most consistent models with 

queuing theory. It was also found that different freeway lanes and segments 

may have substantially different traffic characteristics and parameters such as 

free-flow speed, speed at capacity, and capacity. Therefore, the approach of 

using speed-flow relationship on individual lanes can be beneficial because it 

makes it possible to model freeway segments at which the capacity for 

different reasons corresponds to fraction of lanes.  

Results also showed that capacity is a probabilistic measure rather than 

a constant value. Thus, it is worthwhile to apply an alternative definition of 

capacity in traffic assignment in light of the probabilistic nature observed. 
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Based on the results found, some modifications to speed-flow 

relationships were proposed. A calibrated probabilistic BPR function was 

suggested for v/c < 1. While for v/c > 1, a probabilistic speed-flow relationship 

based on new concepts of queuing theory were proposed. A probabilistic time 

dependent speed-flow relationship was also proposed for v/c > 1 to account 

for the vehicle’s arrival time at the queue. The probabilistic modification 

proposed can be used in any v/c ratio based speed-flow model and is not only 

limited to the proposed speed-flow relationship. 

6.2 Future Work 

There are several research directions in which the ideas presented in 

this thesis can be continued. The empirical evaluation presented in this thesis 

used field data only for v/c < 1 conditions and a theoretical approach was 

taken for v/c > 1. Field data for congested conditions can be obtained from 

appropriate sources to empirically evaluate the speed-flow models for v/c > 1. 

Note that the data must include demand flow and not detected flow. 

Therefore, data from probe vehicles, vehicle trajectories, or series of loop 

detectors can be used. Also, simulation is helpful when real field data are not 

available. Further research is required to validate the proposed modifications. 
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In this thesis, only two locations (including four lanes) were 

studied. To better understand the effects of freeway lane and segment 

characteristics on traffic measures, more locations from different sites can be 

studied. Further study should be done on differences between lane-specific 

and full roadway speed-flow relationships. 

This thesis used empirical cumulative distribution of capacity. Using 

statistical tests such as Kolmogorov-Smirnov test, the observed distributions 

can be assessed to find out whether a known statistical distribution (e.g. 

normal, exponential, and etc) can fit the data. Then, when empirical 

distributions are not available, the empirical quantile function used in the 

probabilistically modified model can be replaced by the quantile function of 

the statistical distribution. 

Also appropriate mathematical methods such as coordinate 

transformation method can be used to combine the proposed two equations to 

develop a single-equation relationship. Also, it will be necessary to test 

proposed speed-flow relationship in different traffic assignment programs to 

evaluate the performance of the proposed formulation. 
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APPENDIX A: DAILY CAPACITY AND FREE-FLOW SPEED 

Tables A.1 to A.4 show a list of selected days with their measured free-

flow speed and capacity for each location for each day. 

Table A.1. Measured capacity and free-flow speed for left lane at milepost 

1.92 on each day. 

 
  Left Lane 

Days 
Capacity 

Free-Flow Speed 
Maximum Flow Breakdown Flow 

  veh/h veh/h mph 

        

September 3, 2009 1,920 1,860 63 

September 10, 2009 1,980 1,824 63 

September 17, 2009 2,088 1,836 63 

September 21, 2009 1,848 1,728 63 

September 24, 2009 2,088 2,052 63 

October 1, 2009 1,956 1,656 62 

October 5, 2009 1,980 1,980 63 

October 6, 2009 1,920 1,800 62 

October 7, 2009 2,016 2,016 63 

October 8, 2009 1,884 1,812 63 

October 9, 2009 1,800 1,800 62 

October 12, 2009 2,040 1,752 62 

October 15, 2009 2,040 2,040 61 

October 20, 2009 2,124 2,124 61 

October 30, 2009 1,932 1,764 62 

November 4, 2009 2,004 2,004 64 

November 10, 2009 1,824 1,824 62 

November 12, 2009 1,800 1,800 61 

December 3, 2009 2,016 2,016 63 

December 7, 2009 2,196 1,764 62 

December 10, 2009 1,944 1,536 63 

December 14, 2009 1,896 1,680 62 

January 6, 2010 2,040 1,896 61 

January 14, 2010 1,872 1,848 61 

January 20, 2010 2,088 1,728 62 

January 22, 2010 1,800 1,736 62 

January 25, 2010 2,004 2,004 61 

February 17, 2010 2,124 2,004 62 

February 18, 2010 1,872 1,584 62 

February 19, 2010 1,860 1,620 62 
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Table A.2. Measured capacity and free-flow speed for right lane at 

milepost 1.92 on each day. 

 
  Right Lane 

Days 
Capacity 

Free-Flow Speed 
Maximum Flow Breakdown Flow 

  veh/h veh/h mph 

        

September 3, 2009 1,536 1,476 60 

September 10, 2009 1,524 1,404 59 

September 17, 2009 1,644 1,332 58 

September 21, 2009 1,416 1,248 60 

September 24, 2009 1,608 1,608 58 

October 1, 2009 1,560 1,356 59 

October 5, 2009 1,560 1,548 58 

October 6, 2009 1,644 1,428 58 

October 7, 2009 1,548 1,284 59 

October 8, 2009 1,392 1,344 60 

October 9, 2009 1,392 1,392 60 

October 12, 2009 1,584 1,392 58 

October 15, 2009 1,452 1,452 59 

October 20, 2009 1,380 1,140 57 

October 30, 2009 1,380 1,176 57 

November 4, 2009 1,452 1,452 59 

November 10, 2009 1,560 1,368 58 

November 12, 2009 1,428 1,428 58 

December 3, 2009 1,404 1,380 58 

December 7, 2009 1,488 1,260 59 

December 10, 2009 1,404 1,332 58 

December 14, 2009 1,464 1,464 57 

January 6, 2010 1,524 1,404 55 

January 14, 2010 1,356 1,356 57 

January 20, 2010 1,572 1,332 58 

January 22, 2010 1,316 1,292 59 

January 25, 2010 1,440 1,440 57 

February 17, 2010 1,524 1,368 58 

February 18, 2010 1,488 1,032 58 

February 19, 2010 1,356 1,308 59 
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Table A.3. Measured capacity and free-flow speed for left lane at 

milepost 3.12 on each day. 

 
  Left Lane 

Days 
Capacity 

Free-Flow Speed 
Maximum Flow Breakdown Flow 

  veh/h veh/h mph 

        

September 3, 2009 2,100 2,100 63 

September 10, 2009 2,172 2,172 62 

September 17, 2009 2,232 2,208 62 

September 21, 2009 2,400 2,160 63 

September 24, 2009 2,376 2,376 63 

October 1, 2009 2,088 2,004 62 

October 5, 2009 2,484 2,484 62 

October 6, 2009 2,160 2,160 63 

October 7, 2009 2,020 2,020 63 

October 8, 2009 2,328 2,196 63 

October 9, 2009 2,136 1,908 61 

October 12, 2009 2,040 2,040 61 

October 15, 2009 2,124 2,124 62 

October 20, 2009 2,184 2,028 63 

October 30, 2009 1,968 1,968 62 

November 4, 2009 2,196 2,160 63 

November 10, 2009 2,268 1,956 62 

November 12, 2009 2,112 1,788 62 

December 3, 2009 2,088 2,088 63 

December 7, 2009 2,112 2,112 63 

December 10, 2009 2,112 2,064 63 

December 14, 2009 2,196 2,064 62 

January 6, 2010 2,184 2,124 63 

January 14, 2010 2,124 1,860 62 

January 20, 2010 2,424 2,268 63 

January 22, 2010 2,160 1,932 62 

January 25, 2010 2,112 1,932 61 

February 17, 2010 2,280 2,064 63 

February 18, 2010 2,232 2,208 62 

February 19, 2010 2,244 1,824 63 
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Table A.4. Measured capacity and free-flow speed for right lane at 

milepost 3.12 on each day. 

 
  Right Lane 

Days 
Capacity 

Free-Flow Speed 
Maximum Flow Breakdown Flow 

  veh/h veh/h mph 

        

September 3, 2009 2,136 2,136 60 

September 10, 2009 2,052 2,052 58 

September 17, 2009 1,980 1,980 59 

September 21, 2009 2,088 1,944 60 

September 24, 2009 2,124 2,124 59 

October 1, 2009 2,088 2,004 57 

October 5, 2009 2,112 2,112 59 

October 6, 2009 1,968 1,968 58 

October 7, 2009 1,920 1,920 60 

October 8, 2009 2,004 1,896 58 

October 9, 2009 2,136 1,896 59 

October 12, 2009 1,452 1,452 59 

October 15, 2009 2,064 2,064 58 

October 20, 2009 1,860 1,704 58 

October 30, 2009 1,572 1,572 59 

November 4, 2009 1,872 1,824 61 

November 10, 2009 2,064 1,980 57 

November 12, 2009 1,872 1,788 58 

December 3, 2009 1,752 1,740 61 

December 7, 2009 2,028 2,028 57 

December 10, 2009 1,932 1,908 60 

December 14, 2009 1,896 1,812 56 

January 6, 2010 1,968 1,812 58 

January 14, 2010 1,764 1,764 57 

January 20, 2010 2,052 2,052 56 

January 22, 2010 1,884 1,560 59 

January 25, 2010 1,848 1,848 57 

February 17, 2010 1,860 1,716 58 

February 18, 2010 1,824 1,824 58 

February 19, 2010 1,944 1,800 61 
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APPENDIX B: CAPACITY DISTRIBUTIONS 

Figures B.1 to B.4 illustrate the distribution of capacity at each location. 

 

 
 

Figure B.1. Capacity distribution for the left lane at milepost 1.92 
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Figure B.2. Capacity distribution for the right lane at milepost 1.92 
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Figure B.3. Capacity distribution for the left lane at milepost 3.12 
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Figure B.4. Capacity distribution for the right lane at milepost 3.12 
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APPENDIX C: TRAVEL TIME DISTRIBUTIONS 

Figures C.1 illustrates the distributions of travel time for left lane at 

milepost 4.35, on January 22th, 2010 plotted in figure 3.7. 
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Figure C.1. Travel time distributions for the for left lane at milepost 4.35, on 

January 22th, 2010 
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