Towards Effective Design Treatment for Right Turns at Intersections with Bicycle Traffic

David Hurwitz
Oregon State University

Christopher Monsere
Portland State University, monsere@pdx.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://pdxscholar.library.pdx.edu/trec_seminar

🔗Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Recommended Citation

Hurwitz, David and Monsere, Christopher, "Towards Effective Design Treatment for Right Turns at Intersections with Bicycle Traffic" (2016). TREC Friday Seminar Series. 33.
http://pdxscholar.library.pdx.edu/trec_seminar/33

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
TOWARD EFFECTIVE DESIGN TREATMENTS FOR RIGHT-HOOK CRASHES AT INTERSECTIONS WITH BICYCLE TRAFFIC

PSU FRIDAY SEMINAR
FEBRUARY 5, 2015

Research Team:
David Hurwitz, Associate Professor, Co-PI, OSU
Chris Monsere, Associate Professor, Co-PI, PSU
Mafruhatul Jannat, PhD ’15, OSU
Jennifer Warner, MS ’15, OSU
Ali Razmpa, MS candidate, GRA, PSU
Crash Review (2007-2011), Statewide

4,072 reported bicycle-involved crashes
504 (12.3%) typed as a “potential” right-hook crash
Potential Right Hook Crash, 504, 12%

Bicycle-Car Crash, 3568, 88%
Right-Hook Severity Summary

- PDO: 4.2%
- A: 5.8%
- B: 61.7%
- C: 27.8%
- K: 0.6%
Driveway, 133, 26%

Intersection, 371, 74%
Traffic Signals, 267, 72%
Minor Stop, 88, 24%
4-Way Stop, 14, 4%
No Control, 2, 0%
Right-Hook Crash Scenarios (Intersection with bike lane)

onset of the green indication

at a stop sign

cyclist passing motorist

motorist passing cyclist

Latter portion of green indication
Right-Hook Crash Scenarios (Intersection with bike lane)

onset of the green indication

at a stop sign

cyclist passing motorist

motorist passing cyclist

Latter portion of green indication
Methodology

<table>
<thead>
<tr>
<th>Simulator Experiment 1</th>
<th>Field Validation</th>
<th>Simulator Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Experimentally verify the influence of four factors that potentially contribute to right-hook crashes.</td>
<td>• Validate through field observations the motorist-bicyclist interaction exhibited in Simulator Experiment 1.</td>
<td>• Evaluate the effectiveness of four categories of treatments to mitigate right-hook crashes.</td>
</tr>
</tbody>
</table>
OSU Driving Simulator

View from outside the car

View from inside car w/bicycle
ASL Mobile Eye-Tracker

Scene & Eye Camera

Computer & Control Unit
Simulator Experiment 1

Purpose:
• Examine motorist behavior in response to four factors that potentially contribute to right-hook crashes.

Research Objectives:
• Determine how motorists’:
 • visual attention
 • situational awareness
 • crash avoidance
• is influenced by the experimental factors.
Experiment 1 – Independent Variables

<table>
<thead>
<tr>
<th>Name of the Variable</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative position of bicyclist</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>One (1) bicyclist riding in front of the motorist in an adjacent bicycle lane to the right</td>
</tr>
<tr>
<td></td>
<td>One (1) bicyclist coming from behind the motorist in an adjacent bicycle lane to the right</td>
</tr>
<tr>
<td>Speed of bicyclist</td>
<td>Lower (12 mph)</td>
</tr>
<tr>
<td></td>
<td>Higher (16 mph)</td>
</tr>
<tr>
<td>Presence of oncoming vehicular traffic</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Three (3) vehicles</td>
</tr>
<tr>
<td>Presence of conflicting pedestrian</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>One (1) pedestrian walking towards the motorist</td>
</tr>
</tbody>
</table>
Experiment I – Experimental Drives

Start Line

Finish Line

RT 1

RT 2

RT 3

656 ft.

1312 ft.

656 ft.

1312 ft.
Experiment 1 – Data Acquisition

Participants:
• 67 Participated
• 16 Simulator Sickness
• 51 Usable
• 1,071 total-right turn scenarios

Data:
• Visual attention
• SAGAT responses
• Observed crashes
• Position and speed of vehicles, bicycles, and pedestrians
Visual Attention – Areas of Interest (AOIs)
Visual Attention – Avg Total Fixation Durations (ATFD)

- Pedestrian: 3.69 sec
- Bicyclist: 0.32 sec
- Signal overhead: 0.23 sec
- Signal_side: 0.11 sec
- RV mirror: 0.34 sec
- Side mirror: 0.46 sec
- Oncoming veh: 2.26 sec

(Chart showing average and range of fixation durations for different objects.)
Mean percentage of correct responses to situation awareness (SA) queries for different intersection conditions

<table>
<thead>
<tr>
<th>Levels of Situation Awareness (SA)</th>
<th>Percent Correct Response to Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Condition</td>
<td>61%</td>
</tr>
<tr>
<td>Opposing Veh</td>
<td>70%</td>
</tr>
<tr>
<td>Bike Ahead</td>
<td>63%</td>
</tr>
<tr>
<td>Bike Behind</td>
<td>48%</td>
</tr>
<tr>
<td>Level 1 SA</td>
<td></td>
</tr>
<tr>
<td>Level 2 SA</td>
<td>41%</td>
</tr>
<tr>
<td>Level 3 SA</td>
<td>39%</td>
</tr>
<tr>
<td>Overall SA</td>
<td>37%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 SA</td>
<td>37%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3 SA</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>42%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall SA</td>
<td>49%</td>
</tr>
<tr>
<td></td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td>42%</td>
</tr>
</tbody>
</table>

Levels of Situation Awareness (SA): Base Condition, Opposing Veh, Bike Ahead, Bike Behind

Oregon State University
Mean percentage of correct responses to situation awareness (SA) queries for different intersection conditions

Levels of Situation Awareness (SA)

<table>
<thead>
<tr>
<th>Levels of SA</th>
<th>Base Condition</th>
<th>Opposing Veh</th>
<th>Bike Ahead</th>
<th>Bike Behind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>61%</td>
<td>70%</td>
<td>63%</td>
<td>48%</td>
</tr>
<tr>
<td>Level 2</td>
<td>41%</td>
<td>39%</td>
<td>37%</td>
<td>37%</td>
</tr>
<tr>
<td>Level 3</td>
<td>39%</td>
<td>38%</td>
<td>42%</td>
<td>42%</td>
</tr>
<tr>
<td>Overall</td>
<td>54%</td>
<td>49%</td>
<td>46%</td>
<td>42%</td>
</tr>
</tbody>
</table>
Crash Avoidance: Time-to-Collision (TTC)

- Simulator:
 - Time-to-collision is a continuous value that changes in time
 - Bikes in simulator do not change speed.

- Field
 - Post-encroachment time (PET) is a discrete time measurement
Crash Avoidance: Crashes

From 1,071 right turns, 26 collisions observed:
• 66% did not check mirror before turning
• 5% looked but didn’t see
• 18% assumed the bike would yield or there was enough time
Crash Avoidance: Time To Collision (TTC)

Scenario: Bicyclist (16 mph) behind, three oncoming vehs, and no ped
Crash Avoidance: Time To Collision (TTC)

Scenario: Bicyclist (16 mph) behind, three oncoming vehs, and no ped

TTC (s)
Crash Avoidance: Near-Crashes

From 408 right turns, 28 near-collisions observed:
• 58% did not check mirror before turning
• 23% looked but didn’t see
• 19% assumed bike would yield or there was enough time
Field Validation

- November 5, 2014 to February 12, 2015
- All days of week
- 144 hours

- Extraction of 43 events with measured PET < 5 seconds
Comparison of All Field and Simulator PET/TTCs

PET/TTC (s)

0-0.9 1-1.5 1.5-2 2-2.5 2.5-3 3+

Frequency

0 5 10 15 20 25 30

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Field Simulator
Simulator Experiment 2

Purpose:
- Examine motorist behavior in response to four different categories of right-hook crash treatments

Research Objectives:
- **Identify engineering countermeasures** that will reduce frequency and severity of RH crashes
- **Evaluate and compare** these countermeasures
- **Provide guidance to ODOT** regarding the selection of design countermeasures
Experiment 2 - Independent Variables

SIGNAGE

- ODOT OR10-15b “Turning Vehicles Yield to Bicycles”

PAVEMENT MARKINGS

- Dashed white bike line with stencil, single line
- Dashed white bike line with stencil, double line
- Dashed green bike lanes with white outline
- Full green bike lane with dashed white outline

CURB RADIUS

- Larger curb radii, 30ft
- Smaller curb radii, 10ft

PROTECTED INTERSECTIONS

- With islands
- With islands and green pavement markings
Experiment 2- Experimental Drives

Diagram Description:*
- **RT1** and **RT2** are located at the starting point.
- **RT3** and **RT4** are located at the finish line.
- Distances:
 - 2153 ft. from RT1 to RT2
 - 1077 ft. from RT1 to RT4
 - 1077 ft. from RT2 to RT3
 - 1077 ft. from RT3 to RT4

Related Logos:
- Portland State University
- Oregon State University
Experiment 2- Data Acquisition

Participants:
- 46 Participated
- 18 Simulator Sickness
- 28 Usable
- 616 total-right turn scenarios

Data:
- Observed crashes
- Visual attention
- Position and speed of vehicles, bicycles, and pedestrians
Experiment 2- Visual Attention... ATFD
Experiment 2 - Visual Attention... ATFD
Experiment 2 - Visual Attention... ATFD

Average Total Fixation Duration, by Signage Treatment Level

- Dutch Intersection Island
- Dutch Intersection Pavement Marking
- Signage
- Pavement Marking
- Signal
- Turning Vehicle
- Rear-mirror
- Side-mirror
- Bicyclist
- Bicyclist in Rear-mirror
- Bicyclist in Side-mirror

Duration (sec)

S0
S1
Experiment 2 - Visual Attention... ATFD

Average Total Fixation Duration, by Signage Treatment Level

- Dutch Intersection Island
- Dutch Intersection Pavement Marking
- Signage
- Pavement Marking
- Signal
- Turning Vehicle
- Rear-mirror
- Side-mirror
- Bicyclist
- Bicyclist in Rear-mirror
- Bicyclist in Side-mirror

Duration (sec)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

S0
S1
Experiment 2- Visual Attention... Motorist Fixation on Bicyclist

<table>
<thead>
<tr>
<th>Frequency of fixation</th>
<th>Signage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S0</td>
</tr>
<tr>
<td>Total (n)</td>
<td>296</td>
</tr>
<tr>
<td>Fixated</td>
<td>228</td>
</tr>
<tr>
<td>%</td>
<td>77%</td>
</tr>
</tbody>
</table>
Experiment 2 - Crash Avoidance
Experiment 2 - Crash Avoidance

Distribution of TTC Values by Treatment D Level

- Frequency
- TTC Value (sec)
- Cumulative Frequency
- D0
- D1
- Cumulative Frequency, D0
- Cumulative Frequency, D1
Experiment 2- Crash Severity
Final Comparison

• Each treatment was evaluated based on the following:

• Visual attention
 • Measurable change in longer AFTD towards bicycle targets

• Crash avoidance
 • Frequency of low and moderate TTC observations

• Crash severity
 • Speed of turning vehicles and variance of speed
<table>
<thead>
<tr>
<th>Performance Measures</th>
<th>S1</th>
<th>PM1</th>
<th>PM2</th>
<th>PM3</th>
<th>PM4</th>
<th>C1</th>
<th>PI1</th>
<th>PI2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Attention</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crash Avoidance</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Crash Severity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td>n/a</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbols: ✓ = Present, × = Absent, * = Partially Present, ** = Highly Present.
Recommendations

SIGNAGE

ODOT OR10-15b
“Turning Vehicles Yield to Bicycles”

PAVEMENT MARKINGS

- Dashed white bike line with stencil, single line
- Dashed white bike line with stencil, double line
- Dashed green bike lanes with white outline
- Full green bike lane with dashed white outline

CURB RADII

- Larger curb radii, 30ft
- Smaller curb radii, 10ft

PROTECTED INTERSECTIONS

- With islands
- With islands and green pavement markings
Acknowledgements

PhD Student:
- Mafruhatul Jannat, PhD ’15, OSU

MS Students:
- Jennifer Warner, MS anticipated spring 2015, OSU
- Ali Razmpa, MS anticipated spring 2016, PSU

Undergraduate Research Assistants:
- Amy Wyman, UHC anticipated spring 2017, OSU
- Kayla Fleskes, BSCE anticipated spring 2016, OSU
- Katie Mannion, BSCE anticipated spring 2016, OSU
- Amber Meeks, BSCE anticipated spring 2018, OSU
Questions?

David Hurwitz, PhD
Associate Professor
Oregon State University
Email: david.hurwitz@oregonstate.edu

and

Chris Monsere, PhD, PE
Department Chair and Associate Professor
Portland State University
Email: monsere@pdx.edu