Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

2-5-2016

Towards Effective Design Treatment for Right Turns at Intersections with Bicycle Traffic

David Hurwitz Oregon State University

Christopher Monsere Portland State University, monsere@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

Let us know how access to this document benefits you.

Recommended Citation

Hurwitz, David and Monsere, Christopher, "Towards Effective Design Treatment for Right Turns at Intersections with Bicycle Traffic" (2016). *PSU Transportation Seminars*. 33. https://pdxscholar.library.pdx.edu/trec_seminar/33

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

TOWARD EFFECTIVE DESIGN TREATMENTS FOR RIGHT-HOOK CRASHES AT INTERSECTIONS WITH BICYCLE TRAFFIC

PSU FRIDAY SEMINAR

FEBRUARY 5, 2015

Research Team:

David Hurwitz, Associate Professor, Co-PI, OSU

Chris Monsere, Associate Professor, Co-PI, PSU

Mafruhatul Jannat, PhD '15, OSU

Jennifer Warner, MS '15, OSU

Ali Razmpa, MS candidate, GRA, PSU

Crash Review (2007-2011), Statewide

4,072 reported bicycle-involved crashes 504 (12.3%) typed as a "potential" right-hook crash

Right-Hook Severity Summary

No Right Turn Lane, No Bike Lane, 66, 25%

Right Turn

Lane, Bike

Lane, 26,

10%

No Right Turn Lane, Bike Lane, 158, 59%

Right Turn Lane, No Bike Lane, 17, 6%

Right-Hook Crash Scenarios (Intersection with bike lane)

Ê STOP

onset of the green indication

at a stop sign

cyclist passing motorist

motorist passing cyclist

Latter portion of green indication

Right-Hook Crash Scenarios (Intersection with bike lane)

Ê

STOP

onset of the green indication

at a stop sign

Latter portion of green indication

Methodology

Simulator Experiment 1

• Experimentally verify the influence of four factors that potentially contribute to right-hook crashes.

Field Validation

 Validate through field observations the motoristbicyclist interaction exhibited in Simulator Experiment 1.

Simulator Experiment 2

• Evaluate the effectiveness of four categories of treatments to mitigate righthook crashes.

OSU Driving Simulator

View from outside the car

View from inside car w/bicycle

ASL Mobile Eye-Tracker

Scene & Eye Camera

Computer & Control Unit

Simulator Experiment 1

Purpose:

• Examine motorist behavior in response to four factors that potentially contribute to right-hook crashes.

Research Objectives:

- Determine how motorists':
 - visual attention
 - situational awareness
 - crash avoidance
- is influenced by the experimental factors.

Experiment 1 – Independent Variables

Name of the Variable	Levels			
	None			
Relative position of bicyclist	One (1) bicyclist riding in front of the motorist			
	in an adjacent bicycle lane to the right			
	One (1) bicyclist coming from behind the			
	motorist in an adjacent bicycle lane to the right			
Speed of biovelist	Lower (12 mph)			
speed of bicyclist	Higher (16 mph)			
Prosonce of oncoming vahicular traffic	None			
Fresence of oncoming venicular traffic	Three (3) vehicles			
Dueseuse of coufficiency used activity	None			
Presence of conflicting pedestrian	One (1) pedestrian walking towards the motorist			

Experiment I – Experimental Drives

Portland State

Oregon State

Experiment 1 – Data Acquisition

Participants:

- 67 Participated
- 16 Simulator Sickness
- 51 Usable
- 1,071 total-right turn scenarios

Data:

- Visual attention
- SAGAT responses
- Observed crashes
- Position and speed of vehicles, bicycles, and pedestrians

Visual Attention – Areas of Interest (AOIs)

Visual Attention – Avg Total Fixation Durations (ATFD)

Mean percentage of correct responses to situation awareness (SA) queries for different intersection conditions

Mean percentage of correct responses to situation awareness (SA) queries for different intersection conditions

Portland State

Crash Avoidance: Time-to-Collision (TTC)

- Simulator:
 - Time-to-collision is a continuous value that changes in time
 - Bikes in simulator do not change speed.
- Field
 - Post-encroachment time (PET) is a discrete time measurement

Crash Avoidance: Crashes

From 1,071 right turns, 26 collisions observed:

- 66% did not check mirror before turning
- 5% looked but didn't see
- 18% assumed the bike would yield or there was enough time

Crash Avoidance: Time To Collision (TTC)

Scenario: Bicyclist (16 mph) behind, three oncoming vehs, and no ped

Crash Avoidance: Time To Collision (TTC)

Scenario: Bicyclist (16 mph) behind, three oncoming vehs, and no ped

Crash Avoidance: Near-Crashes

From 408 right turns, 28 near-collisions observed:

- 58% did not check mirror before turning
- 23% looked but didn't see
- 19% assumed bike would yield or there was enough time

Field Validation

- November 5, 2014 to February 12, 2015
- All days of week
- 144 hours

 Extraction of 43 events with measured PET < 5 seconds

Comparison of All Field and Simulator PET/TTCs

Simulator Experiment 2

Purpose:

• Examine motorist behavior in response to four different categories of right-hook crash treatments

Research Objectives:

- **Identify engineering countermeasures** that will reduce *frequency* and *severity* of RH crashes
- Evaluate and compare these countermeasures
- **Provide guidance to ODOT** regarding the selection of design countermeasures

Experiment 2- Independent Variables

SIGNAGE

ODOT OR10-15b "Turning Vehicles Yield to Bicycles"

PAVEMENT MARKINGS

Dashed white bike line with stencil, double line

With islands

outline

PROTECTED INTERSECTIONS

Full green bike lane with dashed white outline

CURB RADII

Larger curb radii, 30ft

Smaller curb radii, 10ft

With islands and green pavement markings

Experiment 2- Experimental Drives

Experiment 2- Data Acquisition

Participants:

- 46 Participated
- 18 Simulator Sickness
- 28 Usable
- 616 total-right turn scenarios

Data:

- Observed crashes
- Visual attention
- Position and speed of vehicles, bicycles, and pedestrians

Average Total Fixation Duration, by Signage Treatment Level

Oreao

Average Total Fixation Duration, by Signage Treatment Level

Portland State

Oreao

Experiment 2- Visual Attention... Motorist Fixation on Bicyclist

Frequency of	Signage				
fixation	SO	S1			
Total (n)	296	300			
Fixated	228	242			
%	77%	81%			

Experiment 2- Crash Avoidance

Experiment 2- Crash Avoidance

Oregon

Experiment 2- Crash Severity

Final Comparison

- Each treatment was evaluated based on the following:
- Visual attention
 - Measurable change in longer AFTD towards bicycle targets
- Crash avoidance
 - Frequency of low and moderate TTC observations
- Crash severity
 - Speed of turning vehicles and variance of speed

	S1	PM1	PM2	PM3	PM4	C1	PI1	PI2
Performance Measures								
Visual Attention	>	Ι	>		×	Ι	×	-
Crash Avoidance	Ι	>	_	>	<	>	-	Ι
Potential Crash Severity		Ι	×	×	<	>	>	-
Survey	n/a		*			n/a	**	**

Recommendations

SIGNAGE

ODOT OR10-15b "Turning Vehicles Yield to Bicycles"

PAVEMENT MARKINGS

Dashed white bike line with stencil, single line Dashed white bike line with stencil, double line

Dashed green bike lanes with white outline

PROTECTED INTERSECTIONS

Full green bike lane with dashed white outline

CURB RADII

Larger curb radii, 30ft

Portland State

Smaller curb radii, 10ft

With islands

With islands and green pavement markings

Acknowledgements

PhD Student:

• Mafruhatul Jannat, PhD '15, OSU

MS Students:

- Jennifer Warner, MS anticipated spring 2015, OSU
- Ali Razmpa, MS anticipated spring 2016, PSU

Undergraduate Research Assistants:

- Amy Wyman, UHC anticipated spring 2017, OSU
- Kayla Fleskes, BSCE anticipated spring 2016, OSU
- Katie Mannion, BSCE anticipated spring 2016, OSU
- Amber Meeks, BSCE anticipated spring 2018, OSU

Questions?

David Hurwitz, PhD Associate Professor Oregon State University Email: david.hurwitz@oregonstate.edu

Chris Monsere, PhD, PE

Department Chair and Associate Professor Portland State University Email: monsere@pdx.edu

and