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Grazing reflection of Gaussian beams

Lee W. Casperson

The reflectivities of most surfaces are higher for grazing or near-90-deg angles of incidence than for more
perpendicular or near-zero-deg angles. Grazing-incidence configurations are especially important in the
development of lasers and optical systems that operate in the far-ultraviolet and soft-x-ray regions of the
spectrum, where transparent or highly reflecting media are almost unknown. Analytical solutions of the
paraxial wave equation are obtained for the grazing reflection and complex interference effects that take
place when a Gaussian beam interacts at shallow angles with a reflecting surface. © 1999 Optical
Society of America

OCIS codes: 140.0140, 240.0240, 260.0260, 350.5500.

1. Introduction

It has long been recognized that Gaussian beams,
and more generally polynomial-Gaussian beams, are
solutions of the paraxial wave equation in free space.
Such modes also arise frequently as the output beams
in laser oscillators. Accordingly, there has been in-
tense and continuing interest in the propagation and
transformation of Gaussian beams of various wave-
lengths in refracting, reflecting, and diffracting sys-
tems. Over the years many such systems have been
investigated. It was shown that Gaussian beams
retain their basic functional form when they propa-
gate in free space,1 in real lenslike media,2 in complex
lenslike media,3 and in other simple elements.4 Off-
axis polynomial-Gaussian beams have also been
studied,5 and their propagation in a range of complex
and misaligned systems is now known.6

One of the oldest problems in electromagnetics con-
cerns the reflection of electromagnetic waves at
boundaries, and this problem has been studied ex-
tensively in the Gaussian beam context. The graz-
ing reflection of Gaussian beams is investigated here.
At grazing incidence the beam might interact
strongly with a reflecting surface for a distance com-
parable with or longer than the Rayleigh length.

Thus the meaning and usefulness of conventional
beam parameter transformations are not so clear.
The actual electromagnetic-field distributions of the
reflecting waves are obtained here, including the in-
terference terms between the incident and the re-
flected waves. For near-normal incidence the
intensity or energy density maxima that result from
this interference are separated by approximately one
half of the wavelength, a distance that might be small
compared with most of the macroscopic components
of an electromagnetic system. The existence and di-
mensions of these fringes would be of interest in ap-
plications that involve nonlinear media, and they
have made possible the enhanced resolution of inter-
ference scanning optical microscopy.7 In most pre-
vious studies of non-normal-incidence reflection the
interference between the incident and the reflected
waves is not treated, and only the beam parameter
transformations are obtained. However, it can be
noted that, as the angle of incidence increases, the
spacing between the interference fringes also in-
creases. At grazing incidence the interference
fringes that result from the superposition of the in-
cident and the reflected waves can be comparable in
width to the Gaussian beam spot size ~1ye amplitude
radius!. In spite of this apparent complication, it is
shown here that solutions of the paraxial equation
can be found for grazing reflection of a Gaussian
beam.

An analysis of the grazing reflection of Gaussian
beams can have significant practical implications.
One of the most important reasons for interest in
grazing reflectivity is the often dramatic increase in
the reflection coefficient that occurs as angles of in-
cidence approach 90 deg, and this effect was studied
long before the advent of lasers.8 This angle depen-

When this research was performed the author was with the
Rochester Theory Center for Optical Science and Engineering and
the Institute of Optics, University of Rochester, Rochester, New
York 14627-0186. His permanent address is the Department of
Electrical Engineering, Portland State University, P.O. Box 751,
Portland, Oregon 97207-0751. His email address is lcaspers@
ee.pdx.edu.

Received 6 July 1998.
0003-6935y99y030554-09$15.00y0
© 1999 Optical Society of America

554 APPLIED OPTICS y Vol. 38, No. 3 y 20 January 1999



dence might already be important for microwave and
visible wavelengths, but it is most striking for wave-
lengths in the vacuum-ultraviolet spectral region.
Although there might be other important advantages
to employing grazing reflection, the higher reflectivi-
ties that are obtainable have been the motivation for
many applications.

One of the earliest applications of grazing-incidence
reflection was in vacuum-ultraviolet spectroscopy.
The low reflectance of all grating materials for wave-
lengths below ;300 Å requires the use of grazing-
incidence spectrographs for this spectral region. In
these systems the grating itself can be oriented to
have an angle of incidence of 89 deg or more. By this
means useful reflectivities and grating efficiencies
have been obtained at wavelengths as low as a few
angstroms. To disperse still shorter wavelengths,
as required in spectroscopy, the gratings have been
replaced with crystals in which the regular lattice
spacing takes the place of the rulings on a diffraction
grating. Some spectroscopic systems have incorpo-
rated two or more grazing-incidence elements.9

With the development of more recent electromag-
netic systems, several further applications of grazing-
incidence reflection have appeared. One important
example is in the guiding of optical beams when no
suitable fiber-optic material is available. For exam-
ple, in the infrared and the far-infrared portions of
the spectrum there are wavelength regions for which
low-loss fiber materials are not yet readily available.
Similarly, in the far-ultraviolet and the soft-x-ray re-
gions, transparent materials are virtually unknown,
whereas grazing reflectivities from metal can be quite
high. For such wavelengths and for extremely high-
power applications, metallic waveguides are some-
times a viable option. Thus, in the limit of a 90-deg
angle of incidence, low-loss waveguided propagation
is possible if there is a slight inward curvature of the
waveguiding surface in the direction of propaga-
tion.10 If such a waveguiding strip is also curved
appropriately in the transverse direction, it can sup-
port low-loss propagation of beam modes at wave-
lengths for which other media would be essentially
opaque.11 The modes can sometimes be represented
in terms of Hermite–Gaussian functions transverse
to the waveguide and Airy functions in the perpen-
dicular direction. If mirrors are placed on the ends
of such a waveguide while an amplifying medium is
introduced, it becomes possible to achieve laser oscil-
lation. Such lasing has been observed with a
continuous-wave CO2 laser in which the discharge
tube was slightly bent12 and in a rf discharge for
which the waveguide also served as one of the dis-
charge electrodes.13 It has also been possible to
match the mode volume of the fundamental Airy-
function mode to the thin gain layer along the curved
cathode of a continuous-wave transverse laser dis-
charge.14 This sort of coupling should also be possi-
ble for a laser with grazing reflection modes of the
type described below.

Grazing reflection has also proved to be extremely
useful in the development of high-power free-electron

lasers.15–17 These lasers present difficulties because
of the high power density of the optical beam that
leaves the gain medium. Even though visible wave-
length reflectivities can be quite high for normal in-
cidence, it has been found that damage can be
reduced substantially by a grazing-incidence orienta-
tion of the mirrors closest to the amplifier.18,19

Grazing-incidence components will be even more im-
portant with the development of free-electron lasers
in the vacuum-ultraviolet and soft-x-ray regions of
the spectrum. It is notable in the present context
that Gaussian field distributions are often assumed
when the modes of these grazing-incidence lasers are
represented.20,21

Grazing-incidence mirrors are also used with other
types of laser, and their potential as multibounce
turning mirrors and polarizers for soft-x-ray lasers
and optical systems has been recognized.22 Also,
they can serve as an efficient means for collimating
the soft-x-ray emission from a laser-produced plasma
for longitudinal pumping of a short-wavelength la-
ser.23 Thus grazing-incidence reflectors are finding
their way into many applications, especially for sys-
tems that involve short wavelengths or high powers.
In many of these applications the beam profiles can
be well represented by Gaussian functions, and thus
there is value in developing as complete a model as
possible for the reflection of such beams at grazing
angles of incidence.

A basic derivation of the Gaussian beam equations
is included in Section 2. The initial purpose of this
derivation is to reduce the partial differential wave
equation to a set of first-order ordinary differential
equations that govern the various parameters that
characterize the spatially evolving beam. The solu-
tions to these simpler equations are discussed in Sec-
tion 3 for beam propagation in spatially homogeneous
media. The grazing reflection of these beams is ex-
plored in Section 4.

2. Derivation of the Beam Equations

The geometry to be considered here involves a Gauss-
ian beam that propagates almost parallel to a reflect-
ing surface, as shown schematically in Fig. 1. The
coordinate system to be employed is also shown in
Fig. 1. Owing to diffraction and misalignment, the
beam is assumed to interact with the surface over
some extended distance. The complexity of includ-
ing this reflecting surface in the propagation analysis
leads us to simplify the problem as much as possible
in other ways. Thus the reflecting surface is as-
sumed to be highly reflecting and flat, and other sim-
plifications concern the propagation medium. With
such restrictions it is possible to obtain closed-form
analytic solutions that are not excessively cumber-
some.

For any study of electromagnetic-wave propagation
the fundamental starting point is the Maxwell–
Heaviside equations. These equations can be com-
bined to yield coupled equations that govern the
various field components of a propagating electro-
magnetic beam. For the case of nearly plane waves
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in a medium in which the changes in permittivity and
permeability per wavelength are small, the dominant
transverse Cartesian field components are governed
by the much simpler wave equation

¹2E*~x, y, z! 1 k2~x, y, z!E*~x, y, z! 5 0, (1)

where E* is the complex amplitude of the electric field
and k is the potentially complex spatially dependent
wave number. The wave number could, in principle,
have an imaginary part, owing to nonzero conductiv-
ity or out-of-phase components of the polarization or
magnetization. Although Eq. ~1! governs the domi-
nant transverse components, the weak z components
of the fields can be found at any time from the trans-
verse components by means of the Maxwell–
Heaviside equations.

In many practical situations, k2 has at most qua-
dratic spatial variations in the vicinity of the beam.
However, no particular insight is gained by retention
of propagation effects in both of the transverse direc-
tions, and thus we write at the outset

k2~x, y, z! 5 k0~z!@k0~z! 2 k1x~z!x 2 k2x~z!x2#. (2)

Although the detailed solutions are for a spatially
homogeneous medium k~x, y, z! 5 k0, this more gen-
eral starting point provides a guide for the study of
other configurations. The wave number is assumed
to be a complex function that is separable into its real
and imaginary parts in the form k 5 b 1 ia. For a
linearly polarized wave that propagates primarily in
the z direction a useful substitution is

E9~x, y, z! 5 A~x, y, z!expF2i * k0~z!dzG, (3)

where A is a new complex amplitude function. With
this substitution Eq. ~1! reduces to the paraxial wave
equation

]2A
]x2 1

]2A
]y2 2 2ik0

]A
]z

2 i
dk0

dz
A 2 k0~k1xx 1 k2xx

2!A 5 0,

(4)

where A is assumed to vary so slowly with z that its
second derivative can be neglected.

A useful form for a fundamental astigmatic off-axis
Gaussian beam is24

A~x, y, z! 5 A0 expH2iFQx~z!x2

2
1 Sx~z!x 1 P~z!GJ ,

(5)

where for simplicity it is also assumed that the beam
is uniform in the y direction. The size of the beam
and the curvature of the phase fronts are governed by
the complex beam parameter Qx. The location of the
beam depends on the complex displacement param-
eter Sx, and the phase and amplitude of the beam are
governed by the complex phase parameter P. If Eq.
~5! is substituted into Eq. ~4!, by equating equal pow-
ers of x one finds that the various parameters of the
beam are governed by the following equations:

Qx
2 1 k0

dQx

dz
1 k0 k2x 5 0, (6)

Qx Sx 1 k0

dSx

dz
1

k0 k1x

2
5 0, (7)

dP
dz

5 2i
Qx

2k0
2

Sx
2

2k0
2

i
2k0

dk0

dz
. (8)

The detailed significance of the parameter Qx is con-
tained in the relation

Qx~z! 5
b0~z!

Rx~z!
2 i

2
wx

2~z!
, (9)

where b0 is the real part of the on-axis propagation
constant and Rx and wx are the radius of curvature of
the phase fronts and the 1ye amplitude spot size in
the x direction, respectively. From Eq. ~5! the ratio
dxa 5 2SxiyQxi is the displacement in the x direction
of the amplitude center of the Gaussian part of the
beam, and the ratio dxp 5 2SxryQxr is the displace-
ment in the x direction of the phase center of the
beam. The subscripts i and r denote the imaginary
and real parts, respectively, of the parameters Qx and
Sx.

It is convenient to express the complex displace-
ment parameter in terms of the more physically in-
tuitive amplitude displacement and the rate of
change of this displacement with the propagation dis-
tance z. Combining Eqs. ~6! and ~7! with the dis-
placement definitions, one obtains the relation25

Sx~z! 5 2Qx~z!dxa~z! 1 b0~z!$d9xa~z! 2 @a2x~z!dxa~z!

1 a1x~z!y2#yQxi~z!%, (10)

where a2x is the imaginary part of k2x, a1x is the
imaginary part of k1x, d9xa represents the slope of the
beam axis with respect to the z axis, and it has been
assumed that the gain per wavelength is small ~a0 ,,
b0!. A similar equation would hold for Sy~z! in a
more general configuration.

Fig. 1. Schematic representation of a Gaussian beam undergoing
grazing reflection from a flat surface. The coordinate system used
in the analysis is also shown.
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Many solutions have been obtained for the param-
eters governed by Eqs. ~6!–~8!. The evolution of the
beam parameter Qx ~or accordingly the spot size and
phase front curvature! has been examined in the
greatest depth, whereas much less attention has been
given to the detailed solutions of the displacement
parameter equations and their applications. No de-
tailed studies of the phase parameter for general off-
axis Gaussian beams appear to have been made.
Because interference effects are essential for the
study of the intensity distribution of a reflecting
Gaussian beam, it is necessary here also to obtain
rigorous solutions to Eq. ~8!, the phase parameter
equation.

As indicated above, we focus here on the simplest
case of a spatially homogeneous medium with the
real propagation constant b0. Typically, this me-
dium would be meant to represent free space. In
this case Eqs. ~6!–~8! reduce to

Qx
2 1 b0

dQx

dz
5 0, (11)

Qx Sx 1 b0

dSx

dz
5 0, (12)

dP
dz

5 2i
Qx

2b0
2

Sx
2

2b0
. (13)

We can also note from Eq. ~10! that in this limit the
complex displacement parameter is given in terms of
the beam location by

Sx~z! 5 2Qx~z!dxa~z! 1 b0 d9xa~0!

5 2Qx~z!dxa~0! 1 @b0 2 Qx~z!z#d9xa~0!, (14)

where use has been made of the fact that in a uniform
medium the rate of change of the amplitude displace-
ment is constant, whereas the displacement itself
varies linearly with z.

3. Propagation in a Uniform Media

In Section 2 a set of beam modes was derived that can
describe the distribution of electromagnetic fields as
they propagate in spatially homogeneous real dielec-
tric media. In this process the partial differential
wave equation was reduced to a set of ordinary dif-
ferential equations. Our solutions are not complete
until these secondary beam parameter equations
have actually been solved. Thus it is now necessary
to solve the coupled ordinary first-order differential
equations given above as Eqs. ~11!–~13!.

One can readily show that the solution to Eq. ~11!
has the familiar form

1
qx~z!

5
1yqx1

1 1 zyqx1
, (15)

where 1yqx1 is the initial ~z 5 0! value of 1yqx~z! and
where we replace Eq. ~9! with the standard low-gain-
per-wavelength form of the beam parameter:

Qx~z!

b0
5

1
qx~z!

5
1

Rx~z!
2

il
npwx

2~z!
. (16)

In this expression l is the vacuum wavelength and n
is the index of refraction. With Eqs. ~15! and ~16!,
Eq. ~12! can be rewritten in the form

1
Sx~z!

dSx~z!

dz
5 2

1yqx1

1 1 zyqx1
. (17)

One readily finds that the solution of this equation
can be written as

Sx~z! 5
Sx1

1 1 zyqx1
, (18)

where Sx1 is the initial value of Sx~z!. With Eqs. ~15!
and ~18!, the phase parameter equation given above
as Eq. ~13! takes the form

dP~z!

dz
5 2

i
2

1yqx1

1 1 zyqx1
2

Sx1
2y2b0

~1 1 zyqx1!
2 . (19)

This equation can also be integrated, and the result is

P~z! 5 P1 2
i
2

lnS1 1
z

qx1
D 2

Sx1
2qx1

2b0

zyqx1

1 1 zyqx1
, (20)

where P1 is the initial value of P~z!. When the var-
ious parameter formulas obtained here are intro-
duced into Eq. ~5!, one has a complete description of
the propagation of the fundamental off-axis Gaussian
beam in real uniform media.

We can explore the significance and applications of
these results more readily by focusing on specific
cases. It follows from Eq. ~16! that if the starting
position of the beam is at the beam waist ~Rx1 5 `!
the beam parameter there must be purely imaginary.
By convention we use the notation 1yqx1 5 2iyz0,
where z0 is the Rayleigh length. With this substi-
tution Eq. ~15! becomes

1
qx~z!

5
2iyz0

1 2 izyz0
. (21)

When combined with Eq. ~16!, Eq. ~21! yields the
standard formulas for the propagation of the spot size
and the phase-front curvature, whereas Eqs. ~18! and
~20! become

Sx~z! 5
Sx1

1 2 izyz0
, (22)

P~z! 5 P1 2
i
2

lnS1 2
iz
z0
D 2

Sx1
2z0

2b0

zyz0

1 2 izyz0
. (23)

As noted above, it is convenient to express the com-
plex displacement parameter Sx in terms of the ac-
tual displacement of the amplitude center of the
beam dxa and the rate of change of this parameter
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with the propagation distance. Combining Eqs.
~14!, ~16!, and ~21!, one finds that the complex dis-
placement parameter can be written as

Sx~z! 5 2
b0

z0
F ~zyz0! 2 i
1 1 ~zyz0!

2G Fdxa~0! 1
z
z0

ddxa

d~zyz0!
G

1
b0

z0

ddxa

d~zyz0!

5 2
2

w0
2 F ~zyz0! 2 i

1 1 ~zyz0!
2G Fdxa~0!1

z
z0

ddxa

d~zyz0!
G

1
2

w0
2

ddxa

d~zyz0!
, (24)

where the formula for the Rayleigh length in terms of
the spot size at the beam waist z0 5 npw0

2yl has
been used to eliminate the propagation constant b0.
It is also convenient to normalize distances in the
direction of propagation with respect to the Rayleigh
length by introduction of the normalized distance z9
5 zyz0. With this substitution Eq. ~24! can be re-
written more compactly:

Sx~z9! 5 2
2

w0
2 S z9 2 i

1 1 z92D Sdxa~0! 1 z9
ddxa

dz9 D 1
2

w0
2

ddxa

dz9
.

(25)
Finally, it is also helpful to normalize the spot size

and beam displacement to an arbitrary distance d:

Sx~z9! 5 22 S z9 2 i
1 1 z92D p1 1 z9v1

w90
2d

1 2
v1

w90
2d

. (26)

In this result the normalized spot size w90 5 w0yd, the
initial position in the x direction p1 5 dxayd, and the
rate of change of this position with respect to normal-
ized distance in the z direction v1 5 dp1ydz9 have
been introduced. The initial value of the complex
displacement parameter is needed for substitution in
the phase parameter formulas, and from Eq. ~26! this
initial value is

Sx1 5 2
v1 1 ip1

w90
2d

. (27)

By use of Eq. ~27! with simplifications similar to
those used for the complex displacement parameter,
the phase parameter result given in Eq. ~23! takes
the form

P~z9! 5 P1 2
i
2

ln~1 2 iz9! 2
z9

w90
2 F~v1 1 ip1!

2

1 2 iz9 G
5 2

i
2

$ln~1 1 z92!1y2 2 i tan21~z9!# 2
z9

w0
92

3
@~v1

2 2 p1
2! 2 2v1 p1 z9# 1 i@~v1

2 2 p1
2!z9 1 2v1 p1#

1 1 z92 ,

(28)

where the initial value of the phase has been set
arbitrarily to zero. Now the parameter functions

given in Eqs. ~21!, ~26!, and ~28! can be substituted
into Eq. ~5!, and the field is found to be

A~x9, z9! 5 A0 expHF2
1

w90
2~1 1 z92!

2 i
z9

w90
2~1 1 z92!Gx92

1 F2~p1 1 z9v1!

w90
2~1 1 z92!

1 i
2z9~p1 1 z9v1!

w90
2~1 1 z92!

2 i
2v1

w90
2Gx9 1 F2ln~1 1 z92!1y4

2
z92~v1

2 2 p1
2! 1 2z9v1 p1

w90
2~1 1 z92!

1 i
z9~v1

2 2 p1
2! 2 2z92v1 p1

w90
2~1 1 z92!

1
i
2

tan21~z9!GJ , (29)

where the transverse coordinate has been normalized
according to x9 5 xyd.

It is convenient for many purposes to deal with the
intensity of the beam rather than the amplitude.
We define the intensity with the relation

I~x9, z9! 5 A*~x9, z9!A~x9, z9!. (30)
We also choose the amplitude coefficient A0 of the
off-axis Gaussian beam given in Eq. ~29! so that I~x9,
z9! will be normalized according to the integral

*
2`

`

I~x9, z9!dx9 5 1. (31)

After some arithmetic one finds that the normalized
field can be written as

A~x9, z9! 5 F ~2yp!1y2

w90~1 1 z92!1y2G1y2

expF2
1

w90
2~1 1 z92!

x92

1
2~p1 1 z9v1!

w90
2~1 1 z92!

x9 2
p1

2 1 2z9v1 p1 1 z92v1
2

w90
2~1 1 z92! G

3 exp(2iH z9

w90
2~1 1 z92!

x92

1 F2v1

w90
2 2

2z9~p1 1 z9v1!

w90
2~1 1 z92! Gx9

2
z9~v1

2 2 p1
2! 2 2z92v1 p1

w90
2~1 1 z92!

2
1
2

tan21~z9!J)
5 F ~2yp!1y2

w90~1 1 z92!1y2G1y2

3 expH2Fx9 2 ~p1 1 z9v1!

w90~1 1 z92!1y2 G2J
3 exp(2iHz9Fx9 2 ~p1 1 z9v1!

w90~1 1 z92!1y2 G2

1
2v1 x9 2 z9v1

2

w90
2 2

1
2

tan21~z9!J) . (32)
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Equation ~32! with its preceding definitions is a com-
plete solution for an off-axis Gaussian beam that
propagates in a real spatially homogeneous medium.

4. Grazing Reflection

We now have an analytical description of a Gaussian
beam that propagates displaced and at a small angle
with respect to an arbitrary z axis. This analysis
has not yet included the possibility of a reflecting
surface in the beam path, but it is possible to start
from this solution and determine the fields in the
vicinity of such a surface. The basic idea is to use a
superposition of solutions of the type given above.
Because the wave equation as employed here is lin-
ear, any superposition of solutions is also a solution.
Although the method to be described is applicable for
arbitrary angles of incidence, our emphasis is on
grazing reflections. The math is the simplest in this
case, and there is also the greatest likelihood of prac-
tical applications. As noted above for grazing-
incidence, reflection is highest and the interference
structure of the fields achieves its greatest spatial
extent in comparison with the dimensions of the
beams. The paraxial beams derived above are di-
rectly applicable in this case.

It is assumed here that the reflecting surface is a
flat high reflector as might be achieved with a metal
surface for grazing angles of incidence. The electro-
magnetic boundary conditions for such a surface are
that the tangential component of the electric field
must go to zero at the boundary. Thus for fields
polarized parallel to the surface the amplitude of the
fields must go to zero at the boundary. We refer to
this as the parallel polarization ~electric-field vector
normal to the plane of incidence!. For the perpen-
dicular polarization ~electric-field vector in the plane
of incidence!, the field might have a local maximum at
the boundary. It follows from these considerations
that a representation for a reflecting parallel-
polarized Gaussian beam field requires that we find
some superposition of Gaussian beams such that the
fields all cancel at the location of the boundary.
Such a superposition would satisfy the Maxwell–
Heaviside equations and would also by design satisfy
the only boundary condition of the problem. For the
case considered here the necessary superposition has
only two components.

To be specific, it is now assumed that the reflecting
surface is exactly parallel to the z axis, whereas the
beam itself might be propagating at a small angle
with respect to this axis, as shown in Fig. 1. Ini-
tially, we also focus on parallel-polarized beams.
For this case, one finds that an amplitude superpo-
sition that satisfies the boundary conditions is

A\~x9, z9! 5 A~x9, z9! 2 A~1 2 x9, z9!. (33)

It is clear from this formula that at an x9 value of 1⁄2
the two components of the superposition cancel.
Physically, this formula represents two Gaussian
beams that are images of each other and for which
the respective z axes are separated by the distance d.

This distance was also chosen above as the normal-
ization distance for the transverse beam and coordi-
nate variables. In the grazing-reflection problem,
the real space of interest occurs for x9 values less than
1⁄2.

It is more convenient to focus now on the intensi-
ties associated with the fields rather than on their
amplitudes. For the parallel polarization the inten-
sity from Eq. ~30! is, of course, defined by

I\~x9, z9! 5 A*\~x9, z9!A\~x9, z9!, (34)

and Eqs. ~32!–~34! are the basis for Figs. 2 and 3.
Figure 2 is a plot of a series of transverse intensity
profiles for a normalized Gaussian beam that is un-

Fig. 2. Series of transverse intensity profiles of a normalized
Gaussian beam undergoing grazing reflection from a flat surface
located at the position x9 5 0.5 on the right-hand side of the figure.
The arrows to the left-hand side of the figure distinguish between
the propagation directions of the more localized incident beam
profiles ~right arrow! and the less localized reflected beam profiles
~left arrow!. The beam is polarized parallel to the surface, the
waist spot size is w90 5 0.2, the velocity of the input beam toward
the surface is v1 5 0.5, and the propagation distance between
successive profiles is z9 5 0.2 ~five plots per Rayleigh length!. In
~a! the beam waist ~maximum beam-axis intensity! occurs just as
the beam axis crosses the location x9 5 20.5. Because of increas-
ing diffraction, the reflected beam in this example has a lower
intensity and greater width than the incident beam. In ~b! the
waist occurs at x9 5 0.0.
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dergoing grazing reflection from a flat surface located
at the position x9 5 0.5. The beam in this case is
polarized parallel to the surface, the waist spot size is
w90 5 0.2, the velocity of the input beam toward the
surface is v1 5 0.5, and the propagation distance
between successive profiles is z9 5 0.2 ~five plots per
Rayleigh length!. This display format shows in a
compact way the changes in beam intensity and
width that occur with propagation, and the arrows
distinguish the right-traveling incident profiles from
the left-traveling reflected profiles. As required by
the boundary condition, the intensity goes to zero at
the reflecting surface. In part ~a! the position pa-
rameter p1 has the value 20.5, so that the beam waist
~maximum beam-axis intensity! occurs just as the
beam axis crosses the location x9 5 20.5. Because of
increased diffraction, the reflected beam in this ex-
ample has a lower intensity and greater width than
the incident beam. In part ~b! the waist occurs at x9
5 0.0. A striking feature of the results shown in Fig.
2 is the substantial increase in intensity as the beam
interacts with the surface. This increase suggests
that there could be an enhancement of any nonlinear
interactions between beams if the interaction region
were in the vicinity of a reflecting surface. The
thickness of the interaction region and the effective
phase velocity can also be controlled by variation of
the beam orientations. Such adjustments might
prove useful in nonlinear optical applications.

Figure 3 shows a plot of the transverse intensity
profiles of a reflecting Gaussian beam whose waist
occurs at the reflecting surface. The beam is again
polarized parallel to the surface, and the waist spot
size is w90 5 0.2, but in this case the propagation
distance between successive profiles is z9 5 0.1. In
part ~a! the incident beam moves toward the surface
at a velocity of v1 5 0.5, and in part ~b! the velocity of
the beam is v1 5 1.0. Because of the symmetry that
occurs in this case, the reflected beam has the same
intensity profile as the incident beam. It can be seen
from these examples that changing the transverse
velocity of the incident beam ~or rather its propaga-
tion direction with respect to the z axis! changes the
interference structure near the surface. Higher ve-
locities ~more nearly normal incidence! leads to thin-
ner interference structures.

Similar results are obtained for the intensity of a
beam that is polarized perpendicular to the reflecting
surface. Instead of Eq. ~33! the reflection in this
case can be represented by the alternative superpo-
sition

A'~x9, z9! 5 A~x9, z9! 1 A~1 2 x9, z9!. (35)

For this polarization the intensity is defined by

I'~x9, z9! 5 A*'~x9, z9!A'~x9, z9!, (36)

and Eqs. ~32!, ~35!, and ~36! are the basis for Figs. 4
and 5. Figure 4 shows a plot of a reflecting beam for
which the waist spot size is w90 5 0.2, the velocity of
the input beam toward the surface is v1 5 0.5, and the
propagation distance between successive profiles is z9

5 0.2. In part ~a! the beam waist occurs as the beam
axis crosses the location x9 5 20.5, and in part ~b! the
waist is at x9 5 0.0. In contrast to Fig. 2, the beams
in Fig. 4 have a maximum of their intensity at the
reflecting surface. For the beams in Fig. 5 the waist
occurs at the reflecting surface. The waist spot size
is w90 5 0.2, and the propagation distance between
successive profiles is z9 5 0.1. In part ~a! the inci-
dent beam moves toward the surface at a velocity of
v1 5 0.5, and in part ~b! the velocity of the beam is v1
5 1.0.

5. Discussion

The high reflectivities that occur when beams are
incident at grazing angles have been the basis for
many practical applications, particularly in wave-
length regions of the spectrum where other highly
reflecting surfaces are not readily available. Early
applications occurred in spectroscopy, and curved
single-sided waveguides have also been used for

Fig. 3. Transverse intensity profiles of a reflecting Gaussian
beam whose waist occurs at the reflecting surface. The two-
headed arrows to the left-hand sides of the figures indicate that in
these cases the incident and reflected beam profiles are identical.
The beam is polarized parallel to the surface, the waist spot size is
w90 5 0.2, and the propagation distance between successive profiles
is z9 5 0.1. In ~a! the incident beam is moving toward the surface
at a velocity of v1 5 0.5, and in ~b! the velocity of the beam is v1 5
1.0.
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beam transmission. Recent examples have involved
Gaussian beams as the intracavity modes in lasers
that incorporate grazing-incidence mirrors or as the
pump beams in laser systems that use grazing-
incidence focusing optics. In this study analytic so-
lutions of the paraxial wave equation for Gaussian
beams that reflect at grazing angles from a flat sur-
face have been obtained.

The results developed here should be useful if one
wishes to understand or apply the detailed amplitude
or intensity distribution of a Gaussian beam in the
vicinity of a reflecting surface. Of particular inter-
est is the much higher intensity that can occur owing
to the interference of the incident and the reflected
beams. A related intensity layer was used previ-
ously to provide efficient coupling to the thin gain
region in certain electrode-guided gas lasers. This
layer has led to enhanced resolution in scanning op-
tical microscopy, and it might also be useful in non-
linear optics. Depending on the design and
orientation of the reflecting surface, one might have
control over both the intensity distribution and the

phase velocity of the propagating beams near the
surface.

This research was supported in part by the Na-
tional Science Foundation under grant PHY94-
15583. The author also expresses his appreciation
to the members of the Rochester Theory Center for
Optical Science and Engineering and the Institute of
Optics at the University of Rochester for valuable
discussions and hospitality during his sabbatical
visit.

References
1. G. D. Boyd and J. P. Gordon, “Confocal multimode resonator

for millimeter through optical wavelength masers,” Bell Sys.
Tech. J. 40, 489–508 ~1961!.

2. H. Kogelnik, “Imaging of optical modes—resonators with in-
ternal lenses,” Bell Sys. Tech. J. 44, 455–494 ~1965!.

3. H. Kogelnik, “On the propagation of Gaussian beams of light
through lenslike media including those with a loss or gain
variation,” Appl. Opt. 4, 1562–1569 ~1965!.

4. L. W. Casperson and S. D. Lunnam, “Gaussian modes in high
loss laser resonators,” Appl. Opt. 14, 1193–1199 ~1975!, and
references therein.

Fig. 4. Transverse intensity profiles of a reflecting Gaussian
beam. The beam is polarized perpendicular to the surface, the
waist spot size is w90 5 0.2, the velocity of the input beam toward
the surface is v1 5 0.5, and the propagation distance between
successive profiles is z9 5 0.2. In ~a! the beam waist occurs as the
beam axis crosses the location x9 5 20.5, and in ~b! the waist is at
x9 5 0.0.

Fig. 5. Transverse intensity profiles of a reflecting Gaussian
beam whose waist occurs at the reflecting surface. The beam is
polarized perpendicular to the surface, the waist spot size is w90 5
0.2, and the propagation distance between successive profiles is z9
5 0.1. In ~a! the incident beam is moving toward the surface at a
velocity of v1 5 0.5, and in ~b! the velocity of the beam is v1 5 1.0.

20 January 1999 y Vol. 38, No. 3 y APPLIED OPTICS 561



5. L. W. Casperson, “Beam modes in complex lenslike media and
resonators,” J. Opt. Soc. Am. 66, 1373–1379 ~1976!.

6. A. A. Tovar and L. W. Casperson, “Generalized beam matrices:
Gaussian beam propagation in misaligned complex optical sys-
tems,” J. Opt. Soc. Am. 12, 1522–1533 ~1995!.

7. W. S. Bacsa and A. Kulik, “Interference scanning optical probe
microscopy,” Appl. Phys. Lett. 70, 3507–3509 ~1997!.

8. See, for example, J. A. R. Samson, Techniques of Vacuum
Ultraviolet Spectroscopy ~Wiley, New York, 1967!, Section 2.8
and references therein.

9. See, for example, A. N. Zaidel and E. Y. Shreider, Vacuum
Ultraviolet Spectroscopy ~Ann Arbor-Humphrey Science Pub-
lishers, Inc., Ann Arbor, Mich., 1970!, pp. 119–126.

10. H. Krammer, “Light waves guided by a single curved metallic
strip,” Appl. Opt. 17, 316–319 ~1978!.

11. L. W. Casperson and T. S. Garfield, “Guided beams in concave
metallic waveguides,” IEEE J. Quantum Electron. QE-15,
491–496 ~1979!, and references therein.

12. M. E. Marhic, L. I. Kwan, and M. Epstein, “Whispering-gallery
CO2 laser,” IEEE J. Quantum Electron. QE-15, 487–490
~1979!.

13. J. G. Grossman, L. W. Casperson, and O. M. Stafsudd, “Radio-
frequency-excited carbon dioxide metal waveguide laser,”
Appl. Opt. 22, 1298–1305 ~1983!.

14. F. S. Al-Mashaabi and L. W. Casperson, “Direct current-
excited cw CO2 metal waveguide laser,” Appl. Opt. 28, 1897–
1903 ~1989!.

15. J. M. Eggleston, “Angularly stable ring resonators for high
power FELs,” in Proceedings of the International Conference on
Lasers 1983, R. Powell, ed. ~STS, McLean, Va., 1985!, p. 305.

16. E. Sklar, “The tilt sensitivity of a grazing incidence confocal
unstable resonator with applications to free-electron lasers,”
IEEE J. Quantum Electron. QE-23, 229–233 ~1987!.

17. K. C. Sun, “Grazing incidence ring resonator for visible wave-
length free electron laser,” in Optical Resonators, D. A.
Holmes, ed., Proc. SPIE 1224, 409–422 ~1990!.

18. D. H. Dowell, M. L. Laucks, A. R. Lowrey, J. L. Adamski, D. J.
Pistoresi, D. R. Shoffstall, M. P. Bentz, R. H. Burns, J. Guha,
K. C. Sun, W. Tomita, A. H. Lumpkin, S. C. Bender, D. Byrd,
and R. L. Tokar, “Tests of a grazing-incidence ring resonator
free-electron laser,” IEEE J. Quantum Electron. 27, 2613–
2625 ~1991!.

19. D. H. Dowell, M. L. Laucks, A. R. Lowrey, J. L. Adamski, D. J.
Pistoresi, D. R. Shoffstall, A. H. Lumpkin, S. Bender, D. Byrd,
R. L. Tokar, K. Sun, M. Bentz, R. Burns, J. Guha, and W.
Tomita, “Final results of the Boeing and Los Alamos grazing
incidence ring-resonator free electron laser experiment,” Nucl.
Instrum. Methods A 318, 74–80 ~1992!.

20. D. R. Gabardi and D. L. Shealy, “Optical analysis of grazing
incidence ring resonators for free-electron lasers,” Opt. Eng.
29, 641–648 ~1990!.

21. M. C. Wang, Y. Yuan, and Z. Wang, “The grazing incidence
ring resonator for a free-electron laser,” Nucl. Instrum. Meth-
ods A 318, 874–876 ~1992!.

22. J. P. Braud, “Laser cavities and polarization optics for soft
X-rays and the extreme ultraviolet,” Appl. Phys. B 50, 205–212
~1990!.

23. J. F. Young, J. J. Macklin, and S. E. Harris, “Grazing-incidence
ellipsoidal reflector for longitudinally pumping short-
wavelength lasers,” Opt. Lett. 12, 90–92 ~1987!.

24. L. W. Casperson, “Gaussian light beams in inhomogeneous
media,” Appl. Opt. 12, 2434–2441 ~1973!.

25. A. A. Tovar and L. W. Casperson, “Generalized beam matrices:
Gaussian beam propagation in misaligned complex optical sys-
tems,” J. Opt. Soc. Am. A 12, 1522–1533 ~1995!, Eq. ~24!.

562 APPLIED OPTICS y Vol. 38, No. 3 y 20 January 1999


	Grazing Reflection of Gaussian Beams
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1373475965.pdf.KjcUA

