Spring 5-29-2018

Thermally Stable Super-Hydrophobic Surface Creation

Caleb Turner
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/mcecs_mentoring
Part of the Structures and Materials Commons

Citation Details
https://pdxscholar.library.pdx.edu/mcecs_mentoring/33

This Poster is brought to you for free and open access. It has been accepted for inclusion in Undergraduate Research & Mentoring Program by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Thermally Stable Super-Hydrophobic Surface Creation

Thermally stable super-hydrophobic surface coatings are critical to applications in low gravity fluid dynamics, and in particular Leidenfrost effects. The challenges of manufacturing different super-hydrophobic coatings that are thermally stable, semi-transparent, and environmentally safe at desired operating temperatures is pursued in order to explore the applications of such coatings aboard spacecraft. A catalog of surface coating manufacturing procedures is tabulated with measures for static contact angle, thermal stability, and transparency. These quantities and methods serve as a foundation for both technology applications and follow on experimentation concerning low gravity fluid mechanics at the Portland State Dryden Drop Tower lab.

![Figure (1a) Contact angle measurement images for all for surfaces](image1)

![Figure (1b) Average contact angle through time during thermal stability experiment](image2)